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ROBUST A-POSTERIORI ESTIMATORS FOR MULTILEVEL

DISCRETIZATIONS OF REACTION–DIFFUSION SYSTEMS

VIVIANE KLEIN AND MA LGORZATA PESZYŃSKA

Abstract. We define a multilevel finite element discretization for a coupled stationary reaction–
diffusion system in which each component can be defined on a separate grid. We prove convergence
of the scheme and propose residual a-posteriori estimators for the error in the natural energy norm
for the system. The estimators are robust in the coefficients of the system. We prove upper and
lower bounds and illustrate the theory with numerical experiments.
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1. Introduction

In this paper we develop a-priori and a-posteriori analysis for finite-element dis-
cretizations of stationary reaction-diffusion systems. We are particularly interested
in developing results which are uniform, in the sense made precise below, for fam-
ilies of such systems characterized by coefficients of different orders of magnitude.
Additionally, since the individual components of such systems may have different
variability, we recognize that they should be approximated on multilevel grids. The
choice of such grids is guided by the a-posteriori error estimators.

A-posteriori analysis for finite element approximations of scalar self-adjoint el-
liptic equations is well developed [5, 35, 12]. The various error estimators that have
been proposed differ in how closely they estimate the error and in the complexity
of implementation and computations. In addition, their properties may depend
significantly on the coefficients of the underlying problem.

Consider first the scalar stationary reaction–diffusion equation

−∇ · (a∇u) + κu = f,(1)

with a solution u. Consider also the corresponding standard Galerkin finite element
formulation for (1) with a solution uh, and an a-posteriori estimator ηs for the error
Es =||| u− uh ||| in the energy norm ||| · ||| associated with (1).

In general, the efficiency index θs := ηs

Es
may significantly depend on the pa-

rameters in Ps = (a, κ). Standard theory, cf. [10, 5], considers Ps = 12 := (1, 1)
and does not extend easily to the families of (1) where the parameters in Ps vary
significantly. The concept of robustness [37, 36, 9, 39, 39, 40, 27, 26] allows to study
such families of problems (1): the estimator ηs for (1) is robust if θs is uniform in
Ps, i.e., it remains constant or at least stable for a wide range of values in Ps.
Robust estimators are applicable, e.g., to singularly perturbed problems.

Now consider the problem of interest in this paper: the system of station-
ary reaction-diffusion equations posed in some domain Ω parametrized by P =
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(λ1, λ2, a, b, c)

λ1u−∇ · (a∇u) + c(u− v) = f, x ∈ Ω,(2)

λ2v −∇ · (b∇v) + c(v − u) = g, x ∈ Ω,(3)

and complemented by appropriate boundary conditions.
The applications and analysis of general reaction-diffusion systems are consid-

ered, among other works, in [6, 33]. The special case of zero’th order coupling term
associated with c, and of coefficients in P that may vary from case to case by or-
ders of magnitude, has several applications. See for example the reaction-diffusion
systems as in [23], double diffusion systems [7, 22, 31], ([30], II.5), and singular per-
turbations or regularizations of degenerate systems such as first-order reactions or
adsorption at equilibrium and non-equilibrium [6, 25, 32]. See also pseudo-parabolic
systems [24]. Our interest in this paper is in the numerical schemes; applications
will be presented elsewhere.

An important observation is true for the families of solutions corresponding to the
families of P . In some applications the components u and v of the solution to (2)-(3)
may have significantly different variability. In such cases it is natural to approximate
the smooth component on a coarse grid and the less-smooth component on a fine
grid. Such a multilevel discretization requires appropriate grid transfer operators
so that the coupling term can be defined and the convergence ensured.

In addition, note that (2)-(3) can be seen as a prototype of a discretized-in-
time parabolic system. While a-posteriori error estimation for parabolic problems
can proceed along several paths [21, 34], some involve the consideration of robust
estimates for (1) [3], and of the separation of spatial and temporal discretization
errors without solving dual problems and/or backward heat equation [38, 8].

