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SOLUTION OF ADVECTION DIFFUSION EQUATIONS IN TWO

SPACE DIMENSIONS BY A RATIONAL EULERIAN

LAGRANGIAN LOCALIZED ADJOINT METHOD OVER

HEXAGONAL GRIDS

MOHAMED AL-LAWATIA

Abstract. We present a characteristic method for the solution of the tran-

sient advection diffusion equations in two space-dimensions. This method

uses Wachspress-type rational basis functions over hexagonal grids within the

framework of the Eulerian Lagrangian localized adjoint methods (ELLAM). It

therefore maintains the advantages of previous ELLAM schemes and generates

accurate numerical solutions even if large time steps are used in the simula-

tion. Numerical experiments are presented to illustrate the performance of this

method and to investigate its convergence numerically.
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1. Introduction

Advection-diffusion equations are a class of partial differential equations that
is mathematically important because they arise in many problems in Science and
Engineering. These equations are also important because they present serious com-
putational difficulties, especially when advection dominates the physical process.
Standard finite difference and finite element methods, which work well for many
other types of equations, generate solutions for this class of equations that exhibit
non-physical spurious oscillations and/or artificial numerical diffusion that smears
out sharp fronts of the solution where important chemistry and physics take place.

Many specialized methods have been developed which aim at resolving the diffi-
culties mentioned when applied to both linear and nonlinear problems. One large
class of methods, usually referred to as characteristic methods, makes use of the
hyperbolic nature of the governing equations. These methods incorporate Eulerian
grids with Lagrangian tracking along the characteristic curves to treat the advective
part of the equation [9, 13]. This treatment allows for larger time steps to be used in
the simulation. Moreover, it significantly reduces the time truncation errors when
compared to methods which rely only on Eulerian grids. However, these methods
have difficulty in conserving mass and in treating general boundary conditions.

The Eulerian Lagrangian localized adjoint method was developed by Celia, Rus-
sell, Herrera, and Ewing as an improved extension of characteristic methods which
maintains their advantages and enhances their performance by conserving mass
and treating general boundary conditions naturally in its formulation [6]. This first
ELLAM formulation was a finite element formulation for one-dimensional constant
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coefficient advection diffusion equations. The strong potential that this formula-
tion has shown, led to a rapid expansion in all aspects of this class of methods,
including the development of various finite element and finite volume formulations
for one and higher dimensional problems [1, 3, 10, 14, 26, 27]. Other formulations
were also developed including Eulerian-Lagrangian collocation methods [39, 40, 41],
and Eulerian Lagrangian discontinuous Galerkin methods [34, 35, 36, 37]. More-
over, convergence properties of the different ELLAM formulations were studied
and various optimal order convergence and uniform estimates were established
[19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33].

ELLAM formulations developed for two-dimensional problems have mostly fol-
lowed the classical polynomial-based finite element approach; which is to discretize
the spatial domain into an assembly of triangular or quadrilateral elements and use
linear or higher polynomial interpolants as the test functions on each element and
the basis for the solution space [12]. However, due to the reliance on polynomial ba-
sis, other types of higher-order elements have not been extensively considered even
though such elements with large number of sides have been successfully used in a
number of applications in Engineering and other fields and have resulted in some
cases in better approximations than those obtained by triangular or quadrilateral
polynomial based standard finite element codes [7].

In this article we present a rational characteristic method for the solution of vari-
able coefficient advection diffusion equations within the framework of the Eulerian-
lagrangian localized adjoint methods. The algorithm is based on a discretization
of the spatial domain into a partition of regular hexagonal elements and uses
Wachspress-type rational test functions in the space-time domain defined by the
characteristics [18]. The derived method generates regularly structured systems
which can easily be solved numerically. Numerical experiments are presented to
illustrate the performance of the method developed.

