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Department of Mathematical Sciences, Kent State University Stark Campus, 6000

Frank Ave. NW, North Canton, Ohio 44720, USA.

Received 26 June, 2007; Accepted (in revised version) 16 November, 2007

Abstract. The paper is concerned with strongly nonlinear singularly perturbed bound-

ary value problems in one dimension. The problems are solved numerically by finite-

difference schemes on special meshes which are dense in the boundary layers. The

Bakhvalov mesh and a special piecewise equidistant mesh are analyzed. For the central

scheme, error estimates are derived in a discrete L1 norm. They are of second order

and decrease together with the perturbation parameter ǫ. The fourth-order Numerov

scheme and the Shishkin mesh are also tested numerically. Numerical results show

ǫ-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.
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1. Introduction

We consider the following singularly perturbed boundary value problem:

−ǫ2(k(u)u′)′+ c(x ,u) = 0, x ∈ I := [0,1], u(0) = α, u(1) = β , (1.1)

where ǫ is a small positive parameter, α and β are given constants, and the functions k

and c are sufficiently smooth and satisfy

k∗ ≥ k(u)≥ k∗ > 0, cu(x ,u)≥ c∗ > 0, x ∈ I , u ∈ R. (1.2)

This problem has a unique solution, uǫ, for which the following estimates hold true:

|u( j)ǫ (x)| ≤ M
�

1+ ǫ− je−γx/ǫ + ǫ− jeγ(x−1)/ǫ
�

, x ∈ I , j = 0,1,2,3,4, (1.3)
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with a constant γ in the interval (0,
p

c∗/k∗). Here and throughout the paper, M is a

generic positive constant independent of ǫ. Thus, estimates (1.3) show that the solution

has in general two boundary layers whose width is O
�

ǫ ln 1

ǫ

�

. This result can be proved

as follows. For K(u) =
∫ u

k(s) ds, it holds that Ku(u)≥ k∗ > 0, so the inverse function K−1

exists. We can therefore introduce the substitution v = K(u) to transform (1.1) to

−ǫ2v′′+ g(x , v) = 0, x ∈ I , v(0) = K(α), v(1) = K(β), (1.4)

where g(x , v) = c(x , K−1(v)). Then from gv(x , v) = cu(x , K−1(v))/k(u), we get that

gv(x , v) > γ2. This implies that problem (1.4) has a unique solution, vǫ, and it is well

known that its derivatives can be estimated by the right-hand side of (1.3). These esti-

mates immediately transfer to uǫ.

Problems similar to (1.1), as well as the more general ones with k = k(x ,u), arise

in applications to chemistry as models of catalytic reactions accompanied by a change in

volume [3,14,17,19]. Some numerical methods for those problems have been considered

in [14, 17], but no complete error-analysis has been given. This is finally done in the

present paper. The special case k(u) ≡ 1 describes the standard reaction-diffusion problem

which has been discussed very often. Earlier papers, like [2, 13], typically consider the

condition cu(x ,u) ≥ c∗ > 0, which is also assumed here. This condition is relaxed in

[7,8,12,15]. Of other more recent papers on numerical methods for singularly perturbed

semilinear reaction-diffusion problems, let us mention [5] and [6]. These papers deal with

a posteriori error estimates in the maximum norm; paper [6] is a 2D generalization of [5].

The numerical method proposed by Wang [18] for (1.1) in the non-perturbed case

ǫ = 1 is the fourth-order Numerov scheme applied to (1.4). Wang considers the situation

when K−1 can be found explicitly. Since this is not always easy to do, we discretize here

the original problem after rewriting the differential equation in (1.1) as

−ǫ2K(u)′′ + c(x ,u) = 0. (1.5)

The method we discuss in detail is the central finite-difference scheme applied on meshes of

Bakhvalov and piecewise equidistant types. It is well known in the semilinear case k(u)≡ 1

that the central scheme is ǫ-uniformly stable in the maximum norm. Here, because of the

strong nonlinearity of the problem, it is much easier to use a discrete L1 norm to prove

stability uniform in ǫ. Stability of finite-difference approximations of quasilinear singular

perturbation problems is often proved in this norm, see [1] for instance. Solutions of such

problems may have interior layers with a priori unknown locations. This is not the case in

the present problem, but, in addition to the strong nonlinearity, there is another reason for

using the L1 norm. If w(x) = exp(−γx/ǫ) is the exponential boundary-layer function, then

‖w‖1 is of order ǫ, thus small values of ǫ increase accuracy in L1 norm. Such higher L1-

accuracy is important in the catalytic-reaction applications when calculating the so-called

efficiency factor, see [17].

