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Abstract. A boundary value problem is considered for a singularly perturbed parabolic

convection-diffusion equation; we construct a finite difference scheme on a priori (se-

quentially) adapted meshes and study its convergence. The scheme on a priori adapted

meshes is constructed using a majorant function for the singular component of the

discrete solution, which allows us to find a priori a subdomain where the computed

solution requires a further improvement. This subdomain is defined by the perturbation

parameter ǫ, the step-size of a uniform mesh in x , and also by the required accuracy

of the discrete solution and the prescribed number of refinement iterations K for im-

proving the solution. To solve the discrete problems aimed at the improvement of the

solution, we use uniform meshes on the subdomains. The error of the numerical so-

lution depends weakly on the parameter ǫ. The scheme converges almost ǫ-uniformly,

precisely, under the condition N−1 = o (ǫν), where N denotes the number of nodes in

the spatial mesh, and the value ν = ν(K) can be chosen arbitrarily small for suitable K .
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1. Introduction

At present, there are fairly well-developed methods for constructing ǫ-uniformly con-

vergent schemes on meshes that are a priori adapted in a boundary layer region and not

changing in the computational process, or, in short, schemes on meshes condensing in

boundary layers a priori (see, e.g., [1–5] for partial differential equations and [6] for ordi-

nary differential equations). The methods based on piecewise-uniform meshes condensing

in boundary layers received fairly widespread use due to their simplicity and convenience

in application (see, e.g., [2–5] and the references therein). The disadvantageous property
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of these numerical methods on a priori adapted meshes is the necessity to solve the dif-

ference equations on meshes whose step-size changes sharply in a neighbourhood of the

boundary layer.

Another alternative approach to the construction of numerical methods for singularly

perturbed boundary value problems developed, for example, in [7–10] leads to methods

on sequentially a posteriori adapted meshes that are fitted (refined) in the computational

process depending on the computed solution, or briefly, methods on a posteriori adapted

meshes. In this approach, classical finite difference approximations of the boundary value

problem are used; the discrete solution is corrected on a finer mesh in that subdomain

where errors in the solution turn to be intolerably large. The subdomain in which the

solution should be locally improved is determined using an indicator that is a functional of

the solution (for example, the solution gradient) of the discrete problem. In these methods,

the discrete problems on the subdomains where the solution is a posteriori improved are

solved on uniform meshes.

In this respect, it would be of interest to consider such numerical methods on a priori

adapted meshes in which the discrete problems in the subdomains where the computed

solution is a priori corrected are solved on uniform meshes. Methods of this kind are

unknown in the literature.

In the present paper, we consider the Dirichlet problem for a parabolic convection-

diffusion equation with a small parameter ǫ multiplying the highest-order derivative. For

the boundary value problem, we construct finite difference schemes on locally uniform

meshes (namely, uniform meshes on the subdomains where the solution should be im-

proved) that are adapted a priori, and study their convergence. To construct the schemes,

a standard finite difference approximation of the differential equation is used. Note that

the scheme on a priori condensing (in the layer) piecewise-uniform meshes converges ǫ-

uniformly. The “standard” scheme on uniform meshes converges only under the condition

N−1≪ ǫ, where the value N defines the number of mesh points in x .

For the scheme on a priori adapted meshes, boundaries of the subdomains where it

requires to improve the solution are determined by a majorant for the singular component

of the discrete solution, which is specified in its turn by the perturbation parameter ǫ, the

step-size of a mesh used in x , and also by the required accuracy of the discrete solution.

On the meshes adapted with respect to the majorant function of the discrete solution, we

construct a sufficiently simple finite difference scheme for which the error in the solution

is weakly depending on the parameter ǫ. The scheme constructed on a priori adapted

meshes converges “almost ǫ-uniformly”, precisely, under the condition N−1 ≪ ǫν , where

the value ν defining the scheme (the number of refinement iterations required for the

discrete solution to be improved) can be chosen arbitrary in (0,1].

2. Problem formulation and aim of research

2.1. Problem formulation

On the set G

G = G ∪ S, G = D× (0, T], (2.1)
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where D = (0, d), we consider the Dirichlet problem for the singularly perturbed parabolic

convection-diffusion equation

L u(x , t) = f (x , t), (x , t) ∈ G,

u(x , t) = ϕ(x , t), (x , t) ∈ S.
(2.2)

Here

L = ǫ a(x , t)
∂ 2

∂ x2
+ b(x , t)

∂

∂ x
− c(x , t)− p(x , t)

∂

∂ t
, (x , t) ∈ G,

the functions a(x , t), b(x , t), c(x , t), p(x , t), f (x , t) and ϕ(x , t) are assumed to be suffi-

ciently smooth on G and on smooth parts of S respectively, and satisfy∗

a0 ≤ a(x , t) ≤ a0, b0 ≤ b(x , t)≤ b0, 0≤ c(x , t) ≤ c0,

p0 ≤ p(x , t) ≤ p0, (x , t) ∈ G; (2.3)

| f (x , t)| ≤ M , (x , t) ∈ G; |ϕ(x , t)| ≤ M , (x , t) ∈ S;

a0, b0, p0 > 0. The parameter ǫ takes arbitrary values in the half-open interval (0,1].

For small values of the parameter ǫ, a regular boundary layer appears in a neighbour-

hood of the set SL
1 = {(x , t) : x = 0, 0 < t ≤ T}. Here SL

1 and SL
2 are the left and right

parts of the lateral boundary SL; S = SL ∪ S0, SL = SL
1 ∪ SL

2 , and S0 = S0 is the lower part

of the boundary.

2.2. Some definitions

In the case of the boundary value problem (2.2), (2.1), we are interested in numerical

methods whose solutions converge uniformly with respect to the parameterǫ (or, briefly,

ǫ-uniformly) in the maximum discrete norm. However, in the case of singularly perturbed

problems, the ǫ-uniform convergence of the numerical solution z(x , t) at the points of the

mesh Gh is, in general, not adequate to give a representation about ǫ-uniform convergence

of an approximation constructed on the whole set G. For example, the solution of a differ-

ence scheme obtained by the classical approximation of problem (2.2), (2.1) on a uniform

mesh like Gh(3.3) = G
u

h converges on the mesh Gh when ǫ−1 h→∞ for h→ 0, i.e., when

the typical width of the boundary layer defined by ǫ is much less than the mesh size in x .