The above remarks motivate our work on robust estimators for the system (2)-
(3). Our results i) extend the scalar estimators from [37] to the case of a coupled
system, and ii) extend the work [4, 2] in which P was fixed. In addition, to our
knowledge, ours is the only result concerning iii) multilevel schemes for (2)–(3).

A separate direction from a-posteriori error estimation is the use of special grids
such as Shishkin and equidistributed meshes for resolving boundary layers in sin-
gularly perturbed problems [28, 19, 20]. For scalar problems (1) in 1D, it can be
shown that with such grids, the dependence of the error of numerical solution on the
parameters in Ps can be eliminated, e.g., by applying the MMPDE [19, 20]. We are
unsure however how such grids can be constructed for systems when more than one
of the parameters vary; it appears that the methods would not be a straightforward
extension of [19].

The paper is organized as follows. We introduce notation and preliminaries in
Section 2. In Section 3 we prove a-priori estimates for the multilevel discretization
of (2)–(3). The main results of this paper are given in Section 4 where we define
appropriate a-posteriori error estimators and prove upper and lower bounds; the
estimators that we develop are robust in P . Our theoretical results are illustrated
by numerical experiments presented in Section 5.

We close with a few remarks on notation. Throughout the paper C means
a generic positive constant; its value is different in each context in which it is
used. The symbol ∂nw denotes the normal component of ∇w with respect to some
boundary or edge. In all integrals we omit the symbol of integration variable; this
helps to keep the expressions compact. Next, our theoretical results are given for
d = 2, 3 spatial dimensions. The case d = 1 is also covered by the theory but
the standard nomenclature and assumptions [14] do not apply; see [26] for robust
estimates in d = 1.
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2. Preliminaries

We consider the equations (2)-(3) defined over an open bounded polygonal do-
main Ω ⊂ R

d, d = 2, 3, with a Lipschitz boundary ∂Ω, on which the homogeneous
Dirichlet boundary conditions are posed

u|∂Ω = v|∂Ω = 0, x ∈ ∂Ω.(4)

For any subset ω ⊆ Ω with Lipschitz boundary, we use the standard notation
for Lebesgue L2(ω), L∞(ω), and Sobolev spaces Hk(ω), k ∈ N. These are equipped
with the usual seminorms | · |k,ω, norms ‖ · ‖k,ω := ‖ · ‖Hk(ω) and the usual scalar

product(s) (f, ψ)ω := (f, ψ)L2(ω) =
∫

ω f(x)ψ(x) [1, 14]. If ω = Ω, the subscript

ω will be omitted. We also set V := H1
0 (Ω) as the closure of C∞

0 (Ω) under the
standard norm in H1(Ω), ‖w‖V := ‖w‖1 := (‖w‖20 + ‖∇w‖20)1/2.

We assume further that the coefficients of (2)-(3) in P are positive constants

a, b, c, λ1, λ2 > 0.(5)

A more general case of variable and degenerate coefficients will be considered else-
where.

On the product space V × V we define several norms. First, we denote the
Euclidean product norm ‖(u, v)‖V×V := (‖u‖2V + ‖v‖2V )1/2. Next, we consider the

scaled norm ‖(u, v)‖s := (
∫

Ω
(λ1u

2+a(∇u)2+λ2v2+b(∇v)2))1/2, and an additional
energy norm to be defined below. It is not hard to see that ‖ · ‖V×V and ‖ · ‖s are
equivalent.

We define now the functional A : (V × V )× (V × V ) → R

(6) A((u, v), (φ, ψ)) :=

∫

Ω

(λ1uφ+ λ2vψ) +

∫

Ω

(a∇u · ∇φ+ b∇v · ∇ψ)

+

∫

Ω

(c(u − v)(φ − ψ)).

Clearly, A is symmetric, bilinear, and continuous with respect to the product norm
‖ · ‖V×V

|A((u, v), (φ, ψ))| ≤ CA‖(u, v)‖V×V ‖(φ, ψ)‖V×V ,

with some constant CA > 0 independent of u, v, φ, ψ; this follows easily by an
application of Cauchy-Schwarz inequality. We also see by c(u− v)u + c(v − u)v =
c(u − v)2 ≥ 0 that A(·, ·) is coercive in the product norm i.e. there is a constant
αA > 0 such that

αA‖(u, v)‖2V×V ≤ A((u, v), (u, v)).