ǫ-uniform stability in L1 norm implies convergence results in the same norm, the errors

being estimated by

EB := MN−2
�

ǫ+ e−mN
�

on the Bakhvalov mesh (1.6)
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and

ES := MN−2ǫ

�

ln
1

ǫ

�3

on the special piecewise equidistant mesh, (1.7)

where the generic constant M is assumed to be independent also of the number of mesh

steps, N , and where m is a another generic positive constant that does not depend on

either ǫ or N . We see that EB behaves almost as N−2ǫ since the term exp(−mN) is very

small. This term is present in the error estimate because of the technique used in the

proof. ES → 0 as ǫ → 0, slowed down by the logarithmic factors resulting from the

way the special piecewise equidistant mesh is constructed. This mesh can be viewed as

a modification of the Shishkin mesh. Its two transition points are given in terms of the

quantity ǫ ln 1

ǫ
instead of the more usual ǫ ln N which we find in the standard Shishkin-

type meshes. Such a piecewise equidistant mesh has been used in [9] for instance. In the

method presented here, L1-accuracy is better on the modified Shishkin mesh than on the

standard one, whose L1-errors do not decrease as ǫ→ 0. On the other hand, the standard

Shishkin mesh gives better maximum-norm errors.

The theoretical results are illustrated in Section 3 by numerical experiments, performed

on test-problems which are similar to the above-mentioned application problems. The

numerical results for the Bakhvalov and standard Shishkin meshes show moreover the

presence of ǫ-uniform pointwise convergence. The fourth-order Numerov scheme is also

tested numerically.

2. The numerical method

Let IN be any discretization mesh with points x i, i = 0,1, · · · , N , 0 = x0 < x1 < · · · <
xN = 1, and steps hi = x i−x i−1, i = 1,2, · · · , N . Let also ħhi = (hi+hi+1)/2, i = 1,2, · · · , N−
1. By {wi} we denote an arbitrary mesh function defined on IN \ {0,1} and identified with

the column-vector wN = [w1, w2, · · · , wN−1]
T . For any mesh function, we formally set

w0 = α and wN = β . Let also δN = [1,1, · · · , 1]T and uN
ǫ = [uǫ(x1),uǫ(x2), · · · ,uǫ(xN )]

T .

We use the maximum vector norm, ‖wN‖∞ = max1≤i≤N−1 |wi|, and the discrete L1 norm,

‖wN‖1 =
∑N−1

i=1 ħhi|wi|. ‖·‖1 is used to denote also the matrix norm induced by vector norm

‖ · ‖1.

The discretization of the equation (1.5) is

T N wi := −ǫ2D′′K(wi) + c(x i , wi) = 0, i = 1,2, · · · , N − 1, (2.1)

where D′′ is the standard central scheme approximating the second derivative,

D′′wi =
1

ħhi

�

wi+1 −wi

hi+1

− wi −wi−1

hi

�

.

Theorem 2.1. Under the condition (1.2), the discrete problem (2.1) has a unique solution

and it holds that

‖wN − vN‖1 ≤ c−1
∗ ‖T N wN − T N vN‖1 (2.2)

for any two mesh functions wN and vN .
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Proof. Let us introduce the matrix A = DF D−1, where D = diag(ħh1,ħh2, · · · ,ħhN−1) and

where F is the Fréchet derivative of the discrete operator T N at an arbitrary mesh function,

F = (T N )′(wN ). It is easy to see that A is an L-matrix. Moreover, ATδN ≥ c∗δN , where the

inequality is to be understood componentwise. Then A is an M -matrix and ‖A−1‖1 ≤ 1/c∗.
This implies that (2.2) holds true and that (2.1) has a unique solution.