2. Development of the Characteristic Schemes

We consider the following two-dimensional unsteady-state advection diffusion
equation

(1) (φ(x, t) u(x, t))t +∇ ·
(

v(x, t)u(x, t) −D(x, t)∇u(x, t)
)

= f(x, t)

where x = (x, y), ut = ∂u/∂t, ∇ = 〈∂/∂x, ∂/∂y〉, φ(x, t) is the retardation coef-
ficient, v(x, t) is the velocity field, D(x, t) is the diffusion/dispersion tensor, and
f(x, t) is a source/sink term. While the ELLAM method can be developed for any
bounded spatial domain which admits a quasi-uniform partition, for simplicity of
presentation we consider a spatial domain of the form Ω = [a, b] × [c, d]. To close
the system, we assume that an appropriate initial condition and any proper com-
bination of Dirichlet, Neumann, or flux boundary conditions are specified at the
inflow or outflow parts of the boundary.

2.1. Partition and Characteristic Tracking. Eulerian-Lagrangian localized
adjoint methods (ELLAM) have previously been developed using triangular and
quadrilateral discretizations of the domain [15, 28]. However, in this section we
consider a hexagonal discretization, which for simplicity of presentation, we take to
be a regular grid. The method uses a time-stepping algorithm, and so, we use the
temporal partition

(2) tn = n∆t, n = 0, ..., N with ∆t = T/N

for positive integer N and only focus on the current time interval (tn, tn+1].
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Figure 1. The spatial partition: the reference hexagon (left) and
a representative regular hexagonal partition of the domain (right)

The regular hexagonal grid considered, based on translations of a reference reg-
ular hexagon, is one of three possible regular tessellations of the plane, the other
two being based on square and triangular tiling. It is obtained by considering a
standard hexagon Ωo centered on the origin and given by the points

(xk, yk) =
(

2∆x cos (2πk/6) /3,∆y sin(2πk/6)/
√
3
)

, k = 0, .., 5

where ∆x and ∆y are the discretization sizes in the x and y directions, respectively.
The different elements Ωij of the spatial partition of the domain are simply given
as translations of Ωo to new centers given by

(xc
i , y

c
j) = (a+ i∆x, c+ j∆y − rem(i+ 1, 2)∆y/2)

where i = 0, .., nx, j = 0, .., ny for positive integers nx and ny and rem(i, 2) is
the remainder when i is divided by 2. An illustration of the partition and of the
reference hexagon is given in Figure (1).

By multiplying equation (1) by a piecewise smooth test function w that vanishes
outside Ω× (tn, tn+1] we obtain a weak form of equation (1)

(3)

∫

Ω

(φ u)(x, tn+1) w(x, tn+1) dx+

∫ tn+1

tn

∫

Ω

(D∇u) · ∇w dx dt

−
∫ tn+1

tn

∫

Ω

u(φ wt + v · ∇w) dx dt+

∫ tn+1

tn

∫

∂Ω

(v u−D∇u) w · n dS

=

∫

Ω

(φ u)(x, tn) w(x, tn+) dx+

∫ tn+1

tn

∫

Ω

f w dx dt

where w(x, tn+) = limt→tn w(x, t) which takes into account the fact that w is
discontinuous in time at time tn.

The selection of the test function w plays an important role in the development
of the methods. Using the ELLAM framework [6], we select the test functions
w(x, t) in equation (3) to satisfy, within the tolerance of the accuracy desired, the
homogeneous equation of hyperbolic part of the adjoint equation of (1)

(4) φ wt + v · ∇w = 0

to reflect the Lagrangian nature of equation (1); in other words, the test functions
should be chosen to be constant along the characteristics curves. These character-
istic curves of equation (1) are defined as solutions to initial value problems for the
ordinary differential equation

(5)
dx

dt
= vφ(x, t) :=

(

v(x, t)

φ(x, t)

)
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However, solving this equation for a generic velocity field is not possible, in general.
Thus, we need to use some numerical means to track the characteristics approxi-
mately. A variety of algorithms may be used for that purpose, including the Euler
and Runge-Kutta methods. In our formulations we use a second order Runge-Kutta
method and define the approximate characteristic curve X(θ; x̄, t̄) emanating from
a point (x̄, t̄) by

(6) X(θ; x̄, t̄) = x̄+
θ − t̄

2
(vφ(x̄, t̄) + vφ(x̄− (θ − t)vφ(x̄, t̄), t̄))

Here θ is the time position along that characteristic. Moreover, to further improve
the accuracy of tracking, we divide the global step ∆t into a number of micro time
steps, and the tracking described by Eq. (6) can be carried out across these micro
steps.

