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Abstract. The value of a European option satisfies the Black-Scholes equation with

appropriately specified final and boundary conditions. We transform the problem to an

initial boundary value problem in dimensionless form. There are two parameters in the

coefficients of the resulting linear parabolic partial differential equation. For a range

of values of these parameters, the solution of the problem has a boundary or an initial

layer. The initial function has a discontinuity in the first-order derivative, which leads

to the appearance of an interior layer. We construct analytically the asymptotic solution

of the equation in a finite domain. Based on the asymptotic solution we can determine

the size of the artificial boundary such that the required solution in a finite domain in

x and at the final time is not affected by the boundary. Also, we study computationally

the behaviour in the maximum norm of the errors in numerical solutions in cases such

that one of the parameters varies from finite (or pretty large) to small values, while

the other parameter is fixed and takes either finite (or pretty large) or small values.

Crank-Nicolson explicit and implicit schemes using centered or upwind approximations

to the derivative are studied. We present numerical computations, which determine

experimentally the parameter-uniform rates of convergence. We note that this rate is

rather weak, due probably to mixed sources of error such as initial and boundary layers

and the discontinuity in the derivative of the solution.
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1. Introduction

Initial and boundary layer phenomena give rise to an important sub–class of mathemat-

ical problems with non–smooth solutions. They arise when the underlying mathematical
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problem is a singular perturbation problem. In singular perturbation problems the coeffi-

cient of the highest derivative in the differential equation is multiplied by a small parame-

ter, called the singular perturbation parameter. In what follows we consider a problem in

which there is a large parameter, and its inverse plays the role of the singular perturbation

parameter.

The value of a European option satisfies the Black-Scholes equation with appropriately

specified final and boundary conditions, see, for example, [6, 8]. We denote its value by

C = C(S, t), where S is the current value of the underlying asset and t is the time. S and t

are the independent variables. The value of the option also depends on σ, the volatility of

the underlying asset; E, the exercise price; T , the expiry time and r, the interest rate.

The Black-Scholes equation governing C(S, t) is

∂ C

∂ t
+

1

2
σ2S2

∂ 2C

∂ S2
+ rS

∂ C

∂ S
− rC = 0.

The domain of the independent variables S, t is (0,∞)× (0, T]. The final condition at

t = T is

C(S, T ) =max(S− E, 0),

the boundary condition at S = 0 is

C(0, t) = 0,

and the boundary condition at S = +∞ is

C(S, t) ∼ S as S→∞.

Typical ranges of values of T in years, r in percent per annum and σ in percent per annum

arising in practice are

1

12
≤ T ≤ 30, .01≤ r ≤ .2, .01≤ σ ≤ .5.

2. Transformations of the equation

Standard approaches to the reformulation of the problem lead to new problems in

which the free parameters of the problem appear in the coefficients of the equation, the

initial and boundary conditions or the definition of the solution domain. Here we refor-

mulate in such a way that the two independent parameters appear only in the coefficients

of the equation. This enables us to study the range of problems of financial relevance in a

systematic way.

First, to obtain a more familiar initial value problem, we transform the time variable

t to t′ = T − t, and we put C ′(S, t′) = C(S, t). The domain is still (0,∞)× (0, T], the

equation becomes

∂ C ′

∂ t′
=

1

2
σ2S2

∂ 2C ′

∂ S2
+ rS

∂ C ′

∂ S
− rC ′,



152 P. Lin, J. J. H. Miller and G. I. Shishkin

and the final condition in t is changed to an initial condition in t′. We further change the

independent variables S, t′ to the new independent variables x ,τ by the transformations

S = Eex , τ= t′/T,

and the dependent variable C ′ to the new dependent variable v by the transformation

C ′(S, t′) = Ev(x ,τ).

In these variables the domain becomes (−∞,∞)× (0,1] and the equation transforms to

the dimensionless equation

k1

∂ v

∂ τ
=
∂ 2v

∂ x2
+ (k2 − 1)

∂ v

∂ x
− k2v,

where

k1 =
1

1

2
σ2T

, k2 =
r

1

2
σ2

are non-zero dimensionless parameters. Finally, defining ǫ1 = k2/k1 and ǫ2 = 1/k2 we can

rewrite the equation in the form

∂ v

∂ τ
= ǫ1(ǫ2

∂ 2v

∂ x2
+ (1− ǫ2)

∂ v

∂ x
− v),

where ǫ1 = rT , ǫ2 = σ
2/2r. The dimensionless initial condition is

v(x , 0) =max(ex − 1,0),

and the dimensionless boundary conditions at x = ±∞ are

v(x ,τ) = 0 as x →−∞,

v(x ,τ)∼ ex as x →∞.

3. Exact solution and its derivatives

In mathematical finance, in addition to the solution itself, some of the partial deriva-

tives of the solution are of interest. These are known as the Greeks. There are exact

analytic formulas for the solution and the Greeks for European call and put options.