However, even the simplest interpolant

z(x , t) = z
�

x , t; z(·), Gh

�
, (x , t) ∈ G (2.4)

does not converge on G, where z(x , t) is a linear interpolant on triangular elements (trian-

gulation of elementary rectangles from G generated by the points of the mesh Gh) that is

constructed using the discrete function z(x , t), (x , t) ∈ Gh. Under the given requirements

on the mesh Gh(3.3), the interpolant

uh(x , t) = z(2.4)

�
x , t; uh(·), Gh

�
, (x , t) ∈ G,

∗ By M (by m) we denote sufficiently large (small) positive constants that are independent of ǫ and the scheme

parameters.
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constructed using the discrete function

uh(x , t) = u(x , t), (x , t) ∈ Gh,

where u(x , t) is the solution of problem (2.2), (2.1), does not converge on G as well.

Let us give some definitions. In that case when the interpolant z(2.4)(x , t), (x , t) ∈ G,

converges on G, we say that the difference scheme solves the boundary value problem (con-

verges on G); otherwise, we say that the difference scheme does not solve the boundary

value problem. In that case when the interpolant z(x , t), (x , t) ∈ G, converges on G ǫ-

uniformly, we say that the difference scheme converges (solves the boundary value problem)

ǫ-uniformly.

But if the interpolant uh(x , t), (x , t) ∈ G, converges (converges ǫ-uniformly) on G, we

say that the mesh Gh is informative (ǫ-uniformly informative) for the solution of the boundary

value problem; if not, we say that the mesh Gh is not informative for the solution.

We are interested in difference schemes that converge on G ǫ-uniformly or schemes

close to ǫ-uniformly convergent schemes on G.

2.3. Aim of the paper

Let us formulate the aim of this research.

The error bound (3.4) for the discrete solution in Section 3 implies that the solution of

the classical difference scheme (3.2) on the uniform mesh (3.3) converges under the rather

restrictive condition (h ≪ ǫ) ǫ−1 = o(N), where N + 1 is the number of mesh points in

x . If this condition is violated, for example, for ǫ−1= O (N), then, in general, the solution

of the difference scheme (3.2), (3.3) does not converge to the solution of problem (2.2),

(2.1) as N , N0→∞; N0 + 1 is the number of mesh points in t.

Let us give some definitions [7]. Suppose that z(x , t), (x , t) ∈ Gh, is a solution of some

difference scheme, and let the function z(x , t) satisfy the estimate

|u(x , t)− z(x , t)| ≤ Mλ
�
ǫ−νN−1, N−1

0

�
, (x , t) ∈ Gh, (2.5)

where λ(ξ1, ξ2) → 0 as ξ1, ξ2 → 0, uniformly in the parameter ǫ; and ν ≥ 0. By

definition, the solution of this scheme converges on the set Gh uniformly with respect to

the parameter ǫ (or, briefly, ǫ-uniformly) if ν = 0 in estimate (2.5). Otherwise, we say

that the scheme does not converge ǫ-uniformly on Gh. But if the scheme converges for

N−1 = o (ǫν), where the constant M in estimate (2.5), generally speaking, depends on ν ,

however in general, there is no convergence for N−1 = O (ǫν), we say that the scheme

converges with defect (of ǫ-uniform convergence) ν . In that case when the value ν can be

chosen arbitrarily small, and also the solution of the difference scheme controlled by the

value ν satisfies estimate (2.5), we say that the scheme converges on Gh almost ǫ-uniformly

with defect ν (or, briefly, almost ǫ-uniformly).

In a similar way, the convergence defect of the scheme on the set G can be defined.

The defect of scheme (3.2), (3.3) is equal to 1.

For problem (2.2), (2.1), the difference scheme from [2] in the case n = 1 (that is,

the scheme on a priori adapted piecewise-uniform mesh with a single transition point at
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which the mesh changes its step-size) converges ǫ-uniformly. Note that, in schemes on

piecewise-uniform meshes (see, e.g., [2–5] and the references therein), the mesh size

changes sharply at the transition points where the mesh switches from coarse to fine (the

ratio of the mesh sizes is not ǫ-uniformly bounded; see Remark 3.1 in Section 3), which,

in general, can lead to restrictions in using efficient numerical approaches to the compu-

tation of discrete solutions and improvement of their accuracy (see, e.g., [11–15] and the

references therein).

Schemes on a a posteriori adapted meshes that converge almost ǫ-uniformly were con-

sidered in [7–9]. An adapted mesh is constructed using meshes that are uniform on the

subdomains in which the computed solution is corrected. The advantage of this scheme

is that its solution is “synthesized” using the components of solutions of auxiliary interme-

diate problems that are solved on the corresponding subdomains having uniform meshes

with the same numbers of mesh point in x , t on each subdomain.

It should be noted that in order to solve discrete problems on uniform meshes, highly

efficient numerical methods have been developed, which require the number of operations

for computing the solution of the same order as the number of mesh points (see, e.g.,

[11–13] and the references therein). Due to this, it would be of interest to construct and

examine almost ǫ-uniformly convergent schemes on a priori adapted meshes based on

locally uniform meshes, that is, uniform meshes on each of the subdomains.

Our aim for the boundary value problem (2.2), (2.1) is to construct an almost ǫ-

uniformly converging scheme on a priori adapted locally uniform meshes.

3. Schemes on uniform and piecewise-uniform meshes

In this section, we give a finite difference scheme on a piecewise-uniform mesh that

converges ǫ-uniformly.

3.1. A finite difference scheme on an arbitrary grid

On the set G, we introduce the rectangular grid

Gh =ω×ω0, (3.1)

whereω andω0 are, in general, arbitrary nonuniform meshes on the closed intervals [0, d]

and [0, T], respectively. Let hi = x i+1 − x i, x i, x i+1 ∈ ω, h= maxi hi, and hk
t = tk+1 − tk,

tk, tk+1 ∈ ω0, ht = maxk hk
t . Assume that h ≤ M N−1 and ht ≤ M N−1

0 , where N + 1 and

N0+ 1 are the numbers of points in the meshes in ω and ω0, respectively.