2.2. The Reference Equation. The ELLAM method can be formulated by eval-
uating the space-time integrals in Eq. (3) along the approximate characteristics.
Special attention needs to be given to the two triple integrals in this weak form:
the second (source and sink) term on the right-hand side of the equation and the
second (diffusion) term on the left-hand side. These integrals, in a similar way to
all other terms, are changed to the characteristic variables, and then a backward
Euler quadrature along the characteristics is applied. This results in the following
formulation for the ELLAM scheme,

(7)

∫

Ω

φ(x, tn+1) u(x, tn+1) w(x, tn+1) dx

+

∫

Ω

∆t(I)(x)(D∇u)(x, tn+1) · ∇w(x, tn+1) dx

+

∫ tn+1

tn

∫

∂Ω(O,n)

∆t(O)(x, t)(D∇u) · ∇w (v · n) dS

−
∫ tn+1

tn

∫

Ω

u (φ wt + v · ∇w) dx dt+

∫ tn+1

tn

∫

∂Ω

(vu −D∇u) · n w dS

=

∫

Ω

φ(x, tn) (x, tn)w(x, tn+) dx+

∫

Ω

∆t(I)f(x, tn+1)w(x, tn+1) dx

+

∫ tn+1

tn

∫

∂Ω(O,n)

∆t(O)(x, t)f w (v · n) dS + E(u,w)

where ∂Ω(O,n) is the outflow part of the boundary, E(u,w) is the truncation error
due to the use of Euler Quadrature, ∆t(I)x = tn+1 − t∗(x) where t∗(x) is the time
instance when the characteristic emanating from (x, tn+1) intersects the boundary
∂Ω × [tn, tn+1], and similarly ∆t(O)(x, t) = t − t∗(x, t), where t∗(x, t) is the time
instance when the characteristic emanating from (x, t) intersects the boundary;
both time steps extend to ∆t when the corresponding characteristics do not intersect
the boundary.

3. Numerical Approximation

The numerical schemes can use arbitrarily high-order trial and test functions.
Here we present the scheme which uses Wachspress-type rational functions over
the regular hexagonal grid presented earlier. Wachspress has pioneered the use
of rational interpolation functions as basis for the test and trial spaces in finite
element formulations over general convex n-gons [7, 18]. We use his formulation in
our algorithm and define each global test function w = w(m), with m ranging over
the nodes, as a piecewise rational function which has the value 1 at node m and is
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Figure 2. A representative global basis functions at time tn+1

zero on other nodes of the partition. In particular, the local element test functions
wk are rational functions that can be written as

wk(x, y, t
n+1) =

Pk(x, y)

Q(x, y)

where the numerator is a full quartic polynomial and the denominator is a full
cubic polynomial over the element. We describe below how these polynomials are
obtained over the reference hexagon Ωo. We start by labeling the sides of the
reference hexagon Ωo as Sk, k = 1, .., 6 where Sk connects node (xk−1, yk−1) to
(xk, yk) using the convention that (x0, y0) is the same point as (x6, y6). We then
define

ak =
yk − yk−1

xk−1yk − xkyk−1
and bk =

xk−1 − xk

xk−1yk − xkyk−1

and define the functions

lk(x, y) = 1− akx− bky

each of which intercepts the xy-plane in Ωo at the line Sk. We also define, the
coefficients

σk =







1, k = 1

σk−1
ak+1(xk−1 − xk) + bk+1(yk−1 − yk)

ak−1(xk − xk−1) + bk−1(yk − yk−1)
, k = 2, .., 6.

The numerator polynomials on element Ωo are defined as

Pk(x, y) = σk

6
∏

j=1,j 6=k,j 6=k+1

li(x, y)

while the denominator polynomial is

Q(x, y) =

6
∑

k=1

Pk(x, y).

