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Abstract. This paper is concerned with the Hopf bifurcation analysis of tumor-immune
system competition model with two delays. First, we discuss the stability of state
points with different kinds of delays. Then, a sufficient condition to the existence of the
Hopf bifurcation is derived with parameters at different points. Furthermore, under
this condition, the stability and direction of bifurcation are determined by applying the
normal form method and the center manifold theory. Finally, a kind of Runge-Kutta
methods is given out to simulate the periodic solutions numerically. At last, some
numerical experiments are given to match well with the main conclusion of this paper.
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1 Introduction

At present, cancer is still a leading cause of death in the world, even if that is still not
known about its mechanisms of establishment and destruction. In many cases, surgery
is not represent a cure. Many patients can not find the tumor in time, then later degener-
ation can occur. The theoretical study of tumor-immune dynamics has a long history [1].
A detailed description of virus, antivirus, and body dynamics can be found in [2–4].

Immune system plays a key role in the initial stage when tumor occurs. The immune
system responses consist of two different interacting responses: the cellular response and
the humoral response. The cellular response is carried by T lymphocytes. The humoral
response is related to the other class of cells, called B lymphocytes. A dynamics of the
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antitumor immune response in vivo is complicated and not well understood. A number
of mathematical models of the interactions between the immune system and a growing
tumor have been developed [5, 6]et al. The kinetics of cell mediated cytotoxicity in vitro
have also been described by mathematical models [7, 8]et al.

The mathematical model with which we are dealing, was proposed in papers by
Galach [9] and Yafia [10]. In the former paper, the author developed a simple model
of tumor immune system competition without delay, whose idea was inspired from [11].
It is shown that this model had a nonnegative periodic solution when the parameters
changed. In the latter paper, the author published a series of papers to analyze the Hopf
bifurcation problem which predict the occurrence of a limit cycle bifurcation.

The aim of this paper is to show that the tumor-immune dynamics with two delays
has a Hopf bifurcation as the time delays changed. The existence of critical values of the
delays are investigated, in which stability of the nontrivial steady states changed. Main
result of this paper is given in Section 3. Based on the Hopf bifurcation theorem, we
show the occurrence of Hopf bifurcation when the delay crosses some critical value. In
Section 4, we determine the direction and stability of the branch of periodic solutions
bifurcating from the nontrivial steady state by using the theory presented in Hassard et
al. [12]. In Section 5, we construct Runge-Kutta methods with the interpolation procedure
for the system with two delays. Finally in Section 6, we give some numerical examples
to show that the Hopf bifurcation can occur at some critical values. Moreover, numerical
comparisons are made between our Runge-Kutta methods and dde23 function in matlab.

2 Mathematical model

The Kuznetsov and Taylor’s model describes the response of effector (ECs) to the growth
of tumor cells (TCs). This model differs from others because it takes into account the
penetration of TCs by ECs, which simultaneously causes the inactivation of ECs. It is as-
sumed that there exist interactions between ECs and TCs in vitro, which can be described
by the kinetic scheme shown in Fig. 1, where E, T, C, E∗, and T∗ are the local concentra-
tions of ECs, TCs, EC-TC complexes, inactivated ECs, and ”lethally hit” TCs, respectively.
Here, k1 and k−1 denote the rates of bindings of ECs to TCs and the detachment of ECs

Figure 1: Kinetic scheme describing interactions between ECs and TCs.
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from TCs without damaging them, k2 is the rate at which EC-TC interactions program
TCs for lysis, and k3 is the rate at which EC-TC interactions inactivate ECs.

The model is as follows



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

























































dE

dt
= s+F(C,T)−d1E−k1ET+(k−1+k2)C,

dT

dt
= aT(1−bT)−k1ET+(k−1+k3)C,

dC

dt
= k1ET−(k−1+k2+k3)C,

dE∗

dt
= k3C−d2E∗,

dT∗

dt
= k2C−d3T∗,

where s is normal rate of the flow of adult ECs into the tumor site. F(C,T)= f C/(g+T)
describes the accumulation of ECs in the tumor site; d1, d2 and d3 are the coefficients of the
processes of destruction and migration for E, E∗ and T∗, respectively; a is the coefficients
of the maximal growth of tumor; b is the environment capacity.