Problem (2.2), (2.1) is approximated by the finite difference scheme [11]

Λ z(x , t) = f (x , t), (x , t) ∈ Gh,

z(x , t) = ϕ(x , t), (x , t) ∈ Sh,
(3.2)

where Gh = G ∩ Gh, Sh = S ∩ Gh, and

Λ≡ ǫ a(x , t)δxbx + b(x , t)δx − c(x , t)− p(x , t)δt , (x , t) ∈ Gh.
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Here δxbx z(x , t) is the central difference derivative on the nonuniform mesh,

δxbx z(x , t) = 2(hi + hi−1)−1[δx z(x , t)− δx z(x , t)], (x , t) = (x i, t) ∈ Gh;

δx z(x , t) and δx z(x , t) are the first-order (forward and backward) difference derivatives.

Scheme (3.2), (3.1) is monotone ǫ-uniformly. A definition of monotonicity for regular

problems can be found in [11].

3.2. An error bound on a uniform grid

In the case of uniform meshes in both variables

Gh = G
u

h =ω×ω0, (3.3)

using the maximum principle, we obtain the error bound

|u(x , t)− z(x , t)| ≤ M
��
ǫ+ N−1
�−1

N−1 + N−1
0

�
, (x , t) ∈ Gh; (3.4)

bound (3.4) is unimprovable with respect to N , N0,ǫ.

The interpolant z(x , t) = z(2.4)

�
x , t; z(3.2, 3.3)(·), G

u

h

�
satisfies the error bound

|u(x , t)− z(x , t)| ≤ M
��
ǫ+ N−1
�−1

N−1+ N−1
0

�
, (x , t) ∈ G. (3.5)

Scheme (3.2), (3.3) converges under the condition (N−1≪ ǫ):

ǫ−1 = o(N), N →∞, ǫ ∈ (0,1]. (3.6)

3.3. An ǫ-uniform convergent scheme

Let us give a scheme that converges ǫ-uniformly (see, for example, [2,3]). On the set

G, we introduce the grid

Gh = G
s

h ≡ω
s ×ω0, (3.7)

where ω0 = ω0(3.3), ω
s is a piecewise uniform mesh that is constructed as follows. The

interval [0, d] is divided into two parts [0,σ] and [σ, d]. The mesh sizes on the intervals

[0,σ] and [σ, d] are constant and equal to

h(1) = 2σN−1 and h(2) = 2(d −σ)N−1,

respectively. The parameter σ is chosen so as to satisfy the condition

σ = σ(ǫ, N) =min
�

2−1 d , m−1 ǫ ln N
�

,

where m is an arbitrary number in the interval (0, m0), and m0 = m0(A.2).

For the solution of the difference scheme (3.2), (3.7), we obtain the ǫ-uniform bound

|u(x , t)− z(x , t)| ≤ M
�

N−1 ln N + N−1
0

�
, (x , t) ∈ Gh; (3.8)

the bound is unimprovable with respect to N , N0.

The interpolant z(x , t) = z(2.4)

�
x , t; z(3.2, 3.7)(·), G

s

h

�
satisfies the error bound

|u(x , t)− z(x , t)| ≤ M
�

N−1 ln N +N−1
0

�
, (x , t) ∈ G. (3.9)
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Theorem 3.1. Let the components of the solution u(x , t) of the boundary value problem (2.2),

(2.1) in representation (A.1) satisfy the estimates of Theorem A.1. Then the difference scheme

(3.2), (3.7) (scheme (3.2), (3.3)) converges ǫ-uniformly (under condition (3.6)). The discrete

solutions and their interpolants satisfy bounds (3.4), (3.8) and (3.5), (3.9), respectively.

Remark 3.1. For the mesh Gh(3.7), the ratio of h(2) and h(1), i.e., the mesh sizes in x on the

mesh intervals with constant step-size, is of the order O (ǫ−1 ln−1 N).

4. Grid approximations on locally refined meshes that are uniform in

subdomains

In this section, we present an algorithm for constructing a locally refined mesh (adapted

in the boundary layer) and a grid solution on it. In each of subdomains subjected to mesh

refinement, this algorithm uses uniform meshes with respect to space and time (the tem-

poral mesh is not refined).

4.1. A formal iterative algorithm

First, we describe a formal iterative algorithm for constructing approximate solutions

for the boundary value problem (2.2), (2.1) [7].

On the set G, we introduce the coarsened (initial) mesh

G1h =ω1 ×ω0, (4.1a)

whereω1 andω0 are uniform meshes,ω0 =ω0(3.3); the mesh size ofω1 is h1 = d N−1. We

denote the solution of problem (3.2), (4.1a) by z1(x , t), (x , t) ∈ G1h, where G1h = G1h(4.1).

Note that G1h(4.1) = Gh(3.3).

Let the value d1 ∈ ω1 be found in such a way that for x ≥ d1, the discrete solution

z1(x , t), (x , t) ∈ G1h, is a good approximation of the solution of problem (2.2), (2.1),

moreover,

|u(x , t)− z1(x , t)| ≤ M δ, (x , t) ∈ G1h, x ≥ d1, (4.2a)

where δ > 0 is an arbitrary sufficiently small number specifying the required accuracy of

the discrete solution, and M is a constant independent of δ, and d1 ∈ [0, d).

If it turns out that d1 > 0, then we define the subdomain

G(2) = G(2) ∪ S(2), G(2) = G(2)(d1), G(2) = D(2) × (0, T], D(2) = (0, d1),

where we shall refine the grid. On the subdomain G(2), we introduce the grid

G(2)h =ω(2) ×ω0,

where ω(2) is a uniform mesh with N + 1 points and the mesh size h(2).
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On the set G(2)h, we find the solution z(2)(x , t) of the discrete problem

Λ(3.2) z(2)(x , t) = f (x , t), (x , t) ∈ G(2)h,

z(2)(x , t) =

¨
z1(x , t), (x , t) ∈ S(2)h \ S,

ϕ(x , t), (x , t) ∈ S(2)h
⋂

S,

where

G(2)h = G(2)

⋂
G(2)h, S(2)h = S(2)

⋂
G(2)h.

The grid set G2h on G and the function z2(x , t), (x , t) ∈ G2h, are defined by

G2h = G(2)h ∪
¦

G1h \ G(2)
©

, z2(x , t) =

¨
z(2)(x , t), (x , t) ∈ G(2)h,

z1(x , t), (x , t) ∈ G1h \ G(2).