We consider next two special discretization meshes, the Bakhvalov mesh and the spe-

cial piecewise equidistant mesh. It would be possible to analyze a general class of meshes

like in [10], but this is not our interest here. By working with the two mesh types sepa-

rately, we point out what the similarities and differences between them are. For simplicity,

the meshes are described below on the subinterval [0,1/2] since the mesh points are sym-

metrical on the other half of the interval I . It is assumed that N is even and sufficiently big

independently of ǫ, and also that xN/2 = 1/2.

Bakhvalov meshes

Bakhvalov meshes [2] (see [13] and [10] as well) are generated by a suitable function

λ which appropriately redistributes equidistantly spaced points, x i = λ(t i), t i = i/N ,

i = 0,1, · · · , N/2. As a representative of this type of meshes, we choose here the one

introduced in [13],

λ(t) =

¨

ϕ(t) := ǫat/(q− t) if 0≤ t ≤ τ,

ψ(t) := ϕ′(τ)(t −τ)+ϕ(τ) if τ≤ t ≤ 1/2.

Let the mesh generated this way be denoted by BN . a and q are positive parameters that

can be used to control the density of the mesh in the layer. They satisfy q < 1/2 and

aǫ < q. τ ∈ (0,q) is a solution of the equation ψ(1/2) = 1/2. When ǫ→ 0, τ behaves like

q−m
p
ǫ.

Theorem 2.2. Under the condition (1.2), the solution wN
ǫ of the discrete problem (2.1) on

the mesh BN satisfies

‖wN
ǫ − uN

ǫ ‖1 ≤ EB,

where EB is defined in (1.6).

Proof. The technique used in this proof is a variation on the theme from [2] and [13].

Because of (2.2), it suffices to prove ‖T N uN
ǫ ‖1 ≤ EB. We show below that

Σ :=

N/2
∑

i=1

ħhi|T Nuǫ(x i)| ≤ EB

and then the result follows since the error can be estimated analogously on the second half

of the mesh. Using (1.3) and taking into account that the second boundary-layer term is

ǫ-uniformly bounded on the interval [0, xN/2+1], we get

Σ≤ M
�

Σ0 +Σ
N/2
1

�

, where Σ0 =

N/2
∑

i=1

ǫ2hi+1(hi+1 − hi + h2
i+1)
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and

Σℓj =

ℓ
∑

i= j

hi+1[ǫ
−1(hi+1 − hi) + ǫ

−2h2
i+1]e

−γxi−1/ǫ, 1≤ j ≤ ℓ ≤ N/2.

Since hi+1 ≤ λ′(t i+1)/N ≤ M/N and hi+1 − hi ≤ Mϕ′′(τ)/N2 ≤ M/(N2pǫ), it follows

that

Σ0 ≤ Mǫ3/2N−2 ≤ EB.

Therefore, it remains to be proved that

Σ
N/2
1 ≤ EB. (2.3)

Let J be such an index that tJ ≥ τ > tJ−1. Then,

ΣJ−3
1 ≤ M

J−3
∑

i=1

N−3ǫ(q− t i+1)
−6e−γϕ(ti−1)/ǫ ≤ MǫN−2 ≤ EB.

To prove this, we use the fact that for 1 ≤ i ≤ J − 3 it holds that t i+1 < q− 1/N , implying

3(q− t i+1)≥ q− t i−1. Also,

Σ
N/2
J+1 ≤ MN−2ǫ−2e−γϕ(τ)/ǫ ≤ MǫN−2 ≤ EB.

Thus, to complete the proof of (2.3), we need to show that ΣJ
J−2 ≤ EB. When N

p
ǫ ≥ 1,

this follows from

ΣJ
J−2 ≤ MN−3ǫ−2e−γϕ(τ−3/N)/ǫ ≤ MN−3ǫ−2e−mN/(N

p
ǫ+1)

≤ MN−3ǫ−2e−m/
p
ǫ ≤ EB.