By substituting the coordinate values of the six edges of the reference hexagon Ωo

we obtain an explicit representation of the local test functions. For example,

w1(x, y) =
1

6

(2∆x∆y + 3x∆y − 2y∆x)(2∆x∆y + 3x∆y + 2y∆x)(∆y2 − 4y2)

(∆y2(4∆x2∆y2 − 4y2∆x2 − 3x2∆y2))

and the other functions are similar. Figure (2) contains a representative global basis
function at time tn+1 which is non-zero over three adjacent elements. The method
uses similar discretization and similar basis functions at the outflow boundary of
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the space-time domain. Here we recall that in the interior of the space-time domain,
these test functions extend to be constant along the approximate characteristics.

The numerical scheme is based on approximating the exact solution u of equation
(1) (or equivalently the reference equation (7)) by a piecewise rational trial function
U from the same space as the test functions. Incorporating the trial and test
functions above into the reference equation (7) and dropping the truncation error
term E(u,w) and the adjoint term, the fourth term on the left side of the equation,
gives the corresponding ELLAM schemes

(8)

∫

Ω

φ(x, tn+1) U(x, tn+1)w(x, tn+1) dx

+

∫

Ω

∆t(I)(x)(D∇U)(x, tn+1) · ∇w(x, tn+1) dx

+

∫ tn+1

tn

∫

∂Ω(O,n)

∆t(O)(x, t)(D∇U) · ∇w (v · n) dS

+

∫ tn+1

tn

∫

∂Ω

(vU −D∇U) · n w dS

=

∫

Ω

φ(x, tn) (x, tn) w(x, tn+) dx+

∫

Ω

∆t(I)f(x, tn+1) w(x, tn+1) dx

+

∫ tn+1

tn

∫

∂Ω(O,n)

∆t(O)(x, t)f w (v · n) dS.

With the known solution U(x, tn) from the computations at the previous time step
tn (or the initial condition) and the prescribed boundary conditions, the method
solves for U(x, tn+1) with x in Ω and also for (x, t) for points in Ω(O,n). The scheme
symmetrize the governing equation (1), generates accurate numerical solutions even
if large time steps are used, and conserves mass [6].

4. Numerical Experiments

We have performed numerical experiments with the Eulerian-Lagrangian local-
ized adjoint method developed and a report of these is presented in this section.
Our aim is to observe the performance of the method in solving the model equation
using classical advection dominated test problems, with known analytical solution,
which are known to present numerical challenges to the simulators. We also examine
the convergence of the solutions of the ELLAM method.

4.1. Convergence Rates. In this first example, we investigate the convergence
rates of the ELLAM method in space and in time. As a model problem, we consider
the transport of a rotating Gaussian pulse with an initial configuration given by

(9) u0(x, y) = exp

(

− (x− xc)
2 + (y − yc)

2

2σ2

)

where the center and the standard deviation are (xc, yc) = (0,−0.125) and σ =
0.015. Equation (1) is solved with this initial condition over a domain of Ω =
[−0.25, 0.25]× [−0.25, 0.25] for a time period of T = π/2. The rotating velocity
field is v(x, y, t) = 〈−4y, 4x〉 which has the effect of rotating the initial configuration
counter-clockwise about the origin one complete rotation during the period of the
simulation. To complete the model, we select φ = 1, the diffusion tensor D =
0.00005I2 (where I2 is the 2 × 2 identity matrix), and consider a zero source/sink
term. The exact solution to this problem is given by

(10) u(x, y, t) =
2σ2

2σ2 + 4(0.00005)t
exp

(

− (x̄− xc)
2 + (ȳ − yc)

2

2σ2 + 4(0.00005)t

)

.
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∆h ∆t L2 Error L1 Error

1/30 π/400 1.0551× 10−2 1.2733× 10−3

1/36 π/400 8.7531× 10−3 9.4515× 10−4

1/42 π/400 7.1074× 10−3 7.1311× 10−4

1/48 π/400 5.5788× 10−3 5.2520× 10−4

1/54 π/400 4.0618× 10−3 3.7413× 10−4

1/60 π/400 2.7999× 10−3 2.5284× 10−4

1/66 π/400 2.1010× 10−3 1.8050× 10−4

Order of convergence α 2.06 2.47

Constant Cα 13.657 6.447

Table 1. Order of convergence in space achieved for the transport
of the Gaussian pulse problem