For k ≥ 3 at the (k−1)th iteration, suppose that the grid set Gk−1,h and the grid

function zk−1(x , t) on this set have already been constructed. Furthermore, let the value

dk−1 ∈ ωk−1 be found in such a way that for x ≥ dk−1 the discrete solution zk−1(x , t),

(x , t) ∈ Gk−1,h, is a good approximation of the solution of the problem (2.2), (2.1). To be

precise, we require

|u(x , t)− zk−1(x , t)| ≤ M δ, (x , t) ∈ Gk−1,h, x ≥ dk−1. (4.2b)

The constant M depends on k, M(4.2b) = M(4.2b)(k− 1), where M(k) = M∗ k. † Here

Gk−1,h =ωk−1×ω0,

ωk−1 is a mesh generating the mesh Gk−1,h; Nk+1 is the number of nodes in the meshωk,

k ≥ 2; and N1 = N .

If it happens that dk−1 > 0, then we define the subdomain

G(k) = G(k) ∪ S(k), G(k) = G(k)(dk−1), G(k) = D(k)× (0, T], D(k) = (0, dk−1). (4.1b)

On the set G(k), we introduce the grid

G(k)h =ω(k)×ω0, (4.1c)

where ω(k) is the uniform mesh with N + 1 points and h(k) is the step-size in the mesh

ω(k); and h(k) = dk−1N−1, dk−1 = d for k = 1. Let z(k)(x , t), (x , t) ∈ G(k)h, be the solution

of the grid problem

Λ(3.2) z(k)(x , t) = f (x , t), (x , t) ∈ G(k)h,

z(k)(x , t) =

¨
zk−1(x , t), (x , t) ∈ S(k)h \ S,

ϕ(x , t), (x , t) ∈ S(k)h
⋂

S.

(4.1d)

† Here and in what follows, M∗ denote constants independent of k.
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We set

Gkh = G(k)h
⋃ ¦

Gk−1,h \ G(k)
©

,

zk(x , t) =

¨
z(k)(x , t), (x , t) ∈ G(k)h,

zk−1(x , t), (x , t) ∈ Gk−1,h \ G(k).

If for some value k = K0 it turns out that dK0
= 0, then we set dk = 0 for k ≥ K0. For

k ≥ K0 + 1, the sets G(k) are assumed to be empty, and we do not compute the functions

z(k)(x , t). For example, for k ≥ K0 we have zk(x , t) = zK0
(x , t), Gkh = GK0h.

For k = K , where K is a given fixed number (the number of iterations for improving

the grid solution), K ≥ 1, we assume

G
K

h = GKh ≡ Gh, zK(x , t) = zK(x , t) ≡ z(x , t). (4.1e)

The grid Gh and the function z(x , t) in (4.1e) are constructed using the grid sets G(k)h and

the functions z(k)(x , t), (x , t) ∈ G(k)h, k = 1, · · · , K .

We call the function z(4.1)(x , t), (x , t) ∈ Gh(4.1), the solution of scheme (3.2), (4.1) (of

the scheme on refined meshes being uniform on local subdomains). The functions zk(x , t),

(x , t) ∈ Gkh, k = 1, · · · , K are called the components of the solution of the difference

scheme.

Let the value dK ∈ ωK , dK = dK , be found so that for x ≥ dK the solution zK(x , t)

approximates the solution of problem (2.2), (2.1); in this case we have

|u(x , t)− z(x , t)| ≤ M δ, (x , t) ∈ Gh, x ≥ dK , (4.2c)

where z(x , t) = z(4.1)(x , t), Gh = Gh(4.1).

The difference scheme (3.2), (4.1) is the scheme on locally refined meshes that are

uniform on the subdomains G(k)h in which the computed solution is corrected. In that

case when the values dk are determined in the process of the numerical solution of prob-

lem (3.2), (4.1) depending on the results of computations, the scheme (3.2), (4.1) is the

scheme on a posteriori adapted meshes (we say, the a posteriori adapted scheme). But if

the values dk are given before the start of computations regardless of the computational

results obtained, scheme (3.2), (4.1) is the scheme on a priori adapted meshes (we say,

the a priori adapted scheme).

4.2. Maximum principle for the algorithm A(4.1)

The given algorithm (we call it A(4.1) ) allows us to construct the solution of problem

(3.2), (4.1) on the basis of the sequence of values dk, k = 1, · · · , K . The value NK+1 is the

number of nodes in the mesh ωK =ωK used for the construction of the function zK(x , t).

For the value NK , we have the estimate

NK ≤ K (N − 1) + 1≤ K N .
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The ratio of h(k) and h(k+1), i.e., the mesh step-sizes with respect to x in neighbouring

subregions of the adaptive mesh, does not exceed the value N .

In schemes (3.2), (4.1) when solving the intermediate problems (4.1d), an interpola-

tion is not required to find values of the functions z(k)(x , t) on the boundary S(k)h.

For the scheme (3.2), (4.1), the maximum principle holds. The following comparison

theorem is valid.

Theorem 4.1. Let the functions z1
k
(x , t) and z2

k
(x , t), (x , t) ∈ Gkh, Gkh = Gkh(4.1), k =

1,2, · · · , K, satisfy the conditions

Λ z1
1(x , t) ≤ Λ z2

1(x , t), (x , t) ∈ G(1)h,

z1
1(x , t)≥ z2

1(x , t), (x , t) ∈ S(1)h;

Λ z1
k(x , t) ≤ Λ z2

k(x , t), (x , t) ∈ G(k)h,

z1
k(x , t)≥ z2

k(x , t), (x , t) ∈ S(k)h ∩ S,

z1
k
(x , t)≥ z1

k−1
(x , t), z2

k−1(x , t)≥ z2
k(x , t),

(x , t) ∈ Gkh \ {Gk ∪ {S(k) ∩ S}}, k = 2, · · · , K .

Then z1
K(x , t)≥ z2

K(x , t), (x , t) ∈ GKh.

The theorem can be proved by the induction with respect to k, where k is the number

of the current iteration in the iterative process.

The meshes Gkh, k = 1, · · · , K , obtained by the algorithm A(4.1), are defined by the

choice of the values dk, k = 1,2, · · · , K , and also by the values K and N , N0. In the meshes

obtained by the algorithm A(4.1), the values dk will be determined regardless of the results

obtained in the computational process, i.e., the meshes Gkh belong to a priori condensing

meshes.

Note that there exist no schemes in this class of difference schemes whose solutions

converge ǫ-uniformly to the solution of the boundary value problem (2.2), (2.1).

5. Difference scheme on a priori adapted mesh

In this section, we consider a difference scheme on a priori adapted meshes constructed

using a majorant function for the singular component of the grid solution.