On the other hand, when N
p
ǫ ≤ 1, we use the following form of the consistency error:

|T Nuǫ(x i)| ≤ 2ǫ2 max
xi−1≤x≤xi+1

|K(uǫ(x))′′| (2.4)

to prove for i = J − 2, J − 1, J that

|T N uǫ(x i)| ≤ M
�

ǫ2 + e−mN/(N
p
ǫ+1)
�

≤ M
�

ǫN−2+ e−mN
�

≤ EB.

This completes the proof of this theorem.

The special piecewise equidistant mesh

We use here a mesh of the following kind:

x i = ih, i = 0,1, · · · , J , and x i = σ+ (i − J)H, i = J + 1, J + 2, · · · , N/2,

where

h=
σ

J
=
−aǫ lnǫ

γJ
and H =

1− 2σ

N − 2J
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(ǫ is assumed sufficiently small, so that σ < 1/2). In the above definitions, a is a positive

parameter, γ is the same constant as in (1.3), and J is an integer such that J ≥ 6 and

Q = 2J/N is kept fixed, Q < 1 and 1/Q ≤ M . In this mesh, denoted by SN
ǫ , σ is the

transition point between the fine and the coarse equidistant parts. σ is more usually

defined with ln N instead of − lnǫ.

Theorem 2.3. Under the condition (1.2), the solution wN
ǫ of the discrete problem (2.1) on

the mesh SN
ǫ with a ≥ 3 satisfies

‖wN
ǫ − uN

ǫ ‖1 ≤ ES,

where ES is defined in (1.7).

Proof. Using the same notation as in the previous proof, we have Σ0 ≤ Mǫ2/N2 ≤ ES .

Also,

ΣJ−1
1 ≤

J−1
∑

i=1

h3ǫ−2 ≤ ES

and

Σ
N/2
J+1 ≤

N/2
∑

i=J+1

H3ǫ−2e−γσ/ǫ ≤ M
ǫa−2

N2
≤ ES.

It remains to estimate the consistency error at xJ = σ. If N
p
ǫ ≥ 1, we use

ΣJ
J ≤
�

H2

ǫ
+

H3

ǫ2

�

e−γ(σ−h)/ǫ ≤ M

N2
ǫa(1−1/J)−3/2 ≤ M

ǫ

N2
≤ ES.

On the other hand, when N
p
ǫ ≤ 1, we apply (2.4) to get

|T Nuǫ(xJ)| ≤ M
�

ǫ2 + e−γ(σ−h)/ǫ
�

≤ Mǫ2 ≤ M
ǫ

N2
≤ ES.

This completes the proof of Theorem 2.3.

3. Numerical experiments and conclusions

The choice of test-problems for numerical experiments is motivated by the following

problem which models a catalytic chemical reaction accompanied with a change in volume:

−ǫ2

�

u′

1+ θu

�′
+ u = 0, x ∈ I , −u′(0) = 0, u(1) = 1, (3.1)

where θ is a positive constant (we consider below θ = 1), see [3, 14, 17, 19]. In this

problem, c∗ = 1 and we can take k∗ = 1 and k∗ = 1/(1+ θ) since 0 and 1 are respectively

lower and upper solutions of (3.1). Due to the left boundary condition, the solution uǫ
satisfies here an estimate milder than (1.3),

|u( j)ǫ (x)| ≤ M
�

1+ ǫ1− je−γx/ǫ + ǫ− jeγ(x−1)/ǫ
�

, x ∈ I , j = 0,1, · · · ,
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entral s
heme on mesh BN .
ǫ 10−3, 10−6, 10−9 10−3 10−6 10−9

N E∞(N) R∞(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N)

32 3.3–3 — 1.4–2 — 1.4–2 — 2.4–2 —

64 8.3–4 2.0 3.3–3 2.1 3.3–3 2.1 3.3–3 2.8

128 2.1–4 2.0 8.2–4 2.0 8.2–4 2.0 8.2–4 2.0

256 5.2–5 2.0 2.1–4 2.0 2.1–4 2.0 2.1–4 2.0

512 1.3–5 2.0 5.1–5 2.0 5.1–5 2.0 5.1–5 2.0

where 0 < γ < 1. We would like to analyze separately the two different boundary-layer

behaviors and we consider two test-problems with known solutions:

−ǫ2

�

u′

1+ u

�′
+ u= f1(x), x ∈ I , −u′(0) = 0, u(1) = β1, (3.2)

−ǫ2

�

u′

1+ u

�′
+ u= f2(x), x ∈ I , u(0) = 1, u(1) = β2. (3.3)

fi and βi, i = 1,2, are defined by the respective exact solutions, which are of the form

uǫ(x) = µe−x/ǫ + ex − 1, where µ = ǫ for (3.2) and µ = 1 for (3.3). The two problems

are constructed for convenience so that there is no layer at x = 1 and the discretization

meshes are modified not to condense close to this point.