∆h ∆t L2 Error L1 Error

1/150 π/10 2.6899× 10−4 1.6964× 10−5

1/150 π/12 2.1451× 10−4 1.3466× 10−5

1/150 π/14 1.7427× 10−4 1.0811× 10−5

1/150 π/16 1.4903× 10−4 8.9345× 10−6

1/150 π/18 1.3907× 10−4 8.1372× 10−6

1/150 π/20 1.1767× 10−4 6.7106× 10−6

1/150 π/22 1.0710× 10−4 6.1496× 10−6

Order of convergence β 1.16 1.30

Constant Cβ 0.001008 0.000076

Table 2. Order of convergence in time achieved for the transport
of the Gaussian pulse problem

where (x̄, ȳ) = (x cos 4t+ y sin 4t,−x sin 4t+ y cos 4t).
The truncation error of the ELLAM schemes can be estimated as follows

(11) max
n=0,..,N

‖u(x, tn)− U(x, tn)‖LP
≤ Cα(∆h)α + Cβ(∆t)β

in the L2 and the L1 norms where ∆x = ∆y =: ∆h; here α and β are the orders
of convergence in space and time, respectively [19]. We carry different runs to
numerically investigate the rates α and β that we obtain for the rational ELLAM
method. We first vary the spatial grid size ∆h systematically with the temporal step
being sufficiently refined so that the temporal errors are negligible. We then use a
linear regression to fit the spatial convergence rates. Table (1) contains the L2 and
the L1 norms of the errors generated by the ELLAM scheme for this test problem.
Similarly we simulate the problem using a fixed spatial grid with a relatively fine
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Figure 3. Plots at t = π/2 and contours at t = π/10, π/5, 3π/10,
2π/5, π/2 of the exact solution and the ELLAM solution with
∆x = ∆y = 1/150 and ∆t = π/10 for the transport of a Gaussian
pulse problem

size and use temporal grids of various sizes to investigate the convergence in time.
The results of these runs are given in Table (2). The results obtained collectively
suggest optimal-order convergence rates in space and time for the ELLAM solutions
in the two norms, which are yet to be proved theoretically. Here we also remark
that the constant Cβ is much smaller than Cα, which is mainly due to the fact that
the temporal truncation errors are significantly reduced when Lagrangian tracking
is employed in the simulation, an advantage of characteristic methods, in general.

The choice of the relatively small time steps ∆t in Table (1) was to establish the
order of convergence. However, one main advantage of ELLAM and characteristic
methods in general is that they allow large time steps to be used in the simulations
as it is evident in the results presented in Table (2). Therefore, in Figure (3),
we present the solution generated by the ELLAM method for this model problem
using a grid of size ∆h = 1/150 and the relatively larger ∆t = π/10. The ELLAM
method performs very well, comparably to existing polynomial interpolation based
ELLAM methods, and presents a solution with relatively small absolute errors of
magnitude 2.6899× 10−4 and 1.6964× 10−5 in the L2 and L1norms, respectively.
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4.2. Transport of a Diffused Box Function. In order to test the ELLAM
method developed for problems with discontinuous initial data, we consider in this
example the transport of a diffused rectangular box function with initial configu-
ration given by

(12) u0(x, y) =

{

1, (x, y) ∈ [xl, xr]× [yl, yr]

0, otherwise

subject to equation (1), where xl = −0.08005, xr = −0.4495, yl = −0.01755 and
yr = 0.01755. In this problem we consider a spatial domain of [−0.125, 0.125]×
[−0.125, 0.125] and simulate for a time period of T = π/2. The other parameters
used in this experiment are the same as those used in the previous test problem
with the exception that we use an even smaller diffusion tensor of D = 0.00002×I2.
The exact solution of this model problem is given by

(13)

u(x, y, t) =
1

4

[

erf

(

x̄− xl√
0.00008t

)

− erf

(

x̄− xr√
0.00008t

)]

×
[

erf

(

ȳ − yl√
0.00008t

)

− erf

(

ȳ − yr√
0.00008t

)]

where erf(x) = 2/
√
π
∫ x

0 e−s2ds is the standard error function, and (x̄, ȳ) =
(x cos 4t+ y sin 4t,−x sin 4t+ y cos 4t) as defined earlier.