The exact solution of the Black-Scholes equation satisfying the given initial and bound-

ary conditions is

v(x ,τ) = ex N(d+(x ,τ))− e−ǫ1τN(d−(x ,τ)).
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Here N is the cumulative distribution function for the normal distribution with mean 0 and

standard deviation 1

N(y) =
1p
2π

∫ y

−∞
e−

1

2
s2

ds,

and its arguments d+, d− are given by

d+(x ,τ) =
x + ǫ1(1+ ǫ2)τ
p

2τǫ1ǫ2

,

d−(x ,τ) =
x + ǫ1(1− ǫ2)τ
p

2τǫ1ǫ2

.

The x -derivative of the solution v is

∂

∂ x
v(x ,τ) = ex N(d+(x ,τ)), (3.1)

and the τ-derivative is

∂

∂ τ
v(x ,τ) = exp(−ǫ1τ)[ǫ1N(d−) +

1

2

Ç

ǫ1ǫ2

πτ
exp(−1

2
(d−)2)]. (3.2)

4. Classification of singular perturbation problems

The ranges of values of ǫ1 and ǫ2 corresponding to the above ranges of the parameters

T, r, and σ are

.00083≤ ǫ1 ≤ 6,

.00025≤ ǫ2 ≤ 12.5.

We see that both parameters have comparable ranges and that they lie approximately in

the common interval [2−12, 24]. Since these are the ranges that arise in practical financial

applications, we can classify the problems of financial interest into the four classes of

problems given in Table 1. Table 1: Taxonomy of problems.
ǫ2 ∈ (0,1) ǫ2 = O (1)

ǫ1 ∈ (0,1) C0,0 C0,1

ǫ1 = O (1) C1,0 C1,1

We see that singular perturbation problems arise in all classes other than the class

C1,1. This means that it is necessary to determine whether or not boundary and/or interior

layers arise in the solutions of these classes of problems.
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5. Singularities in the continuous problem

In order to obtain accurate numerical approximations of the solution and its derivatives

it is necessary to take account of the singularities of the problem. Each of the following

singularities is a potential source of numerical difficulties:

• The domain of the exact solution is infinite in the space variable, so artificial bound-

aries and boundary conditions may be required to define the numerical solutions

on a finite domain, depending on whether the method is explicit or implicit in the

time-like variable τ.

• The discontinuity in the x -derivative of the initial condition can cause numerical

errors, which may propagate into the solution domain.

• The presence of large and/or small parameters multiplying the coefficients of the

differential equation may give rise to boundary and/or interior layers in the solu-

tion and its derivatives, which, if not treated appropriately, will cause errors in the

numerical solution.

In order to study the effect of these singularities on the errors in the numerical approx-

imations, it is advisable to isolate them from each other and to deal with them one at a

time.

6. Asymptotic analysis of the singularity in the initial condition for (2.3)

We now examine, analytically, whether or not the discontinuity in the x -derivative of

the initial condition gives rise to numerical errors that propagate into the solution domain.

For the problem considered here we may discuss this using the exact expression for the

solution given in Section 3. However, for problems for which an exact solution in closed

form is unavailable, we are forced to compute numerical approximations. This gives rise to

a further difficulty, in that we cannot compute over an unbounded domain (−∞,∞). The

standard way of overcoming this is to compute on a bounded domain [−L, L], where L is

a sufficiently large number. We use the following approximate boundary conditions on the

artificial boundaries v(−L,τ) ≈ 0 and v(L,τ) ≈ eL. Note that the exact expression of the

solution is not valid in the finite interval and/or in the case of variable coefficients, so we

do an asymptotic analysis of (2.3) in this section in order to provide a meaningful choice

of L. The technique can be applied also for finite domains. We refer to [3, 7] for general

asymptotic techniques of singularly perturbed parabolic equations.

6.1. Case 1: ǫ1≪ 1

Since the initial condition v(x , 0) =max(ex − 1,0) does not have a continuous deriva-

tive at x = 0, we first construct an approximation φ(x) of it, where φ(x) has a continuous

second order derivative. That is, we construct a polynomial p(x) in the interval (−δ,δ)



Errors in Numerical Methods for Valuation of Options 155

satisfying p(−δ) = 0, p′(−δ) = 0, p′′(−δ) = 0, p(δ) = eδ − 1, p′(δ) = eδ, p′′(δ) = eδ and

define

φ(x) =







ex − 1, x ≥ δ,

p(x), −δ ≤ x ≤ δ,

0, x < −δ.

It is easy to see that

p(x) = (x + δ)3(a+ b(x − δ) + c(x − δ)2),
where

a =
eδ − 1

8δ3
, b =

eδ − 3(eδ − 1)/2δ

8δ3
,

c =
eδ − 3eδ/δ+ 3(eδ − 1)/δ2

16δ3
.

It is not difficult to verify that p(x) is monotonically increasing in (−δ,δ), φ(x) ∈ C2(−∞,∞),
and |φ(x)− v(x , 0)| ≤ Mδ2, where M is a generic constant independent of δ. Also we

have that in (−δ,δ):

p(x) = O (δ), p′(x) = O (1), p′′(x) = O (1/δ).
The reduced problem corresponding to (2.3) is

∂ v0

∂ τ
= 0, v0(x , 0) =max(ex − 1,0),

and so the reduced solution is

v0(x ,τ) =max(ex − 1,0).