It is claimed in [11] that experiment observations motivate the approximation dC/dt≈
0. Therefore, it is assumed that C≈KET, where K=k1/(k2+k3+k−1), and the model can
be reduced to two equations which describe the behavior of ECs and TCs only, i.e.,















dx

dt
=σ+

ρxy

η+y
−µxy−δx,

dy

dt
=αy(1−βy)−xy,

(2.1)

where x(t), y(t) denote the dimensionless density of ECs and TCs, respectively. Here,

σ=
s

k2KE0T0
, ρ=

f

k2T0
, η=

g

T0
,

µ=
k3

k2
, δ=

d1

Kk2T0
, α=

a

Kk2T0
, β=bT0.

Replace the Michaelis-Menten form of the function F(C,T) with a Lotka-Volterra form
as [9]. The function F(C,T) should be in the form F(C,T)= F(E,T)= θET as the analysis
in [9]. Then the model takes the form















dx

dt
=σ+ωxy−δx,

dy

dt
=αy(1−βy)−xy,

(2.2)

where ω= k2(θ−m)/K and the other parameters have the same meaning as in Eq. (2.1).
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Immune system needs some time to develop a suitable response after the recognition
of non-self cells, therefore we introduce time delay denoted by τ1 into the model. For
the reproduction of the TCs, we consider the time delay denoted by τ2. Then, from the
original model (2.2), we obtain a new model with two delays















dx

dt
=σ+ωx(t−τ1)y(t−τ1)−δx,

dy

dt
=αy(1−βy(t−τ2))−xy,

(2.3)

where the parameters α, β, δ, ω and σ have the same meaning introduced in Eq. (2.2). τ1

and τ2 are constant time delays.
The existence and uniqueness of solution of system (2.2) for every t>0 are established

in [9], and in the same paper it is shown that if ω≥0, these solutions are nonnegative for
any nonnegative initial conditions (biologically realistic case). In this paper, we consider
the case when the immune response is positive (i.e., ω>0).

3 Existence of local Hopf bifurcation

Considering system (2.3) and supposing that ω > 0, we consider two cases αδ < σ and
αδ>σ.

Assumption 3.1 ω>0, αδ<σ.

Eq. (2.3) has a unique equilibrium P0=(σ/δ,0). The linearized system around P0 takes
the form















dx

dt
=

ωσ

δ
y(t−τ1)−δx,

dy

dt
=
(

α− σ

δ

)

y,

which leads to the characteristic equation

(λ+δ)
(

λ−α+
σ

δ

)

=0, (3.1)

where λ is the characteristic value. The following lemma therefore is apparent.

Lemma 3.1. Under the condition 3.1 the equilibrium P0 is asymptotically stable for all τ1,τ2≥0.

Assumption 3.2 ω>0, αδ>σ.

Under hypothesis 3.2, system (2.3) have two equilibriums P0 = (σ/δ,0) and P2 =
(x2,y2), where

x2=
−α(βδ−ω)+

√
∆

2ω
, y2=

α(βδ+ω)−
√

∆

2αβω
,

with ∆=α2(βδ−ω)2+4αβσω.
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Lemma 3.2. Assumption 3.2, the steady state P0 of (2.3) is unstable for all τ1≥0, τ2≥0.

Proof. The Eq. (3.1) has two roots λ1=α−σ/δ and λ2=−δ. As αδ>σ, λ1 is positive, then
P0 is unstable.

For P2, the characteristic equation is

λ2+Aλ+(C1λ+D1)e
−λτ1+(C2λ+D2)e

−λτ2+Ee−λ(τ1+τ2)=0, (3.2)

where A=δ, C1=−ωy2, D1=ωx2y2, C2=αβy2, D2=αβδy2, E=−ωαβy2
2.

We consider the stability of P2 in three cases.