5.1. Auxiliary constructions

We present a number of auxiliary constructions. For the differential and the difference

problems, we introduce the width of the boundary layer specified by majorant functions

for the singular components of their solutions.

The function

W c(x) =W c(x ; ǫ) = exp(−m0ǫ−1 x), x ∈ D
∞

, (5.1a)
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is a majorant function (up to a constant factor) for the singular component V (x , t) in

representation (A.1) of the solution of the boundary value problem (2.2), (2.1). Here

m0 =min
G

[a−1(x , t)b(x , t)], and

D
∞
= [0,∞). (5.1b)

Based on the function W c(x), we introduce the width of the boundary layer for problem

(2.2), (2.1). We say that the value

ηc = ηc(δ; ǫ), (5.2a)

where δ > 0 is a sufficiently small number, is the width of the boundary layer (defined

by the majorant function for the singular component V (x , t)) with the threshold of order δ

(or, briefly, the width of the boundary layer defined by the majorant function), if ηc is the

minimum value of η0 for which the following estimate is fulfilled:

W c(x ; ǫ)≤ δ, x ∈ D
∞

, r(x ,Γ1)≥ η
0, (5.2b)

where Γ1 is the boundary of the set D
∞

; D
∞
= D∞ ∪ Γ, Γ = Γ1. The value ηc may

take magnitudes exceeding d(2.1) (for sufficiently small values δ such that δ ≤ δ(ǫ)); ηc is

defined by the formula

ηc = (m0)−1ǫ lnδ−1. (5.2c)

Let us introduce the width of the discrete boundary layer defined on the basis of the

majorant function for the discrete singular component. By zv(x , t), (x , t) ∈ G, we denote

the solution of the difference scheme

Λ(3.2) z(x , t) = L(2.2) v(x , t), (x , t) ∈ Gh, z(x , t) = v(x , t), (x , t) ∈ Sh,

where v(x , t) is an arbitrary sufficiently smooth function, and v ∈ C2,1(G) ∩ C(G). The

solution of problem (3.2), (3.1) can be represented in the form of the sum of functions

z(x , t) = zU (x , t) + zV (x , t), (x , t) ∈ Gh, (5.3)

where zU(x , t) and zV (x , t) are the grid functions approximating the components U(x , t)

and V (x , t) in representation (A.1), and zV (x , t) is the function of the discrete boundary

layer.

The function

W (x) =W (x ; ǫ,h) = (1+m0ǫ−1h)−n, x = xn ∈ D
∞
h , xn = n h, (5.4)

where D
∞
h is the uniform mesh on the semi-axis D

∞
(5.1) with the step-size h, m0 = m0

(5.1)
,

is a majorant function (up to a constant factor) for the singular component zV (x , t) in

representation (5.3) of the solution of the difference scheme (3.2) on the mesh (3.3),

where h(3.3) = h(5.4). We say that the value

η = η(δ; ǫ,h), (5.5a)
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where δ > 0 is a sufficiently small number, is the width of the discrete boundary layer (de-

fined by the majorant function W (x) for the singular component zV (x , t)) with the threshold

of the order of δ (or, briefly, the width of the discrete boundary layer defined by the majorant

function) if η is the minimum value of η0 for which the estimate

W (x ; ǫ,h)≤ δ, x ∈ D
∞
h , r(x ,Γ1)≥ η0 (5.5b)

holds. The quantity η may take values exceeding d(2.1); η is determined by the formula

η= η(δ; ǫ,h) =





h lnδ−1 ln−1(1+m0ǫ−1h) for�
lnδ−1 ln−1(1+m0ǫ−1h)

�e
= lnδ−1 ln−1(1+m0ǫ−1h),

h
n�

lnδ−1 ln−1(1+m0ǫ−1h)
�e
+ 1
o

for�
lnδ−1 ln−1(1+m0ǫ−1h)

�e
< lnδ−1 ln−1(1+m0ǫ−1h),

(5.5c)

with δ ∈ (0,1), ǫ ∈ (0,1], where h= h(5.4), and [ a ] e is the integer part of a number a.

It is convenient to use the following notation. We associate the value a ≥ 0, on the

uniform mesh D
∞
h(5.4) with the step-size h, with the value {a; h}e defined by the relation

{a; h}e =





a for h
�

h−1a
�e
= a,

h
n

h
�

h−1a
�e
+ 1
o

for h
�

h−1a
�e
< a,

where [ a ] e = [ a ] e
(5.5)

. So, the value η is representable in the form

η = η(δ; ǫ,h) = {a; h}e, (5.5d)

where

a = h lnδ−1 ln−1(1+m0ǫ−1h).

On the set G(k), k ≥ 1, the mesh G(k)h with its step-size h(k) in x is defined. Let us

define the values dk in (4.1) by the relation

dk = dk(δ; ǫ, N)≡min
�
η(δ; ǫ,h(k)), d
�

, k = 1, · · · , K , (5.6a)

where h(1) = dN−1, h(k) = dk−1N−1, k ≥ 2. Assume

δ = δ(N)→ 0 for N →∞. (5.6b)

The difference scheme (3.2), (4.1), (5.6) is the scheme on a priori adapted meshes. The

values dk are computed using an indicator based on the majorant function of the discrete

boundary layer controlled by the parameters δ,ǫ, and h.
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5.2. A nonconstructive error bound

For the solution of the difference scheme (3.2), (4.1), (5.6), using the maximum prin-

ciple we establish the error bound

|u(x , t)− z(x , t)| ≤





M
�
δ(N) +N−1 + N−1

0

�
, (x , t) ∈ Gh, r(x ,Γ1)≥ dK ;

M
�
(ǫ+ dK−1N−1)−1dK−1N−1+ δ(N)+ N−1+ N−1

0

�
,

(x , t)∈Gh.

(5.7)

Thus, the difference scheme (3.2), (4.1), (5.6) converges ǫ-uniformly outside the dK -neigh-

bourhood of the boundary SL
1 , and also on the whole set Gh under the condition that

h(K)≪ ǫ:
ǫ−1 = o
�
d−1

K−1 N
�
,

which is essentially weaker in comparison with the convergence condition (3.6).

Bound (5.7) is nonconstructive since the values dK−1 (5.6) and dK(5.6) depend on ǫ, N ,

and K implicitly, which complicates the investigation of scheme (3.2), (4.1), (5.6) depend-

ing on the values of N ,ǫ, and K .