Based on the construction of φ(x), we have

v0(x ,τ)−φ(x) =
¨

0, x /∈ (−δ,δ),

O (δ), x ∈ (−δ,δ).

We can also estimate v(x ,τ)−φ(x), where v(x ,τ) is the solution of (2.3). It is easy to see

that

v(x , 0)−φ(x) = v0(x , 0)−φ(x) = O (δ)
and

P(v−φ) ≡ ∂ (v −φ)
∂ τ

− ǫ1(ǫ2

∂ 2(v −φ)
∂ x2

+ (1− ǫ2)
∂ (v−φ)
∂ x

− (v−φ))

= ǫ1(ǫ2

∂ 2φ

∂ x2
+ (1− ǫ2)

∂ φ

∂ x
−φ)

≡ ǫ1F(ǫ2, x),
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with

F(ǫ2, x) =

¨

O (1+ ǫ2/δ), x ∈ (−δ,δ),

O (1), x /∈ (−δ,δ).

The parabolic operator P satisfies the maximum principle

PΦ≥ 0,Φ|τ=0 ≥ 0⇒ Φ ≥ 0

for all τ, x ∈ (−∞,∞). We construct the barrier function

Φ(x ,τ) = ±(v(x ,τ)−φ) +M[ǫ1(1+ ǫ2/δ)τ+δ].

Then it is easy to verify that if M is sufficiently large LΦ ≥ 0 and Φ|τ=0 ≥ 0. Hence Φ≥ 0

for all x ,τ. That is

|v(x ,τ)−φ(x)| ≤ M[ǫ1(1+ ǫ2/δ)τ+δ], τ ≤ 1,

or

v(x ,τ) = v0(x ,τ)+φ(x)− v0(x ,τ)+ O (ǫ1(1+ ǫ2/δ)τ+ δ)

= max(ex − 1,0)+ O (ǫ1(1+ ǫ2/δ)τ+ δ)

= max(ex − 1,0)+ O (pǫ1ǫ2),

taking δ =
p
ǫ1ǫ2. So v0(x ,τ) =max(ex−1,0) is a good approximation to v(x ,τ)when ǫ1

or ǫ2 is small. On examination of v0(x ,τ), we see that the discontinuity in the derivative of

the initial condition v(x , 0) =max(ex−1,0) at x = 0 propagates in the vertical τ-direction

in the x − τ plane. If our finite difference scheme satisfies a discrete maximum principle,

then we expect similar behaviour of the numerical solution.

Financially we are interested in the option price in only a relatively small region of x at

the final time τ = 1, say, a region x ∈ (−2,2) at τ = 1 (often just one value of x at τ = 1).

Based on our asymptotic analysis we see that the inaccuracies in the boundary conditions

on the artificial boundaries x = −L and x = L propagate in the vertical τ-direction in the

x−τ plane. So it is probably safe to choose L = 2+O (pǫ1ǫ2) to calculate the option price

in the interval x ∈ (−2,2) at τ = 1.

6.2. Case 2: ǫ1 = O (1),ǫ2≪ 1

Without loss of generality we let ǫ1 = 1. The reduced problem corresponding to (2.3)

is now
∂ v0

∂ τ
=
∂ v0

∂ x
− v0 , v0(x , 0) =max(ex − 1,0).

This can be written in the form

∂ (e−x v0)

∂ τ
=
∂ (e−x v0)

∂ x
,
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so

e−x v0(x ,τ) = e−(τ+x)max(eτ+x − 1,0)

or

v0(x ,τ) = e−τmax(eτ+x − 1,0).

Now we want to estimate v(x ,τ)− v0(x ,τ). Due to the discontinuity in the derivative of

v0(x ,τ) along the straight line x +τ = 0 we need to construct a smooth function φ(x) to

approximate the initial condition v(x , 0) in order to estimate v(x ,τ)− v0(x ,τ). Then the

reduced problem corresponding to (2.3) satisfying the smooth initial condition φ has the

form
∂ v̄0

∂ τ
=
∂ v̄0

∂ x
− v̄0 , v̄0(x , 0) = φ(x),

where φ is the same function as in Case 1. We then get

v̄0(x ,τ) = e−τφ(τ+ x).

From the results obtained in Case 1 for φ, we have v̄0(x ,τ) ∈ C2((−∞,∞)× [0,1]) and

v̄0(x ,τ)− v0(x ,τ) = O (δ)e−τ. Then

P(v− v̄0) ≡
∂ (v− v̄0)

∂ τ
− ǫ2

∂ 2(v− v̄0)

∂ x2
− (1− ǫ2)

∂ (v− v̄0)

∂ x
+ (v− v̄0)

= ǫ2(
∂ 2 v̄0

∂ x2
+
∂ v̄0

∂ x
)

≡ ǫ2 F̄(x).

From the properties of φ we see that

F(x) =

¨

O (1+ 1/δ), x +τ ∈ (−δ,δ),

O (1), otherwise.