Case 1: τ1=0, τ2=0.

In this case, Eq. (3.2) becomes

λ2−(ωy2−δ+α−2αβy2−x2)λ+ωx2y2=0. (3.3)

Lemma 3.3. Assumption 3.2, the equilibrium P2 of (2.2) is asymptotically stable.

Proof. Assumption 3.2, x2 > 0, y2 > 0, we can easily obtain that ωx2y2 > 0, ωy2−δ+α−
2αβy2−x2<0, then the roots of (3.3) have no positive real part.

Case 2: τ1>0, τ2=0.

In this case, Eq. (3.2) becomes

λ2+pλ+r+(sλ+q)e−λτ1 =0, (3.4)

where p=δ+αβy2, r=δαβy2, s=−ωy2, q=αωy2(1−2βy2).
The stability of equilibrium P2 is a result of the localization of the roots of (3.4). Fol-

lowing the main result of [10], the Hopf bifurcation may occur by using the delay τ1 as a
parameter of bifurcation.

Lemma 3.4. For τ2=0, Assumption 3.2 and

α>sup
{ω

β
,
σ

δ

}

, 0<β<
2ω(2σ−αδ)−

√
∆1

2α2δ2
, (H1)

then the nontrivial steady state P2 is asymptotically stable for τ1 < τ0
1 and unstable for τ1 > τ0

1 ,
where

τ0
1 =

1

ζ
arccos

{q(ζ2−r)−psζ2

s2ζ2+q2

}

and

ζ=
1

2
(s2−p2+2r)+

1

2

[

(s2−p2+2r)2−4(r2−q2)
]

1
2 .
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Case 3: τ1>0, τ2>0

We consider Eq. (3.2) with τ1 in its stable interval [0,τ0
1 ). Under the Assumptions 3.2

and (H1), we regard τ2 as a parameter. Let is is a root of Eq. (3.2), where i2=−1, then we
can get the equation

s4+As2+B+2Csin(sτ1)+2Dcos(sτ1)=0, (3.5)

where

A=A2+C2
2−C2

1, B=D2
2−D2

1−E2,

C= sC1E−s3C2−sAD2, D=−D1E−s2D2+s2 AC2.

Define F(s)= s4+As2+B+2Csin(sτ1)+2Dcos(sτ1). It is easy to check that

F(0)=D2
2−(D1+E)2=(αβδy2)

2−(ωx2y2−ωαβy2
2)

2

=y2
2[(αβδ)2−(αβδ+

√
∆)2]<0,

and F(+∞)=+∞, then there are finite positive roots s1, s2, ··· , sk in [0,+∞). For every

fixed si, there exists a sequence {τ
j
2i|j=1,2,3,··· ,} such that (3.5) holds. Let

τ0
2 =min

{

τ
j
2i|i=1,2,··· , j=1,2,3,··· ,

}

.

When τ2=τ0
2 , (3.2) has a pair of purely imaginary roots ±is0 for τ1∈ [0,τ0

1 ).
In the following, we assume

[ d

dt
(Reλ)

]∣

∣

∣

λ=is
6=0. (H2)

Therefore, by the general Hopf bifurcation theorem for functional differential equa-
tions in [13], we have the following result on stability and bifurcation in system (2.3).

Theorem 3.1. For system (2.3), suppose Assumption 3.2, (H1), (H2) are satisfied and τ1∈[0,τ0
1 ).

Then the equilibrium P2(x2,y2) is asymptotically stable when τ2 ∈ [0,τ0
2 ) and unstable when

τ2>τ0
2 . System (2.3) undergoes a Hopf bifurcation at P2 when τ2=τ0

2 .

4 Direction and stability of the Hopf bifurcation

The method we used is based on the normal form method and the center manifold theory
presented in Hassard et al. [12]. Without lose of generality, we assume that τ∗

1 ∈ [0,τ0
1 ).