Mesh BN is used with a = 1 and q = 0.5 and SN
ǫ with a = 3, γ = 1, and J = N/2. We

compare these meshes to the standard Shishkin mesh, denoted by SN , with the transition

point σ = aǫ ln N (cf. [11]; more accessible sources [10] and [4] for instance). Presented

in the tables are errors E∞(N) and Ẽ1(N) = E1(N)/ǫ, where Es(N) := ‖wN
ǫ −uN

ǫ ‖s, s = 1,∞.

The corresponding numerical rates of convergence, Rs(N) := log2[Es(N/2)/Es(N)], are

also provided.

Results are given first for problem (3.3), which is harder to solve numerically. Tables

1 and 3 show that errors E1(N) on BN and SN
ǫ decrease together with ǫ, as predicted by

Theorems 2.2 and 2.3. This is not the case on mesh SN , see Table 4. Except for one entry

in Table 1, the values of Ẽ1(N) are fixed when ǫ→ 0.

As for Theorem 2.3 and mesh SN
ǫ , the influence of ln(1/ǫ)-factors in ES can be observed

in Table 3.

Additionally, mesh BN produces ǫ-uniform pointwise convergence, see Table 1. Table

4 shows that errors E∞(N) on SN are also ǫ-uniform. The rate of convergence is lower on

SN than on BN , which is not surprising (cf. [16]), but the errors are actually somewhat

better on SN . This is only because SN is much less dense near x = 0. ǫ-uniform pointwise

convergence cannot be expected of SN
ǫ and Table 2 indeed shows that E∞(N) errors become

somewhat worse when ǫ decreases.

Overall, mesh BN gives the best results and we do not present results on SN
ǫ and SN

in Tables 5-7. We apply to (3.3) also a non-equidistant generalization of the Numerov

(Hermite) scheme, of the type analyzed in [16]. Table 5 confirms our expectation of ǫ-

uniform pointwise convergence whose rate is four. With the exception of N = 16, the
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entral s
heme on mesh SN
ǫ
, error E∞(N).

ǫ 10−3 10−6 10−9

N E∞(N) R∞(N) E∞(N) R∞(N) E∞(N) R∞(N)
32 3.2–3 — 1.4–2 — 2.1–2 —

64 7.9–4 2.0 3.2–3 2.2 6.7–3 1.7

128 2.0–4 2.0 7.9–4 2.0 1.8–4 1.9

256 4.9–5 2.0 2.0–4 2.0 4.4–4 2.0

512 1.2–5 2.0 4.9–5 2.0 1.1–4 2.0Table 3: Problem (3.3) solved by 
entral s
heme on mesh SN
ǫ
, error Ẽ1(N).

ǫ 10−3 10−6 10−9

N Ẽ1(N) R1(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N)

32 1.0–2 — 5.1–2 — 9.0–2 —

64 2.9–3 1.8 1.0–2 2.4 2.7–2 1.7

128 7.6–4 1.9 2.9–3 1.8 6.5–3 2.1

256 1.9–4 2.0 7.6–4 1.9 1.7–3 1.9

512 4.8–5 2.0 1.9–4 2.0 4.3–4 2.0Table 4: Problem (3.3) solved by 
entral s
heme on mesh SN .
ǫ 10−3, 10−6, 10−9 10−3 10−6 10−9

N E∞(N) R∞(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N)

32 7.9–4 — 3.8–3 — 9.6–1 — 9.5+2 —

64 2.8–4 1.5 1.2–3 1.7 6.1–2 4.0 6.0+1 4.0

128 9.7–5 1.6 3.8–4 1.6 4.1–3 3.9 3.7+0 4.0

256 3.2–5 1.6 1.3–4 1.6 3.6–4 3.5 2.3–1 4.0

512 1.0–5 1.7 3.9–5 1.7 5.4–5 2.7 1.5–2 4.0

errors are better than those obtained by the central scheme and presented in Table 1. In

Table 6, we see the same qualitative behavior of Ẽ1(N) as in Table 1, but the values stabilize

later, starting from N = 256. This is also when the Table 6 results become better than the

corresponding ones in Table 1.