Similarly to Case 1 we construct the barrier function

Φ(x ,τ) = ±(v(x ,τ)− v̄0(x ,τ))+M[ǫ2(1+ 1/δ)τ+δ],

and we verify that, for M sufficiently large, LΦ ≥ 0 and Φ|τ=0 ≥ 0, and so Φ ≥ 0 for all

x ,τ. Hence

|v(x ,τ)− v̄0(x ,τ)| ≤ M[ǫ2(1+ 1/δ)τ+ δ], τ ≤ 1,

or

|v(x ,τ)− v0(x ,τ)| ≤ M[ǫ2(1+ 1/δ)τ+ δ], τ ≤ 1.

So v(x ,τ) = v0(x ,τ)+O (pǫ2) if we take δ =
p
ǫ2. That is v0(x ,τ) is a good approximation

to v(x ,τ) if ǫ2 is small. From the expression for v0(x ,τ) we see that the non-smoothness

of the initial value v(x , 0) at x = 0 propagates along the straight line x+τ= 0 in the x−τ
plane (i.e., 135o direction). Furthermore, any error at τ = 0 decays along x + τ = 0 at a

rate e−τ.



158 P. Lin, J. J. H. Miller and G. I. Shishkin

From the above analysis we can get a restriction on choosing the position of the artifi-

cial boundaries. If we are interested in the option price in the interval x ∈ (−2,2) at the

terminal time τ = 1, we should choose L at least as large as 2+1+O (pǫ2) = 3+O (pǫ2).

This ensures that the inaccuracy at the artificial boundary x = L does not propagate into

the interval (−2,2) at τ = 1 (along the line x +τ = 0).

7. Numerical methods

Since there may be thin layers and other singular behaviour due to the singularities

of the problem, we need to measure the error in the numerical approximations in the

maximum norm. Due to the lack of theoretical error estimates in the maximum norm for

finite element methods, we prefer to use finite difference methods to obtain controllable

numerical approximations.

In our computations we use centered and upwind finite difference operators in the x -

variable and explicit, implicit and Crank-Nicolson (midpoint) finite difference operators in

the τ-variable. We use appropriately constructed uniform and fitted meshes. The uniform

x -mesh is {X (i)}M+2
1

, where X (1), X (M+2) are respectively the left,right boundary points.

The uniform τ-mesh is {T ( j)}N+1
1

, where T (1) = 0 and T (N + 1) = 1. We use a tensor

product of these one-dimensional uniform meshes to obtain a uniform mesh on the two

-dimensional domain. For our fitted meshes we use the techniques described in [2–5] to

construct one-dimensional fitted meshes and again take the tensor product to obtain fitted

meshes on the two-dimensional domain.

We use the following notation for the finite difference operators

D+x φi =
φi+1 −φi

x i+1 − x i

, D−x φi =
φi −φi−1

x i − x i−1

, D0
xφi =

φi+1 −φi−1

x i+1 − x i−1

, D+t ψ j =
ψ j+1 −ψ j

t j+1 − t j

.

The finite difference equations, centered in x , are then

D+τ Vi, j = θǫ1(ǫ2D+x D−x Vi, j+1 + (1− ǫ2)D
0
x Vi, j+1 − Vi, j+1)

+(1− θ)ǫ1(ǫ2D+x D−x Vi, j + (1− ǫ2)D
0
x Vi, j − Vi, j)

for 2 ≤ i ≤ M + 1, 1 ≤ j ≤ N , where Vi, j is the numerical approximation to the exact

solution v(X i, T j). The explicit, implicit and Crank-Nicolson operators in t correspond

respectively to θ = 0, θ = 1 and θ = 1/2.

Furthermore, the standard finite difference equations, upwind in x , are

D+τ Vi, j = θǫ1(ǫ2D+x D−x Vi, j+1 + (1− ǫ2)
+D+x Vi, j+1 + (1− ǫ2)

−D−x Vi, j+1 − Vi, j+1)

+(1− θ)ǫ1(ǫ2D+x D−x Vi, j + (1− ǫ2)
+D+x Vi, j + (1− ǫ2)

−D−x Vi, j − Vi, j)

for 2≤ i ≤ M + 1, 1≤ j ≤ N , where for any quantity φ we use the notation

φ+ =
1

2
(φ + |φ|), φ− = 1

2
(φ − |φ|).
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The explicit, implicit and Crank-Nicolson operators in t correspond respectively to θ = 0,

θ = 1 and θ = 1/2. The initial condition is

Vi,1 =max{eX i − 1,0}
for 1≤ i ≤ M + 2.

8. Numerical treatment of the infinite domain

As discussed in the previous section, since the domain of the exact solution is infinite

in the space variable x and since the numerical domain must be finite, it is necessary to

construct artificial boundaries at finite values of x and, in the case of implicit in τmethods,

to impose boundary conditions on these artificial boundaries.

For vanilla European options these boundary conditions pose no problem, because we

know the exact solution, and so the values of the exact solution on the artificial boundaries

give us the exact boundary conditions. This means that we have isolated the errors due

to the infinite x -domain from the other singularities. Therefore we can study the exact

errors in the numerical solutions of the dimensionless Black-Scholes equation for vanilla

European options arising from the discontinuity in the derivative of the initial condition

and from boundary and interior layers arising from large or small values of the coefficients.