Let x1(t)= x(t)−x2, y1(t)=y(t)−y2 and t 7→ t/τ2, then (2.3) can be rewritten as

(

ẋ1(t)
ẏ1(t)

)

=τ2

( −δ 0
−y2 α−αβy2−x2

)(

x1(t)
y1(t)

)

+τ2

(

ωy2 ωx2

0 0

)





x1(t− τ∗
1

τ2
)

y1(t− τ∗
1

τ2
)





+τ2

(

0 0
0 −αβy2

)(

x1(t−1)
y1(t−1)

)

+τ2

(

g1(x1,y1)
g2(x1,y1)

)

, (4.1)
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where

g1(x1,y1)=ωx1

(

t− τ∗
1

τ2

)

y1

(

t− τ∗
1

τ2

)

, (4.2a)

g2(x1,y1)=−αβy1(t)y1(t−1)−x1(t)y1(t). (4.2b)

Let u(t)=(x1,y1), then

u̇(t)=Mu(t)+Nu
(

t− τ∗
1

τ2

)

+Pu(t−1)+G(t,u), (4.3)

where G(t,u,τ2)=τ2(g1,g2)T and

M(τ2)=τ2

(

−δ 0
−y2 α−αβy2−x2

)

, N(τ2)=τ2

(

ωy2 ωx2

0 0

)

, P(τ2)=τ2

(

0 0
0 −αβy2

)

.

For φ∈C([−1,0],R2), let φ=(φ1,φ2) and µ∈R. Define

Lµ(φ)=(τ0
2 +µ)Mφ(0)+(τ0

2 +µ)Nφ
(

− τ∗
1

τ0
2 +µ

)

+(τ0
2 +µ)Pφ(−1).

By the Riesz representation theorem, there exists a matrix η(θ,µ) in R
2×2, whose elements

are of bounded variation functions such that

Lµ(φ)=
∫ 0

−1
[dη(θ,µ)]φ(θ).

In fact, we can choose

η(θ,µ)=



































(τ0
2 +µ)(M+N+P), θ=0,

(τ0
2 +µ)(N+P), θ∈

[

− τ∗
1

τ0
2 +µ

,0
)

,

(τ0
2 +µ)P, θ∈

(

−1,− τ∗
1

τ0
2 +µ

)

,

0, θ=−1.

For φ∈C1([−1,0],R2), define the operator A(µ) as

A(µ)φ(θ)=















∫ 0

−1
[dη(ξ,µ)]φ(ξ), θ=0,

dφ(θ)

dθ
, θ∈ [−1,0).

Let h(µ,φ)=(τ0
2 +µ)(h1,h2)T, with

(

h1

h2

)

=

(

ωφ1

(

− τ∗
1

τ0
2 +µ

)

φ2

(

− τ∗
1

τ0
2 +µ

)

−αβφ2(0)φ2(−1)−φ1(0)φ2(0)

)

. (4.4)
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If we further define the operator R(µ) as

R(µ)=

{

h(µ,φ), θ=0,
0, θ∈ [−1,0),

then system (4.1) is equivalent to the following operator equation

u̇t=A(µ)ut+R(µ)ut, (4.5)

where ut=u(t+θ), θ∈ [−1,0].
For ψ∈C1([0,1],(R2)∗), we define

A∗ψ(ζ)=















∫ 0

−1
[dη(ξ,µ)]ψ(−ξ), ζ=0,

−dψ(ζ)

dζ
, ζ∈ (0,1],

and a bilinear form

〈ψ(ζ),φ(θ)〉= ψ̄(0)Tφ(0)−
∫ 0

−1

∫ θ

0
ψ̄(ξ−θ)Tdη(θ)φ(ξ)dξ,

where η(θ) = η(θ,0). A(0) and A∗ are adjoint operators. By the discussion before, we
know ±is0τ0

2 are eigenvectors of A(0) and A∗. We need to compute the eigenvector of
A(0) and A∗ corresponding to is0τ0

2 .
Suppose q(θ) is the eigenvector of A(0) corresponding to is0τ0

2 , then we can gain it
from solving the equation A(0)q(θ)= is0τ0

2 q(θ) with

q(θ)=(1,r)Teis0τ0
2 θ,

where

r=
δeis0τ∗

1 −ωy2+is0τ0
2 eis0τ∗

1

ωx2
.