Finally, we consider problem (3.2). We report that equidistant meshes produce unsatis-

factory results and, therefore, a special mesh is needed for this problem too. Mesh BN gives

maximum errors that decrease linearly when ǫ → 0, see Table 7. However, Tables 1 and

7 indicate that there is no significant difference between problems (3.3) and (3.2) in the

Ẽ1(N) values. It is important to mention that the results are only first-order ǫ-uniformly ac-

curate when the left boundary condition in (3.2) is discretized as −D+w0 := (w0−w1)/h1.

The results presented in Table 7 are obtained with a second-order scheme for −u′(0) = 0,

w0 −w1

h1

+
h1

2ǫ2
(w0 + 1)[w0 − f1(0)] = 0

(where f1(0) = 0). This approximation results from the expansion

D+uǫ(x0)≈ u′ǫ(0)+
h1

2
u′′ǫ (0)
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heme on mesh BN , error E∞(N).
ǫ 10−3 10−6 10−9

N E∞(N) R∞(N) E∞(N) R∞(N) E∞(N) R∞(N)
32 2.4–3 — 3.0–3 — 3.1–3 —

64 1.2–4 4.3 1.2–4 4.6 1.2–4 4.7

128 7.4–6 4.1 7.5–6 4.1 7.5–6 4.1

256 4.6–7 4.0 4.6–7 4.0 4.6–7 4.0

512 2.9–8 4.0 2.9–8 4.0 2.9–8 4.0Table 6: Problem (3.3) solved by Numerov s
heme on mesh BN , error Ẽ1(N).
ǫ 10−3 10−6 10−9

N Ẽ1(N) R1(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N)

32 5.9–2 — 1.1+2 — 1.2+5 —

64 1.3–3 5.6 4.0–1 8.0 5.0+2 7.9

128 5.2–5 4.6 1.2–4 11.7 9.9–2 12.3

256 3.1–6 4.1 3.1–6 5.3 3.1–6 15.0

512 1.9–7 4.0 1.9–7 4.0 1.9–7 4.0Table 7: Problem (3.2) solved by 
entral s
heme on mesh BN .
ǫ 10−3, 10−6, 10−9 10−3 10−6 10−9

N E∞(N) R∞(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N) Ẽ1(N) R1(N)

32 5.2–3 — 2.2–2 — 2.2–2 — 3.2–2 —

64 1.3–3 2.0 5.4–3 2.0 5.4–3 2.0 5.4–3 2.6

128 3.3–4 2.0 1.3–3 2.0 1.3–3 2.0 1.3–3 2.0

256 8.2–5 2.0 3.4–4 2.0 3.4–4 2.0 3.4–4 2.0

512 1.4–5 2.5 4.9–5 2.8 4.9–5 2.8 4.9–5 2.8

in which u′′ǫ (0) is then expressed from the differential equation in (3.2), taking into account

that u′ǫ(0) = 0. The stability of the central scheme with the above discretization used at x0

can be analyzed using the technique applied in [14].

We can therefore conclude that for problems like (3.1), a special discretization mesh

is needed which condenses near both endpoints x = 0 and x = 1. Mesh BN would be our

first choice, but SN
ǫ or SN are also possible to use. SN

ǫ gives better errors in the discrete L1

norm, whereas SN produces better maximum-norm errors.
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[13] Vulanović R. On a numerical solution of a type of singularly perturbed boundary value prob-

lem by using a special discretization mesh, Univ. u Novom Sadu Zb. Rad. Prir.-Mat. Fak. Ser.

Mat., 1983, 13: 187–201.
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