∆h ∆t L2 Error L1 Error

1/320 π/10 4.4506× 10−4 2.3366× 10−5

1/320 π/20 1.9744× 10−4 1.0249× 10−5

Table 3. Representative results for the transport of a diffused box
function test problem

In Table (3) we present the numerical results of some representative example
runs, while in Figure (4), we present plots of the ELLAM solution using a grid of
sizes ∆x = 1/320 and ∆t = π/10 as well as the exact solution. These results show
that the ELLAM scheme very accurately captures the details and the steep fronts
of the exact solution, in a comparable manner to that experienced with polynomial
based characteristic methods. These results justify the appropriateness of these
rational basis and the high-order elements within the set-up of ELLAM methods.

4.3. Diffusion in a plane shear flow. The third set of experiments we carry
involves the transport under the influence of a shear flow and was presented by
Carter et al [5]. The model equation (1) is solved using a velocity field of v(x, y, t) =
〈1 + 2y, 0〉 and a diffusion of D = 0.0001I2 over a spatial domain of [0, 1.3] ×
[−0.2, 0.2]. The analytic solution subject to an initial condition ofMδ(x0, 0) (where
δ represents the dirac delta function) is given by

u(x, y, t) =
M

0.0004πt
√

1 + 4t2

12

exp

(

− (x− x0 − t− yt)2

0.0004t(1 + 4t2

12 )
− y2

0.0004t

)

where we have used the value M = 0.002 and x0 = 0.
In the model problem we work with a finite initial condition at t = 0.2 and

simulate over the time interval [0.2, 1.2]. As a representative model run, we simulate
the problem with a discretization of ∆x = ∆y = 1/100 and ∆t = 1/10 and present
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Figure 4. Plots at t = π/2 and contours at t = π/10, π/5, 3π/10,
2π/5, π/2 of the exact solution and the ELLAM solution with
∆x = ∆y = 1/320 and ∆t = π/10 for the transport of a box
function problem

∆h ∆t L2 Error L1 Error

1/100 1/5 1.0578× 10−3 7.4238× 10−5

1/100 1/10 6.0565× 10−4 4.1167× 10−5

1/100 1/15 5.3671× 10−4 3.6175× 10−5

Table 4. Representative results for the diffusion in a plane shear
flow test problem

the ELLAM solution along with the analytic solution in Figure (5). The norms
of the errors of the solutions generated by the ELLAM scheme are an L2 norm of
6.0565× 10−4 and an L1 norm of 4.1167× 10−5 (see Table (4)).
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Figure 5. Plots of the initial condition and the solution at t = 1.2
and contours at t = 0.2, 0.4, 0.6, 0.8, 1.0 1.2 of the exact solution
and the ELLAM solution with ∆h = 1/100 and ∆t = 1/10

5. Discussion

In this article we develop a characteristic method which uses piecewise Wach-
spress type rational test and trial functions over regular hexagonal grid within
the framework of the Eulerian-Lagrangian localized adjoint methods. The derived
scheme performs well and generates accurate numerical solutions even when large
time steps are used in the simulation. Numerical experiments illustrate the strong
potential of the derived scheme and clearly justify the appropriateness of the hexag-
onal grids and the piecewise rational basis functions within the framework of the
ELLAM method. Moreover, they show a strong potential for practical use and
a wide industrial applicability. When compared to the polynomial-based ELLAM
methods, the derived scheme performs comparably well. However, no comparison
is presented in this article mainly because polynomial interpolations may not be
very suitable over such hexagonal grids. This comparison in other more appropriate
settings for both types of interpolations will be a topic for future investigation.

The extension of the rational ELLAM method to three dimensional problems is
theoretically possible, especially since generalization of the Wachspress construction
to three space dimensions have been considered [38]. This extension will also be a
topic for future investigation.
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