Suppose q∗(θ) is the eigenvectors of A∗ corresponding to −is0τ0
2 , we can obtain

q∗(θ)=D(1,r∗)Teis0τ0
2 θ ,

where

r∗=
−δ+ωy2eis0τ∗

1 +is0

y2
.

Then from 〈q∗(ζ),q(θ)〉=1, 〈q∗(ζ),q̄(θ)〉=0〉, we can get

D̄=
1

〈(1,r∗)Teis0τ0
2 ζ ,(1,r)Teis0τ0

2 θ〉

=
1

1+ r̄∗r+τ∗
1 e−is0τ∗

1 (ωy2+rωx2)+τ0
2 e−is0τ0

2 (−αβy2r∗r)
.



154 J.-J. Zhao, J.-Y. Xiao and Y. Xu / Adv. Appl. Math. Mech., 5 (2013), pp. 146-162

Define
{

z(t)= 〈q∗,ut〉,
w(t,θ)=w(z(t), z̄(t),θ)=ut−Re(zq),

(4.6)

where

w(z, z̄,θ)=
1

2
w20(θ)z

2+w11(θ)zz̄+
1

2
w02(θ)z̄

2+··· .

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note
that w is real when ut is real. For the solution ut∈C0 at µ=0, we obtain

ż= 〈q∗,A(µ)ut+R(µ)ut〉= is0τ0
2 z(t)+ q̄∗(0)h0(z, z̄), (4.7)

where h0=h|µ=0.

Let

g(z, z̄)= q̄∗(0)h0(z, z̄)= g20
z2

2
+g11zz̄+g02

z̄2

2
+g21

z2z̄

2
+··· , (4.8)

then using the computation process similar to that in [12], we obtain the coefficients used
in determining the important quantities.

From (4.6), we have ut=w(z, z̄)+zq+zq, then

g(z, z̄)=q̄∗(0)h0(z, z̄)= D̄
(

1 r̄∗
)

τ0
2

(

h1

h2

)

=D̄
(

1 r̄∗
)

τ0
2

(

ωxt

(

− τ∗
1

τ0
2

)

yt

(

− τ∗
1

τ0
2

)

−αβyt(0)yt(−1)−xt(0)yt(0)

)

. (4.9)

Comparing the coefficients between (4.8) and (4.9), then

g20=2D̄τ0
2

[

ωre−2is0τ∗
1 −αβr̄∗r2e−is0τ0

2 − r̄∗r
]

,

g11= D̄τ0
2

[

(ω− r̄∗)(r+ r̄)−αβr̄∗rr̄(eis0τ0
2 +e−is0τ0

2 )
]

,

g02=2D̄τ0
2

[

ωr̄,e2is0τ∗
1 −αβr̄∗ r̄2eis0τ0

2 − r̄∗r̄
]

,

g21= D̄τ0
2

[

ω(w
(1)
20

(

− τ∗
1

τ0
2

)

r̄eis0τ∗
+2w

(1)
11

(

− τ∗
1

τ0
2

)

re−is0τ∗
1 +w

(2)
20

(

− τ∗
1

τ0
2

)

eis0τ∗
1

+2w
(2)
11

(

− τ∗
1

τ0
2

)e−is0τ∗
1

)

−αβr̄∗(2rw
(2)
11 (−1)+ r̄w

(2)
20 (−1)+w2

20(0)r̄e−is0τ0
2

+2w
(2)
11 (0)re−is0τ0

2 )− r̄∗(2w
(2)
11 (0)+w

(2)
20 (0)+w

(1)
20 (0)r̄+2w

(1)
11 (0)r)

]

,

where w=(w(1),w(2)).
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As far as we concerned above, we still need to compute w20(θ), w11(θ), w02(θ) to
determine the value of g21. Consider the derivative

ẇ=u̇t− żq− ˙̄zq

=

{

Aw−2Re(q∗(0)h0(z, z̄)q(θ)), θ∈ [−1,0)

Aw−2Re(q∗(0)h0(z, z̄)q(0))+h0, θ=0

=Aw+H(z, z̄,θ)

=Aw+H20
z2

2
+H11zz̄+H02

z̄2

2
+··· . (4.10)

At the same time, ẇ also can be expressed as

ẇ=wzż+wz̄ ˙̄z=
∂w

∂z
ż+

∂w

∂z̄
˙̄z, (4.11)

then we can obtain










(A−2is0τ0
2 )w20(θ)=−H20(θ),

Aw11(θ)=−H11(θ),

w20=w02.