However, in most cases when we are using numerical methods to compute the value of an

option, we do not know the exact solution in advance, and so we must use techniques

other than the above. We do not pursue this matter here.

9. Numerical solutions

We compute solutions for the extreme problems of each of the four classes

C0,0, C0,1, C1,0, C1,1, which correspond to values of (ǫ1,ǫ2) = (2
q1, 2q2) where (q1,q2) take

successively the values (4,4), (4,−12), (−12,4) and (−12,−12). We make these computa-

tions using a variety of different finite difference operators. But due to the page limitation

we only show a few results. All other computational results may be found in our extensive

research report [1].

We use a variety of different meshes with N = Nx = Nτ in all cases. For the results

we show below the temporal discretization is either Crank-Nicolson or implicit Euler, and

the finite difference operators in x are all centered. The meshes are uniform in all cases

with N ranging from 16 to 512. Some incomplete results for piecewise-uniform (fitted)

meshes may be found in [1], which show a little bit better uniform convergence rate. But

improvement is not significant due to other sources of error, such as discontinuity in the

derivative of the solution. Further numerical experiments need be carried out and reported

in near future.

We present computational results in tables which come in pairs. The first of the pair is a

table of the error in the maximum norm for the particular value of the free parameter (row)

and a particular value of the discretization parameter N (column). The corresponding en-

try is the maximum norm over the whole solution domain for that particular problem.



160 P. Lin, J. J. H. Miller and G. I. ShishkinTable 2: Errors for ǫ2 = 24 with impli
it Euler, 
entered operator, uniform mesh.
ǫ1\ N 16 32 64 128 256 512

24 2.453393e-02 4.090640e-02 5.558417e-02 6.274202e-02 6.084209e-02 5.062901e-02

23 2.632904e-02 4.197406e-02 5.625624e-02 5.799328e-02 4.948874e-02 3.603977e-02

22 3.000451e-02 5.020275e-02 5.522310e-02 4.836619e-02 3.562738e-02 2.406533e-02

21 3.907600e-02 4.994743e-02 4.617159e-02 3.481138e-02 2.378890e-02 1.630502e-02

20 4.039252e-02 4.192629e-02 3.322032e-02 2.324136e-02 1.612738e-02 1.136702e-02

2−1 3.431060e-02 3.017361e-02 2.217039e-02 1.577734e-02 1.125498e-02 7.997312e-03

2−2 2.432899e-02 2.003486e-02 1.506957e-02 1.102729e-02 7.923309e-03 5.641428e-03

2−3 2.275167e-02 1.352622e-02 1.052052e-02 7.756225e-03 5.585447e-03 3.982248e-03

2−4 2.072235e-02 1.121119e-02 7.349421e-03 5.446558e-03 3.934450e-03 2.810166e-03

2−5 1.832281e-02 9.877670e-03 5.132265e-03 3.801068e-03 2.763318e-03 1.980233e-03

2−6 1.513077e-02 8.107008e-03 4.189694e-03 2.617093e-03 1.928074e-03 1.390899e-03

2−7 1.147099e-02 5.997526e-03 3.066488e-03 1.752015e-03 1.327155e-03 9.704550e-04

2−8 7.455886e-03 3.780394e-03 1.898913e-03 1.105050e-03 8.883369e-04 6.679661e-04

2−9 4.409734e-03 2.135460e-03 1.039922e-03 6.077083e-04 5.604101e-04 4.471075e-04

2−10 2.967134e-03 1.340273e-03 6.195048e-04 3.178791e-04 3.085679e-04 2.820994e-04

2−11 2.442735e-03 1.101596e-03 4.709120e-04 2.622652e-04 1.640630e-04 1.554208e-04

2−12 2.478695e-03 1.150821e-03 5.397733e-04 2.295145e-04 1.286998e-04 8.369763e-05Table 3: ǫ1-uniform rates for ǫ2 = 24 with impli
it Euler, 
entered operator, uniform mesh.
N 16 32 64 128 256 *

DN 0.023079 0.030264 0.034479 0.032673 0.027309 –

pN -0.390971 -0.188137 0.077602 0.258760 – -0.390971

CN
p∗ -0.025079 -0.025079 -0.021789 -0.015747 -0.010037 -0.010037

C∗
p∗N
−p∗ -0.029674 -0.038911 -0.051023 -0.066905 -0.087731 –

Thus, the first table of a pair represents the solution of 15×6=90 distinct problems. The

second table of the pair displays experimentally determined values of the error parameters

for the particular method under consideration. It uses the experimental technique intro-

duced in [2] (Chapter 8). The entries are derived from the same numerical solutions that

are used in the first table of the pair. The first row gives the maximum of the two succes-

sive mesh differences, the second row gives a local rate of convergence, the last entry of

the row being p∗ the minimum of the other entries and the computed parameter-uniform

rate of convergence. Negative values of the entries in this row indicate that there is no

parameter-uniform convergence for the current numerical method and parameter values;

positive values indicate that there is parameter-uniform convergence. The third row gives

local error constants, the last entry of the row being the maximum of the other entries and

the computed parameter uniform error constant C∗p∗. The final row is the experimentally

determined parameter-uniform error bound. The three dashes in each of these tables indi-

cates that an entry there is not applicable. The final column heading * indicates that the

two entries in that column are the value of p∗ and the value of C∗p∗. The captions of the

tables include the information about the finite difference operator and the mesh used to

generate the displayed results.