Theorem 5.1. Let the solution of problem (2.2), (2.1) satisfy the hypothesis of Theorem 3.1.

Then the solution of the difference scheme (3.2), (4.1), (5.6) satisfies the bound (5.7).

5.3. A difference scheme on a priori adapted meshes

We now consider a version of the difference scheme on a priori adapted meshes that

allows us to write out efficient estimates for η(δ; ǫ,h(k)). These estimates make it possible

to study convergence properties of the scheme on a priori adapted meshes.

Let us note some properties of the value η(5.5) implied by its explicit form. The function

η(δ;ǫ,h) for fixed values of δ and h is a piecewise-constant nondecreasing function with

respect to the variable ǫ.

We assume that the following condition is fulfilled:

δ = N−α, α ∈ (0,1]. (5.8)

For the value η, we have the estimate

η(δ; ǫ,h1)> η
c(δ; ǫ),

where h1 = h1(4.1a). However,

η(δ; ǫ,h1)≤ M1η
c(δ; ǫ) (5.9a)

under the condition

h1 ≤ m1(m
0)−1ǫ; M1 = M1(m1), m0 = m0

(5.1)
, (5.9b)
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where M1(m1) is evaluated by the inequality

α1 ln−1(1+α1)≤ M1 for α1 ≤ m1; e.g., M1(m1 = 1) = 2. (5.9c)

In the case of the condition

ǫ ≥ ǫ(0),

η(δ; ǫ,h) satisfies the lower bound

η(δ; ǫ,h1)≥ h1;

moreover, under the condition

ǫ ≤ ǫ(1),

for η(δ; ǫ,h) we have the upper bound

η(δ; ǫ,h1)≤ h1.

Here the values ǫ( j) are defined by the relations

ǫ( j) = ǫ( j)(δ, N) = ǫ( j)(δ, N ; d), j ≥ −1;

ǫ(−1) = M2m0d ln−1 δ−1, ǫ(0) = M1m0d N−1, (5.10)

ǫ( j) = m0d δ(1− δ)−1N− j, j ≥ 1,

where d = d(2.1), N = N(4.1a), m0 = m0
(5.1)

, M1 = M1(5.9), and M2 is an arbitrary constant

satisfying the inequality

M2 ≤ M−1
1 ,

j ≥ −1 is an integer. By this choice of the constants M1, M2, we have η(δ;ǫ,h1) ≤ d for

δ = δ(5.8) and ǫ ≤ ǫ(−1).

We describe the rule for determining the values dk(4.1) in the grid construction (3.2),

(4.1) for the given values of K and ǫ, considering that the parameter ǫ belongs to the

prescribed fixed intervals defined by the values ǫ( j). To construct the scheme on adapted

meshes for given K , it is necessary to prescribe the values dk for k ≤ K−1. However, when

studying the schemes, we will need the values dk for k ≤ K .

We suppose that the parameter ǫ belongs to one of the following intervals defined by

the value j

ǫ ∈
�
ǫ( j), 1
�

for j = −1, or ǫ ∈
�
ǫ( j), ǫ( j−1)
�

for j ≥ 0, (5.11a)

where ǫ( j) = ǫ
( j)

(5.10)
(δ, N), j ≥ −1. The value dk depends on K , j and also on δ,ǫ, k, and

it is chosen in the set G(k)h so that the value of η(δ; ǫ,h(k)), i.e., the width of the discrete

boundary layer, satisfies the estimate

η(δ; ǫ,h(k))≤ dk for 1≤ k ≤ K

in that case when the parameter ǫ belongs to one of the intervals in (5.11a).
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Consider the case when the following relation is fulfilled:

K = K(5.11b)( j)≡ j+ 2, j ≥ −1, (5.11b)

where j = j(5.11a) defines the interval of varying the parameter ǫ. Let ǫ ∈ [ǫ( j), 1] for

j = −1. In this case K = 1; we set

d1 =min
h¦

M1(m
0)−1ǫ lnδ−1; h(1)

©e
, d
i

. (5.11c)

Let ǫ ∈
�
ǫ( j), ǫ( j−1)
�

, j ≥ 0. Assume

d1 = d2 =
¦

M1(m
0)−1ǫ lnδ−1; h(1)

©e
, if j = 0; (5.11d)

d1 =
¦

h(1) lnδ
−1 ln−1(1+m0ǫ−1h(1)); h(1)

©e
,

d2 = d3 =
¦

M1(m
0)−1ǫ lnδ−1; h(2)

©e
, if j = 1;

d1 = h(1), · · · , dk = h(k), k ≤ j− 1,

dk =
¦

h(k) lnδ
−1 ln−1(1+m0ǫ−1h(k)); h(k)

©e
, k = j,

dk = dk+1 =
¦

M1(m
0)−1ǫ lnδ−1; h(k)

©e
, k = j+ 1, if j ≥ 2.

Here h(i) = di−1 N−1, 1≤ i ≤ j+1, d0 = d(2.1), h(1) = h1(4.1), m0 = m0
(5.1)

, and M1 = M1(5.9).

The relations (5.11 b, c, d) prescribe the values dk depending on the values δ, ǫ, h(k)
and on the ratio between j and k for k ≤ K , K = j+ 2.

In that case when

K > j+ 2, j ≥ −1,5 (5.11e)

we set

dk = dk(5.11d) for k ≤ j+ 2, dk = d j+2 (5.11d) for j+ 2< k ≤ K , j ≥ −1; (5.11f)

here K > K(5.11b)( j). But if

K ≤ j+ 1, K ≥ 1, j ≥ 0, (5.11g)

then we assume that

dk = dk(5.11d) for 1≤ k ≤ K; (5.11h)

here K < K(5.11b)( j).

Thus, for the parameter ǫ chosen in one of the intervals in (5.11a) and for given K ,

formulas (5.11) depending on the relation between K and j = j(5.11a) give us the set of the

values dk = dk(δ; ǫ, h(k)).