(4.12)

When θ∈ [−1,0), we have

H(z, z̄,θ)=−q∗(0)h0(z, z̄)q(θ)−q∗(0)h0(z, z̄)q(θ)

=−g(z, z̄)q(θ)−g(z, z̄)q(θ), (4.13)

comparing the coefficients, we have

H11=−g11q(θ)−g11q(θ), H20=−g20q(θ)−g02q(θ). (4.14)

From the equation

Aw20(θ)=ẇ20(θ)=2is0τ0
2 w20(θ)−H20(θ)

=2is0τ0
2 w20(θ)+g20q(θ)+g02q(θ), (4.15)

we can obtain

w20(θ)=− ig20

τ0
2 s0

q(θ)+
ig02

3τ0
2 s0

q(θ)+E1e2is0τ0
2 θ, (4.16)

where E1=(E
(1)
1 ,E

(2)
1 )∈R is a constant vector. Similarly, we have

w11(θ)=− ig11

τ0
2 s0

q(θ)+
ig11

τ0
2 s0

q(θ)+E2. (4.17)
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When θ=0, we can solve out the value of E1 and E2 from

∫ 0

−1
dη(θ)w20(θ)=2is0τ0

2 w20(0)−H20(0), (4.18a)

∫ 0

−1
dη(θ)w11(θ)=−H11(0), (4.18b)

where

H20=−g20q(θ)−g02q(θ)+2τ0
2

(

ωre−2is0τ∗
1

−αβr2e−is0τ0
2 −r

)

, (4.19a)

H11=−g11q(θ)−g11q(θ)+2τ0
2

(

Re(r)

−αβRe(rr̄eis0τ0
2 )−Re(r)

)

. (4.19b)

Substituting (4.19a), (4.19b) into (4.16), (4.17), we then obtain

(2is0τ0
2 I−

∫ 0

−1
e2is0τ0

2 θdη(θ))E1=2τ0
2

(

ωre−2is0τ∗
1

−αβr2e−is0τ0
2 −r

)

. (4.20)

Solving the equation, we get

E
(1)
1 =

2

D

∣

∣

∣

∣

ωre−2is0τ∗
1 −ωx2e−2is0τ∗

1

−αβr2e−is0τ0
2 −r 2is0+αβy2e−2is0τ0

2

∣

∣

∣

∣

, (4.21a)

E
(2)
1 =

2

D

∣

∣

∣

∣

2is0+δ−ωy2e−2is0τ∗
1 ωre−2is0τ∗

1

y2 −αβr2e−is0τ0
2 −r

∣

∣

∣

∣

, (4.21b)

with

D=

∣

∣

∣

∣

2is0+δ−ωy2e−2is0τ∗
1 −ωx2e−2is0τ∗

1

y2 2is0+αβy2e−2is0τ0
2

∣

∣

∣

∣

. (4.22)

Similarly, we have

∫ 0

−1
dη(θ)E2 =2τ0

2

(

Re(r)

−αβRe(rr̄eis0τ0
2 )−Re(r)

)

, (4.23a)

E
(1)
2 =

2

R

∣

∣

∣

∣

Re(r) ωx2e−is0τ∗
1

−αβRe(rr̄eis0τ0
2 )−Re(r) −αβy2e−is0τ0

2

∣

∣

∣

∣

, (4.23b)

E
(2)
2 =

2

R

∣

∣

∣

∣

−δ+ωy2e−is0τ∗
1 Re(r)