We note that both CA, αA depend on P .
Thus A(·, ·) can be used en-lieu of the standard inner product on V × V . We

associate with A(·, ·) the energy norm ‖ · ‖e on V × V with respect to which it is
naturally coercive and continuous with unit constants

(7) ‖(u, v)‖2e = A((u, v), (u, v)) = ‖(u, v)‖2s +
∫

Ω

c(u− v)2.

Remark 2.1. All the norms ‖ ·‖V×V , ‖ ·‖s, ‖ ·‖e are equivalent and the equivalence
constants depend on P.

Now assume (f, g) ∈ H−1(Ω)×H−1(Ω) and define a functional L : V × V → R

L((φ, ψ)) = 〈f, φ〉+ 〈g, ψ〉(8)

where 〈, ·, ·〉 denotes the standard duality pairing between H1
0 (Ω) and H

−1(Ω). It
is standard that L is linear and continuous [29].
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With the above definitions, we are ready to state the weak form of the problem
(2)–(3). We seek (u, v) ∈ V × V so that

(9) A((u, v), (φ, ψ)) = L((φ, ψ)), ∀(φ, ψ) ∈ V × V.

It follows from Lax-Milgram Theorem [29, 16] that (9) admits a unique solution. In
addition, if f, g ∈ L2(Ω)×L2(Ω), then one can easily see [17] that both components
u, v are in H2(Ω) by regularity of elliptic equations, since each component solves
an elliptic problem with a source term in L2(Ω).

2.1. Finite element discretization. The notation and nomenclature below is
standard [14, 10]; we follow closely [35, 37, 36].

We denote by Th, h > 0, a family of partitions of Ω into a finite number of
elements. We require that the elements in any partition Th satisfy the standard
admissibility and shape-regularity properties [35]. We denote by Eh the set of all
edges in the partition Th that are not contained in ∂Ω. For any element T ∈ Th we
let ω̃T be the set of all elements that share a vertex or an edge with T and hT be
the diameter of T . We denote by h = maxT∈Th

hT . For any edge E ∈ Eh we define
ωE to be the set of all elements that contain the edge E and we let hE denote the
diameter of the edge E.

Denote by Pk(T ) the space of polynomials of degree k in R
d and define the space

of approximations

Vh =
{
vh ∈ C(Ω) : ∀T ∈ Th, vh|T ∈ Pk(T ), vh|∂Ω = 0

}
.

Consider now h ≤ H and some two partitions Th, TH with the associated spaces
Vh, VH . Denote H = {h,H}. Note that h = H does not necessarily mean Th = TH .
We will seek approximations (uh, vH) ∈ Vh × VH to (u, v) ∈ V × V .

Remark 2.2. If Th 6= TH , we will consider for simplicity only k = 1. Our a-
posteriori calculations will be carried out however for any k.

In the analysis below it will be evident that we need to relate the two partitions
Th, TH to one another. We say that Th is a refinement of TH , if every element of
Th intersects the interior of exactly one element in TH . Furthermore, let r ∈ N be
fixed. We call the partition Th an r-uniform refinement of TH if for every element
K ∈ TH , the number of T ∈ Th : T ⊆ K equals r. A general case of unrelated
partitions Th, TH could be treated but will not be discussed.

In the discrete problem we need the intergrid operators λ : VH → Vh and λ′ :
Vh → VH . Various choices for the pair (λ, λ′) can be made e.g., via intergrid
operators used in multigrid theory or multilevel schems [18, 11, 41]. In this paper
we choose λ to be an interpolation operator; it is easily defined between piecewise
linear functions from a coarse grid TH to its refinement Th. We choose for λ′ the
operator

(λ′φh, ψH) := (φh, λψH), ∀ψH ∈ VH ,(10)

i.e., λ′ is adjoint to λ with respect to the L2(Ω) product on VH . This choice elimi-
nates additional error terms that otherwise would arise in error analysis developed
below.

Note that if Th = TH , then VH = Vh, and λ and λ′ both trivially reduce to
identity. Another important observation follows.