As follows from the formulas (5.11b−h), the values dk, by virtue of the relation h(k) =

dk−1N−1, are defined only by the parameters j, k and δ,ǫ, N ; we have

dk = dk(5.11)(δ; ǫ, N) = d
j

k
(δ; ǫ, N), 1≤ k ≤ K , j ≥ −1. (5.11i)

The difference scheme (3.2), (4.1), (5.11) is the scheme on a priori adapted meshes

refined sequentially in a neighbourhood of the boundary layer. With the choice of the

values dk, as the indicator we use the majorant function of the discrete boundary layer

controlled by the parameters δ,ǫ,h, taking into account that the parameter ǫ belongs to

the prescribed intervals from (5.11a); ǫ ∈ (0,1].
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5.4. Some estimates for the width η

Under the above choice of the values dk(5.11), taking into account the explicit form of

the width of the discrete boundary layer η(δ; ǫ,h), we find the estimates

η(δ;ǫ,h(1))≥ m for ǫ ∈
�
ǫ(−1), 1
�

; (5.12)

η(δ;ǫ,h(k))≤ dk, 1≤ k ≤ K ,

η(δ;ǫ,h(k))≥ m dk, j+ 1≤ k ≤ K for ǫ ∈
�
ǫ( j), ǫ( j−1)
�

, j ≥ 0,

where h(k) = dk−1N−1. The smallest mesh size attained in this process is not less than

dN−K .

Lemma 5.1. In the case of the difference scheme (3.2), (4.1), (5.11), the estimates (5.12)

hold for the values η(δ;ǫ,h(k)) and dk(5.11i).

Lemma 5.2. In the case of the difference scheme (3.2), (4.1), (5.6), the values dk(5.6a) and

d
j

k(5.11i)
satisfy the estimate

dk (3.2, 4.1, 5.6a) ≤ d
j

k (3.2, 4.1, 5.11i)
, 1≤ k ≤ K , (5.13)

where j = j(5.11a) defines the interval in (5.11a) to which the parameter ǫ belongs.

6. The convergence of the scheme on a priori adapted mesh

We consider the difference scheme (3.2), (4.1), (5.11) assuming the following condi-

tion to be fulfilled:

δ = N−1. (6.1)

6.1. Estimates of solutions on subdomains

Let z[k](x , t), (x , t) ∈ G(k)h, be a solution of the difference scheme (3.2), (4.1c) ap-

proximating the boundary value problem

L u(x , t) = f (x , t), (x , t) ∈ G(k), u(x , t) = ϕ(x , t), (x , t) ∈ S(k), (6.2)

where G(k) = G(k)(4.1b), G(k)h = G(k)h(4.1c), k ≥ 1. For the solution z[k](x , t), we have the

error bound

|u(x , t)− z[k](x , t)|

≤

(
M
�

h(1)(ǫ+ h(1))
−1 + N−1+ N−1

0

�
, k ≥ 1, j = −1,0;

M
�

h(k)(ǫ+ h(k))
−1 + N−1+ N−1

0

�
, k, j ≥ 1; (x , t) ∈ G(k)h,

(6.3)
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where the parameter ǫ belongs to one of the intervals in (5.11a), and

h(k) = h(k)( j) = h(k)( j; N)≤





MN−1 for j = −1, 0, k ≥ 1;

MN− j−1 ln N , j ≤ k− 1,

MN−k, k ≤ j for j ≥ 1, k ≥ 1.

For k ≥ j+ 2, the function z[k](x , t) satisfies the estimate

|u(x , t)− z[k](x , t)| ≤ M
�

N−1 ln N + N−1
0

�
, (x , t) ∈ G(k)h, k ≥ j+ 2, j ≥ −1. (6.4)

Outside the σ
j

k
-neighbourhood of the boundary SL

1 , the following estimate holds for

z[k](x , t):

|u(x , t)− z[k](x , t)| ≤ M
�

N−1 + N−1
0

�
, (x , t) ∈ G(k)h, r(x ,Γ1)≥ σ

j

k
, k ≥ 1, j ≥ 0,

(6.5)

where

σ
j

k
= d

j

k
, 1≤ k ≤ j+ 1; σ

j

k
= d

j

j+2
, k ≥ j+ 2; d

j

k
= d

j

k(5.11i)
.

Lemma 6.1. Let the hypothesis of Theorem 3.1 be fulfilled. Then the function z[k](x , t),

(x , t) ∈ G(k)h(4.1c), i.e., the solution of the difference scheme (3.2), (4.1c) approximating the

boundary value problem (6.2), satisfies the estimates (6.3)-(6.5).

Remark 6.1. The interpolant z[k](x , t) constructed on G(k) using the function z[k](x , t),

under the assumption of Theorem 3.1, satisfies the estimates (6.3)-(6.5), where z[k](x , t)

and G(k)h are z[k](x , t) and G(k) respectively.

6.2. Main convergence results

We now consider the difference scheme (3.2), (4.1), (5.11), (6.1).

Taking into account estimates (6.3)-(6.5), for the solution of the difference scheme

(3.2), (4.1), (5.11), (6.1) for ǫ ∈ (0,1], we obtain the estimate

|u(x , t)− z(x , t)|

≤

(
M
¦

min
�
ǫ−1N−1, 1
�
+ N−1

0

©
, K = 1

M
¦

min
�
ǫ−1N−K ln N , 1
�
+N−1 ln N + N−1

0

©
, K ≥ 2

)
,

(x , t) ∈ Gh, K ≥ 1, ǫ ∈ (0,1]. (6.6)

Thus, the difference scheme converges on Gh under the condition
�

N−K ln N ≪ ǫ
�

:

ǫ−1 = o
�

N K ln−1 N
�

for K ≥ 2, ǫ ∈ (0,1].

Let the parameter ǫ satisfies the condition

ǫ ∈
�
0,ǫ( j)
�

, j ≥ 2, ǫ( j) = ǫ
( j)

(5.10)
. (6.7)
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For the error of the solution of the boundary value problem (2.2), (2.1) outside the σK -

neighbourhood of the set SL
1 , we obtain the estimate

|u(x , t)− z(x , t)| ≤ M
�

N−1 +N−1
0

�
, (x , t) ∈ Gh, r(x ,Γ1)≥ σK , (6.8a)

where

σK = d
j

K , d
j

K = d
j

K(5.11i)
, 1≤ K ≤ j− 1, j = j(6.7). (6.8b)

The value σK satisfies the relation

σK = dN−K . (6.8c)

Thus, in the case of the condition (6.7), the solution of the difference scheme converges

ǫ-uniformly with the first order of accuracy in x and t outside the σK -neighbourhood of

the boundary SL
1 , where σK shrinks to zero at the rate O (N−K).