−y2 −αβRe(rr̄eis0τ0
2 )−Re(r)

∣

∣

∣

∣

, (4.23c)

with

R=

∣

∣

∣

∣

−δ+ωy2e−is0τ∗
1 ωx2e−is0τ∗

1

−y2 −αβy2e−is0τ0
2

∣

∣

∣

∣

. (4.24)
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Therefore, we can compute the following values

c1(0)=
i

2τ0
2 s0

(

g11g20−2|g11|2−
|g02|2

3

)

+
g21

2
, µ2=− Re(c1(0))

Re(λ′(τ0
2 ))

, (4.25a)

T2=− Im(c1(0))+µ2 Im(λ′(τ0
2 ))

τ0
2 s0

, β2=2Re(c1(0)). (4.25b)

Hence, µ2 determines the direction of the Hopf bifurcation, β2 determines the stability of
the bifurcation periodic solutions, T2 determines the period of the bifurcating solutions.

Theorem 4.1. For system (2.3), suppose Assumption 3.2, (H1), (H2) are satisfied and τ1=τ∗
1 ∈

[0,τ0
1 ), then τ2=τ0

2 is a Hopf bifurcation value of system (2.3).

(1) If µ2>0 (µ2<0), then the Hopf bifurcation is supercritical (subcritical).

(2) If β2<0 (β2>0), the periodic solutions are stable (unstable).

5 Runge-Kutta methods for differential equations of two delays

In this section, we represent a kind of Runge-Kutta methods with interpolation procedure
that was proposed in In’t Hout [14] for the delay differential equations (DDEs) with two
delays

X′(t)= f (t,X(t),X(t−τ1),X(t−τ2)),

where X(t)∈R
d.

The Runge-Kutta method (A,b,c) can be written as
{

Xn+1=Xn+h∑
s
i=1bi f (tn+cih,Xi

n+1,Yi
n+1−m1

,Zi
n+1−m2

),

X
j
n+1=Xn+h∑

s
i=1 aji f (tn+cih,Xi

n+1,Yi
n+1−m2

,Zi
n+1−m2

),
(5.1)

where h is the step size. Xn+1,Xi
n+1 denote the given approximations to X(tn+1) =

(x(tn+1),y(tn+1))
T, Xi(tn+cih)=(x(tn+cih),y(tn+cih))

T .
Let m1 = ⌊τ1⌋, m2 = ⌊τ2⌋, where ⌊x⌋ means the largest integer less than x. For any

arbitrary real step size h, then τ1=hm1+δ1, τ2=hm2+δ2, where 0<δi <1,i=1,2.
Let r, s̃≥0 be integers. We consider the following interpolation formula for Yi

n+1−m1
,

Zi
n+1−m2

, i.e.,

Yi
n+1−m1

=Xh
i (tn+cih−τ1), Zi

n+1−m2
=Xh

i (tn+cih−τ2), (5.2)

where

Xh
i (tj+cih−εh)=

s̃

∑
k=−r

Lk(ε)X
i
j+1+k,

with

Lj(ε)=
s̃

∑
k=−r,k 6=j

( ε−k

j−k

)

.
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Here, h is a arbitrary real number less then τ1 and τ2, which is very convenient for the
numerical approximation to the differential equation with multiple delays. From [15],
the Runge-Kutta method (5.1) satisfies simplifying assumptions A(p1), B(p1) and if the
interpolation procedure for Yi

n+1−m1
, Zi

n+1−m2
is exact for polynomials of degree ≤ p2,

then it can be easily seen that process (5.1) is of an order p≥min(p1,p2). Therefore, we
can choose appropriate r, s̃ to get the high enough convergence order.

The numerical Hopf bifurcation of Runge-Kutta method for DDEs with one delay
has been proved in [16]. It is shown that if the delay differential equation undergoes
a Hopf bifurcation at τ = τ∗, then the discrete scheme undergoes a Hopf bifurcation at
τ(h)=τ∗+O(h∗) for sufficiently small step size h, where p≥1 is the order of the Runge-
Kutta method. The direction of numerical Hopf bifurcation and stability of bifurcating
invariant curve are the same as that of delay differential equation. For the system of two
delays, the similar result can be easily verified from [16].