Remark 2.3. Assume Th is a refinement of TH . Then VH ⊆ Vh i.e. λψH = ψH

for any ψH ∈ VH . Furthermore λ′λψH = ψH for any ψH ; in other words, the
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composition λ′λ|VH
is the identity operator. Moreover, the bilinear form

Ã((uh, vH), (φh, ψH)) :=

∫

Ω

(λ1uhφh + λ2vHψH)+

∫

Ω

(a∇uh · ∇φh + b∇vH · ∇ψH)

+

∫

Ω

(c(uh − λvH))φh + c(λ′λvH − λ′uh)ψH) ,

is a restriction of A(·, ·) to Vh × VH . It follows that it is continuous on Vh × VH
and positive definite, i.e.,

Ã((uh, vH), (uh, vH)) ≥
∫

Ω

(λ1(uh)
2 + λ2(vH)2) +

∫

Ω

(a(∇uh)2 + b(∇vH)2).

Now we define the discrete problem for (9). We seek the approximations (uh, vH) ∈
Vh × VH to the solution (u, v) ∈ V × V to (9) satisfying

(11) Ã((uh, vH), (φh, ψH)) = L((φh, ψH)), ∀(φh, ψH) ∈ Vh × VH .

Equivalently, the solution (uh, vH) ∈ Vh × VH to (11) satisfies
∫

Ω

λ1uhφh +

∫

Ω

a∇uh · ∇φh +

∫

Ω

c(uh − λvH)φh =

∫

Ω

fφh, ∀φh ∈ Vh
∫

Ω

λ2vHψH +

∫

Ω

b∇vH · ∇ψH +

∫

Ω

c(λ′λvH − λ′uh)ψH =

∫

Ω

gψH , ∀ψH ∈ VH .

The problem (11) is square and finite dimensional. By Remark 2.3 it is easy to see
that its solution exists and is unique.

3. A priori error analysis

For the error analysis of (11) we first develop the counterpart of Galerkin orthog-
onality. Thanks to our definition of λ, λ′, it follows smoothly without additional
consistency errors.

Let φ = φh and ψ = ψH in (9) and subtract it from (11) to get

(12) 0 = A((u, φh), (v, ψH))− Ã((uh, φh), (vH , ψH))

= A((u, φh), (v, ψH))−A((uh, φh), (vH , ψH))−
∫

Ω

c(vH−λvH)φh−
∫

Ω

c(uh−λ′uh)ψH

= A((u− uh, φh), (v − vH , ψH))−
∫

Ω

c(vH − λvH)φh +

∫

Ω

c(uh − λ′uh)ψH .

Now, if Th is a refinement of TH , then by (10) and Remark 2.3 the last two terms
vanish and we obtain

(13) A((u − uh, φh), (v − vH , ψH)) = 0, ∀φh ∈ Vh, ψH ∈ VH .

This is a basic step in proving convergence of the scheme in the energy norm ‖ · ‖e
and of the subsequent a-posteriori estimates.

Theorem 3.1. Assume that the solution (u, v) ∈ V ×V of the problem (9) satisfies

(u, v) ∈
(
H2(Ω) ∩H1

0 (Ω)
)2
. Assume also that Th is a refinement of TH , k = 1, and

let (uh, vH) ∈ Vh × VH be the two-level solution of the discrete problem (11). Then
there exist constants κ1, κ2 independent of H and of u, v, such that

(14) ‖(u− uh, v − vH)‖e ≤ κ1h‖u‖2 + κ2H‖v‖2.
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Proof. Consider the following calculation, similar to the derivation of Céa’s lemma
in the scalar case [14, 10]. For an arbitrary zh ∈ Vh, wH ∈ VH it follows by (13)
that

(15) ‖(u− uh, v − vH)‖2e = A((u − uh, u− uh), (v − vH , v − vH))

= A((u− uh, u− uh), (v − vH , v − vH)) +A((u− uh, uh − zh), (v − vH , vH −wH))

= A((u − uh, u− zh), (v − vH , v − wH)).