In the following two tables we see no ε1-uniform convergence (note the anomalous

negative values in Table 2). They indicate however that the centered finite difference

scheme in x is stable for these practical values of ǫ1 and ǫ2.
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it Euler, 
entered operator, uniform mesh.
ǫ2\ N 16 32 64 128 256 512

24 2.150369e-03 1.071562e-03 5.262806e-04 2.235133e-04 1.266895e-04 8.595719e-05

23 2.162615e-03 1.098546e-03 5.406129e-04 2.638044e-04 1.125697e-04 6.326434e-05

22 2.135008e-03 1.101413e-03 5.541875e-04 2.721031e-04 1.320528e-04 5.650668e-05

21 1.681422e-03 1.109473e-03 5.592291e-04 2.792237e-04 1.368251e-04 6.612159e-05

20 1.033723e-03 1.113409e-03 5.678942e-04 2.828175e-04 1.404178e-04 6.865276e-05

2−1 5.636745e-04 8.789767e-04 5.817293e-04 2.872926e-04 1.422653e-04 7.041010e-05

2−2 3.140630e-04 5.438439e-04 5.897123e-04 2.942714e-04 1.444812e-04 7.135061e-05

2−3 1.886587e-04 3.093299e-04 4.702735e-04 3.074571e-04 1.479914e-04 7.244912e-05

2−4 1.258463e-04 1.860592e-04 3.017493e-04 3.200211e-04 1.546133e-04 7.420946e-05

2−5 9.441244e-05 1.241724e-04 1.848022e-04 2.644570e-04 1.677014e-04 7.752933e-05

2−6 7.868859e-05 9.317927e-05 1.234855e-04 1.817468e-04 1.831393e-04 8.408618e-05

2−7 7.082493e-05 7.767024e-05 9.270917e-05 1.234617e-04 1.613718e-04 9.710378e-05

2−8 6.689267e-05 6.991260e-05 7.729731e-05 9.280297e-05 1.224198e-04 1.138982e-04

2−9 6.492643e-05 6.603300e-05 6.958545e-05 7.741369e-05 9.349331e-05 1.099901e-04

2−10 6.394328e-05 6.409300e-05 6.572804e-05 6.970743e-05 7.808548e-05 9.367729e-05

2−11 6.345170e-05 6.312295e-05 6.379896e-05 6.585139e-05 7.034750e-05 7.962140e-05

2−12 6.320591e-05 6.263792e-05 6.283432e-05 6.392264e-05 6.647269e-05 7.183095e-05Table 5: ǫ2-uniform rates for ǫ1 = 2−12 with impli
it Euler, 
entered operator, uniform mesh.
N 16 32 64 128 256 *

DN 0.001100 0.000588 0.000293 0.000163 0.000101 –

pN 0.902751 1.005400 0.843414 0.689216 – 0.689216

CN
p∗ 0.019574 0.016881 0.013559 0.012184 0.012184 0.019574

C∗
p∗N
−p∗ 0.002896 0.001796 0.001114 0.000691 0.000428 –Table 6: Errors for ǫ2 = 2−12 with impli
it Euler, 
entered operator, uniform mesh.

ǫ1\ N 16 32 64 128 256 512

24 1.239506e-01 9.901791e-02 8.700653e-02 6.936237e-02 5.123501e-02 3.522006e-02

23 7.135972e-02 8.420085e-02 6.645256e-02 4.984439e-02 3.656676e-02 2.591016e-02

22 9.406462e-02 7.395970e-02 5.531170e-02 3.991516e-02 2.802125e-02 1.933944e-02

21 8.556035e-02 6.358104e-02 4.572286e-02 3.204279e-02 2.197950e-02 1.474418e-02

20 7.875750e-02 5.564344e-02 3.879386e-02 2.659635e-02 1.790269e-02 1.178850e-02

2−1 7.110934e-02 4.996162e-02 3.436220e-02 2.321418e-02 1.540262e-02 9.991684e-03

2−2 5.562872e-02 4.030937e-02 2.797497e-02 1.892606e-02 1.252193e-02 8.073728e-03

2−3 3.525937e-02 2.842637e-02 2.042722e-02 1.401375e-02 9.316075e-03 6.006740e-03

2−4 3.486517e-02 1.742305e-02 1.387640e-02 9.860201e-03 6.653432e-03 4.314009e-03

2−5 1.809540e-02 1.729796e-02 8.515393e-03 6.635837e-03 4.623495e-03 3.040960e-03

2−6 8.591612e-03 8.905157e-03 8.402215e-03 4.082610e-03 3.101076e-03 2.109705e-03

2−7 4.168283e-03 4.230312e-03 4.426837e-03 4.009483e-03 1.917741e-03 1.432678e-03