Theorem 5.1. Let the conditions in Theorem 3.1 hold, then the discrete scheme Eq. (4.3) has a
Hopf bifurcation point τ(h)=τ∗+O(hp) when the step size h is small enough.

6 The numerical simulation to this model

In this section, using the 4-stage explicit Runge-Kutta method with Lagrange interpola-
tion polynomials (5.1), we obtain the numerical simulations to system (4.3), which consist
three cases of the analysis in the Section 3.

Let

f (t,u,v,w)=Mu+Nv+Pw+G(t,u,v,w), u,v,w∈R
2,

where

G(t,u,v,w)=

(

ωv1v2

−αβu2w2−u1u2

)

.

We choose the similar coefficients as in [9]:

α=1.636, β=0.002, σ=0.073, δ=0.545, ω=0.015. (C)

Then positive equilibrium points are P2 = (1.5275,33.1474), P0 = (0.1339,0). When the
Assumptions 3.2 and (H1) are satisfied, we can use the Runge-Kutta method to simulate
Eq. (4.3).

Case 6.1. In [11], Kuznetsov and Taylor gave out the model (2.1) and an explicit bifur-
cation analysis without delay. Local and global bifurcations were calculated for realistic
values of the parameters.

Then, Galach gave out a simplified model (2.2) in [9] and compared the behavior of
solutions to the models in [11]. The main results can be found in these two references.
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Figure 2: τ1=0.05, τ2=0, the P2 is asymptotically stable.
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Figure 3: τ1=0.3, τ2=0, there is an asymptotically stable periodic solution around P2.

Case 6.2. In this case, we assume τ2=0 and get a model with one delay about the suitable
response after the recognition of non-self cells. This model was first presented in [9] and
then Yafia [10] proved the Hopf bifurcation existence for ω>0.

For the coefficients satisfy condition (C), we can obtain the bifurcation point τ0
1 =

0.2021 for the eigenvalue is0 (s0 = 0.8856). Then from Lemma 3.4, the P2 = (x2,y2) is
asymptotically stable for τ1 < τ0

1 and unstable for τ1 > τ0
1 . The stability of equilibrium P2

and the periodic solution can be found in the Fig. 2 and Fig. 3.



160 J.-J. Zhao, J.-Y. Xiao and Y. Xu / Adv. Appl. Math. Mech., 5 (2013), pp. 146-162

The stability and direction of the Hopf bifurcation can be obtained by the similar
method in [12].

Case 6.3. In this case, there are two delays. Regard τ2 as a parameter and let τ1 =0.05∈
[0,τ0

1 ), we can obtain a unique root s0 =0.8230 of (3.5). Then, the Hopf bifurcation point
is τ0

2 =0.9417. Therefore, the positive equilibrium P2 is stable when τ2 < τ0
2 and unstable

when τ2>τ0
2 . It is shown that the Hopf bifurcation is supercritical in Figs. 4 and 5.
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Figure 4: τ1 =0.05, τ2=0.1, P2 is asymptotically stable.
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Figure 5: τ1=0.05, τ2=2, a stable periodic solution occurs.
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Remark 6.1. From Figs. 2-5 the Runge-Kutta method (5.1) shows the same stability of
nontrivial steady state as the exact solutions, which supports the result of Theorem 5.1.

Remark 6.2. This Runge-Kutta method and dde23 function in matlab get the similar re-
sults, in Figs. 6 and 7. We can not see which one is better directly. However, this Runge-
Kutta method (5.1) is effective for solving the DDEs with multiple delays, and can get
higher convergence order.
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Figure 6: τ1=0.05, τ2 =0.1, a stable periodic solution occurs. h=0.015 (left), h=0.0012 (right).
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Figure 7: τ1=0.05, τ2=2, a stable periodic solution occurs. h=0.01 (left), h=0.0012 (right).
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