Let the parameter ǫ belongs to one of the intervals in (5.11a). In this case, depending

on the relation between K and j, we obtain the estimate

|u(x , t)− z(x , t)|

≤





M
¦

min
�
ǫ−1N−1, 1
�
+ N−1

0

©
, K = 1

M
¦

min
�
ǫ−1N−K ln N , 1
�
+ N−1 ln N + N−1

0

©
, K ≥ 2

)
, K = j+ 1

M
�

N−1 ln N + N−1
0

�
, K ≥ j+ 2





,

(x , t) ∈ Gh, K ≥ j+ 1, j ≥ −1. (6.9)

Outside the σ
j

K -neighbourhood of the set SL
1 , we have the estimate

|u(x , t)− z(x , t)| ≤ M
�

N−1 + N−1
0

�
, (x , t)∈ Gh, r(x ,Γ1)≥ σ

j

K , K≥ 1, j≥ 0; (6.10a)

the value σ
j

K , where

σ
j

K = d
j

K , 1≤ K ≤ j+ 1; σ
j

K = d
j

j+2
, K ≥ j+ 2; j ≥ 0, (6.10b)

satisfies the estimate

σ
j

K ≤

¨
Mǫ ln N , K ≥ j+ 1, j ≥ 0,

MN−K ln N , K = j, j ≥ 1,
(6.10c)

and the relation

σ
j

K = dN−K , K ≤ j− 1, j ≥ 2. (6.10d)

Thus, in that case when the parameter ǫ belongs to one of the intervals in (5.11a), the

convergence rate of the scheme on the set Gh, as well as the size of that neighbourhood

of the set SL
1 outside which the scheme converges at the rate O

�
N−1 + N−1

0

�
, depend

essentially on the parameters K and j.
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According to the estimate (6.9), it requires K iterations, where K = j + 2, in order

to obtain the solution of the difference scheme (3.2), (4.1), (5.11), (6.1) with the error

bound

|u(x , t)− z(x , t)| ≤ M
�

N−1 ln N + N−1
0

�
, (x , t) ∈ Gh,

provided that the parameter ǫ belongs to one of the intervals in (5.11a).

By virtue of estimate (6.6), the difference scheme (3.2), (4.1), (5.11), (6.1) converges

on Gh under the condition
�
N−1≪ ǫ for K = 1 and N−K ln N ≪ ǫ for K ≥ 2

�
:

ǫ−1 = o(N) for K = 1 and ǫ−1 = o
�

N K ln−1 N
�

for K ≥ 2, (6.11)

N →∞, ǫ ∈ (0,1].

In order that the difference scheme be convergent almost ǫ-uniformly with the convergence

defect no greater than the value ν(2.5), it is sufficient to choose the value K satisfying the

condition

K > K(ν), K(ν) = ν−1. (6.12)

Thus, the difference scheme (3.2), (4.1), (5.11), (6.1), (6.12) converges almost ǫ-

uniformly, with the convergence defect ν .

Theorem 6.1. Let the solution of the boundary value problem (2.2), (2.1) satisfy the hy-

pothesis of Theorem 3.1. Then the difference scheme (3.2), (4.1), (5.11), (6.1) converges on

Gh under condition (6.11); under condition (6.12), the scheme converges almost ǫ-uniformly

with defect ν . The discrete solution satisfies the estimate (6.6) and, in the case of conditions

(6.7) and (5.11a), it satisfies the estimates (6.8) and (6.9), (6.10), respectively.

In the case of the difference scheme (3.2), (4.1), (5.6), (6.1), the following theorem

established taking account of estimate (5.13) holds.

Theorem 6.2. Let the solution of the boundary value problem (2.2), (2.1) satisfy the hy-

pothesis of Theorem 3.1. Then the difference scheme (3.2), (4.1), (5.6), (6.1) converges on

Gh under condition (6.11); under condition (6.12), the scheme converges almost ǫ-uniformly

with defect ν . The discrete solution satisfies the estimate (6.6) and, in the case of conditions

(6.7) and (5.11a), it satisfies, respectively, the estimates (6.8) and (6.9), (6.10), where in

(6.8)

σK = dK(5.6)(δ;ǫ, N), δ = δ(6.1), ǫ = ǫ(6.7),

provided that ǫ−1h(K) ≥ (m
0)−1N; and in (6.10),

σ
j

K = dK(5.6)(δ;ǫ, N), δ = δ(6.1), ǫ = ǫ(5.11a), j = j(5.11a).

Remark 6.2. Let the hypothesis of Theorem 6.1 (Theorem 6.2) be fulfilled. Then for the

interpolants z(x , t) constructed on G using the functions z(x , t), (x , t) ∈ Gh, the estimates

of Theorem 6.1 (Theorem 6.2) remain valid, where z(x , t) and Gh are z(x , t) and G, re-

spectively.
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A. Appendix

In this section, we present estimates for the solution of the boundary value problem

and its derivatives (the estimates can be derived analogously to the derivation of similar

estimates in [16–18]). The solution of problem (2.2) is represented in the form of decom-

position into the sum of functions

u(x , t) = U(x , t) + V (x , t), (x , t) ∈ G, (A.1)

where U(x , t) and V (x , t) are the regular and singular components of the solution.

The functions U(x , t), V (x , t) satisfy the estimates

�����
∂ k+k0

∂ x k∂ tk0
U(x , t)

����� ≤ M
�

1+ ǫ2−k
�

,

�����
∂ k+k0

∂ x k∂ tk0
V (x , t)

�����≤ Mǫ−k exp
�
−mǫ−1r(x ,Γ1)

�
, (A.2)

(x , t) ∈ G, k+ 2 k0 ≤ 4, k ≤ 3,

where m is an arbitrary number in the interval (0, m0), m0 =minG

�
a−1(x , t) b(x , t)

�
; and

r(x ,Γ1) is the distance between the point x and the left boundary Γ1 of the set D.

Theorem A.1. Let the data of the boundary value problem (2.2), (2.1) satisfy condition (2.3),

the condition a, b, c, p, f ∈ C6+α(G), ϕ ∈ C6+α(S), α > 0, and also the condition

ϕ(x , t) = 0, (x , t) ∈ S0;
∂ k0

∂ tk0
ϕ(x , t) = 0,

∂ k+k0

∂ x k ∂ tk0
f (x , t) = 0, (x , t) ∈ Sc,

where k, k0 ≤ 6, Sc = S
L
∩S0. Then the components in representation (A.1) of the solution of

the boundary value problem satisfy estimates (A.2).
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