2−8 2.050417e-03 2.054632e-03 2.104108e-03 2.216849e-03 1.872614e-03 9.410980e-04

2−9 1.016536e-03 1.011520e-03 1.022621e-03 1.054917e-03 1.112533e-03 8.497149e-04

2−10 5.060689e-04 5.017247e-04 5.036726e-04 5.129675e-04 5.338278e-04 5.498088e-04

2−11 2.524808e-04 2.498426e-04 2.498906e-04 2.527312e-04 2.597458e-04 2.739578e-04

2−12 1.261015e-04 1.246650e-04 1.244543e-04 1.254107e-04 1.280163e-04 1.335339e-04

In Tables 3 and 4 we consider cases where either ǫ1 or ǫ2 is small. We see that there

is good ǫ2-uniform convergence when ǫ1 is small. However, we see in Tables 5 and 6 that,

when ǫ2 is small, the ǫ1-uniform convergence is greatly reduced, even though the same
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it Euler, 
entered operator, uniform mesh.
N 16 32 64 128 256 *

DN 0.098006 0.095139 0.081150 0.062331 0.043069 –

pN 0.042839 0.229432 0.380643 0.533310 – 0.042839

CN
p∗ 3.772294 3.772294 3.314631 2.622684 1.866807 3.772294

C∗
p∗N
−p∗ 3.349828 3.251822 3.156683 3.064328 2.974675 –Table 8: Errors for ǫ2 = 24 with Crank Ni
olson, 
entered operator, uniform mesh.

ǫ1\ N 16 32 64 128 256 512

24 3.894781e-01 3.488495e-01 2.888428e-01 2.206858e-01 1.559965e-01 1.054759e-01

23 2.632904e-02 4.197406e-02 5.625624e-02 5.799328e-02 4.948874e-02 3.603977e-02

22 3.000451e-02 5.020275e-02 5.522310e-02 4.836619e-02 3.562738e-02 2.406533e-02

21 3.907600e-02 4.994743e-02 4.617159e-02 3.481138e-02 2.378890e-02 1.630502e-02

20 4.039252e-02 4.192629e-02 3.322032e-02 2.324136e-02 1.612738e-02 1.136702e-02

2−1 3.431060e-02 3.017361e-02 2.217039e-02 1.577734e-02 1.125498e-02 7.997312e-03

2−2 2.432899e-02 2.003486e-02 1.506957e-02 1.102729e-02 7.923309e-03 5.641428e-03

2−3 2.275167e-02 1.352622e-02 1.052052e-02 7.756225e-03 5.585447e-03 3.982248e-03

2−4 2.072235e-02 1.121119e-02 7.349421e-03 5.446558e-03 3.934450e-03 2.810166e-03

2−5 1.832281e-02 9.877670e-03 5.132265e-03 3.801068e-03 2.763318e-03 1.980233e-03

2−6 1.513077e-02 8.107008e-03 4.189694e-03 2.617093e-03 1.928074e-03 1.390899e-03

2−7 1.147099e-02 5.997526e-03 3.066488e-03 1.752015e-03 1.327155e-03 9.704550e-04

2−8 7.455886e-03 3.780394e-03 1.898913e-03 1.105050e-03 8.883369e-04 6.679661e-04

2−9 4.409734e-03 2.135460e-03 1.039922e-03 6.077083e-04 5.604101e-04 4.471075e-04

2−10 2.967134e-03 1.340273e-03 6.195048e-04 3.178791e-04 3.085679e-04 2.820994e-04

2−11 2.442735e-03 1.101596e-03 4.709120e-04 2.622652e-04 1.640630e-04 1.554208e-04

2−12 2.478695e-03 1.150821e-03 5.397733e-04 2.295145e-04 1.286998e-04 8.369763e-05Table 9: ǫ1-uniform rates for ǫ2 = 24 with Crank Ni
olson, 
entered operator, uniform mesh.
N 16 32 64 128 256 *

DN 0.680949 0.564019 0.427296 0.304001 0.212088 –

pN 0.271803 0.400508 0.491159 0.519415 – 0.271803

CN
p∗ 8.425321 8.425321 7.706237 6.619265 5.575336 8.425321

C∗
p∗N
−p∗ 3.965547 3.284598 2.720580 2.253412 1.866465 –

numerical method is used. Note that there is slow ǫ1 convergence although ǫ2 is very

small. The following four tables show two cases using the Crank Nicolson scheme and

the centered spatial operator (in comparison with Tables 2-3 and 6-7). We see that, for

these cases, if we replace the implicit Euler by the Crank Nicolson scheme both ǫ1-uniform

and ǫ2-uniform rates are improved (probably due to higher accuracy of the Crank Nicolson

scheme). Note, however, that this does not necessarily mean that such behaviour is always

to be expected.

We have slow ǫ2-uniform convergence.

10. Conclusion

In this short paper we have presented some results, but there are still interesting prob-

lems left for further studies. We have seen that the problem is complicated, since it has
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olson, 
entered operator, uniform mesh.
ǫ1\ N 16 32 64 128 256 512

24 1.027500e-01 6.461273e-02 3.719955e-02 2.860507e-02 1.647026e-02 8.560908e-03

23 7.135972e-02 8.420085e-02 6.645256e-02 4.984439e-02 3.656676e-02 2.591016e-02

22 9.406462e-02 7.395970e-02 5.531170e-02 3.991516e-02 2.802125e-02 1.933944e-02

21 8.556035e-02 6.358104e-02 4.572286e-02 3.204279e-02 2.197950e-02 1.474418e-02

20 7.875750e-02 5.564344e-02 3.879386e-02 2.659635e-02 1.790269e-02 1.178850e-02

2−1 7.110934e-02 4.996162e-02 3.436220e-02 2.321418e-02 1.540262e-02 9.991684e-03

2−2 5.562872e-02 4.030937e-02 2.797497e-02 1.892606e-02 1.252193e-02 8.073728e-03

2−3 3.525937e-02 2.842637e-02 2.042722e-02 1.401375e-02 9.316075e-03 6.006740e-03

2−4 3.486517e-02 1.742305e-02 1.387640e-02 9.860201e-03 6.653432e-03 4.314009e-03

2−5 1.809540e-02 1.729796e-02 8.515393e-03 6.635837e-03 4.623495e-03 3.040960e-03

2−6 8.591612e-03 8.905157e-03 8.402215e-03 4.082610e-03 3.101076e-03 2.109705e-03

2−7 4.168283e-03 4.230312e-03 4.426837e-03 4.009483e-03 1.917741e-03 1.432678e-03

2−8 2.050417e-03 2.054632e-03 2.104108e-03 2.216849e-03 1.872614e-03 9.410980e-04

2−9 1.016536e-03 1.011520e-03 1.022621e-03 1.054917e-03 1.112533e-03 8.497149e-04

2−10 5.060689e-04 5.017247e-04 5.036726e-04 5.129675e-04 5.338278e-04 5.498088e-04

2−11 2.524808e-04 2.498426e-04 2.498906e-04 2.527312e-04 2.597458e-04 2.739578e-04

2−12 1.261015e-04 1.246650e-04 1.244543e-04 1.254107e-04 1.280163e-04 1.335339e-04Table 11: ǫ1-uniform rates for ǫ2 = 2−12 with Crank Ni
olson, 
entered operator, uniform mesh.
N 16 32 64 128 256 *

DN 0.112010 0.074310 0.038860 0.030945 0.016014 –

pN 0.592008 0.935279 0.328586 0.950330 – 0.328586

CN
p∗ 1.367599 1.139359 0.748217 0.748217 0.486255 1.367599

C∗
p∗N
−p∗ 0.549923 0.437912 0.348717 0.277689 0.221128 –

several singularities simultaneously. This influences the error behavior of the numerical

solution and reduces the convergence rate of known numerical methods. Further investi-

gations, not undertaken here, are required to study separately the influence of singularities

such as the boundary, interior and initial layers on the error behavior. Furthermore,the

numerical investigations in this paper show no decisive evidence of advantages or disad-

vantages in using Crank-Nicolson or Euler (explicit or implicit) temporal discretizations in

conjunction with centered or upwind discretizations of the first derivative.

Acknowledgments This research was partially supported by the Russian Foundation for

Basic Research (grant No. 07-01-00729), the Singapore Academic Research Funds R-146-

000-064-112 and R-146-000-099-112, the Boole Centre for Research in Informatics at the

National University of Ireland, Cork and by the Mathematics Applications Consortium for

Science and Industry in Ireland (MACSI) under the Science Foundation Ireland Mathemat-

ics Initiative.

References

[1] D.B. Creamer, P. Lin, J.J.H. Miller and G.I. Shishkin, Report on analytic and experimental

investigations of numerical errors in the valuation of options, INCA Preprint 2004, Institute of

Numerical Computation and Analysis, Dublin, Ireland. (inca.cs.kent.edu/2004/index.html)



164 P. Lin, J. J. H. Miller and G. I. Shishkin

[2] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Robust Computational

Techniques for Boundary Layers, Chapman & Hall/CRC, Boca Raton, 2000.

[3] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods for Singular Perturba-

tion Problems, World Scientific, Singapore, 1996.

[4] E.P. Doolan, J.J.H. Miller and W.H.A. Schilders, Uniform Numerical Methods for Problems with

Initial and Boundary Layers, Boole Press, Dublin, 1980.

[5] J. J. H. Miller and G.I. Shishkin, Robust numerical methods for the singularly perturbed Black-

Scholes equation, in Proceedings of the Conference on Applied Mathematics and Scientific

Computing (Brijuni, 2003), eds. M. Marusic et.al., Kluwer, 2004.

[6] W. Shaw, Modelling Financial Derivatives with Mathematica, Cambridge University Press,

Cambridge, U.K., 1998.

[7] Y. C. Su, Boundary Layer Correction Method in Singular Perturbations, Shanghai Science and

Technology Publisher, Shanghai, 1983.

[8] P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial Derivatives. Cambridge

University Press, Cambridge, U. K., 1995.