We bound this last term from above and from below using, respectively, continuity
and coercivity of A(·, ·) in the energy norm. Dividing both sides of the resulting
inequality by ‖(u− uh, v − vH)‖e yields the standard estimate. Now, since zh, wH

are arbitrary, we take the inf to get

‖(u− uh, v − vH)‖e ≤ C inf
(zh,wH )∈Vh×VH

‖(u− zh, v − wH)‖e,(16)

where C is the ratio of continuity and ellipticity constants. To get the desired
convergence estimates, we select the test functions to be the piecewise linear in-
terpolations (zh, wH) = (Ihu, IHv) of the respective components of the analytical
solution and set z = u− Ihu and w = v − IHv. Now we have

‖(u− uh, v − vH)‖e ≤ C‖(z, w)‖e

= C

[∫

Ω

(λ1z
2 + λ2w

2) +

∫

Ω

(a(∇z)2 + b(∇w)2) +
∫

Ω

c(z − w)2
]

≤ C

[∫

Ω

((λ1 + 2c)z2 + (λ2 + 2c)w2) +

∫

Ω

(a(∇z)2 + b(∇w)2)
]

≤ C
[
max{a, λ1 + 2c}‖z‖21 +max{b, λ2 + 2c}‖w‖21

]

The interpolation theory [14, 10] lets us bound the interpolation error ξ − Ihξ for
a smooth enough ξ. For k = 1 we have as follows

‖ξ − Ihξ‖m ≤ c̃h2−m|ξ|t,Ω for ξ ∈ Ht(Ω), 0 ≤ m ≤ 2.

Applying this bound to z and w we get

‖(u− uh, v − vH)‖2e ≤ max{a, λ1 + 2c}‖u− Ihu‖21 +max{b, λ2 + 2c}‖v − IHv‖21
≤ Cmax{a, λ1 + 2c}c̃2h2|u|22 + Cmax{b, λ2 + 2c)}c̃2H2|v|22.

Taking square root of both sides completes the proof. �

This a-priori result shows the structure of the error. First, if Th = TH , then the
error converges with the rate O(h), and an easy extension can be formulated for
k > 1. If Th 6= TH , then the error in (14) is dominated asymptotically by the O(H)
terms, at least for P = 15. For general P the individual contributions to the error
depend on P . The magnitude of each of the contributions depends on P and on
the variability of u, v. Thus H and h could be adapted to take advantage of this
potential disparity.

For example, if c = O(1) is moderate, and a >> 1 very large but b << 1 very
small, one can find TH for the component v so that the total error does not increase
substantially. Note that with H > h the total number of unknowns decreases. We
would proceed similarly if b = O(1) but |v|2 is very small. Conversely, if the error
on some coarse grid used for both components is too large for our needs, then one
could refine only the grid for the strongly varying component, for example u, for
which |u|2 is large. See Section 5 for relevant examples.

To guide the adaptive choice of h,H , i.e., of Th, TH , we need the a-posteriori
error analysis provided in the next Section.
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4. A posteriori estimate

In this section we define residual-type error estimators for the system (9) and
prove the global upper and some lower bounds. The lower bounds, due to the
presence of coupling terms, work only if H are small enough. We develop estimators
for both components of the system and an additional estimator for the error in one
component only.

We follow the standard technique for residual estimators [35] which, for scalar
diffusion problems such as (1), involves the following steps. First, the energy norm
of the error e = u− uh is rewritten using Galerkin orthogonality with an auxiliary
function zh ∈ Vh, and localized by integrating by parts over each element via
∫

Ω
a∇e∇(e − zh) =

∑

T

∫

T
a∇e∇(e − zh). Thereby the error terms per element

and per element boundary are identified; this follows from integration by parts
elementwise e.g.

∫

T a∇(u− uh)∇(e− zh) =
∫

T −a∆(u− uh)(e− zh) +
∫

∂T a∂n(u−
uh)(e−zh). Note that for k = 1 the term ∇uh|T vanishes. For the sake of generality
and k 6= 1 we keep that term.

The first term is then rewritten using (1), and it reveals the residual f − κuh.
The second term, when summed over edges of neighboring elements, gives rise to
∫

E
[a∂n(u− uh)](e− zh), where [w]E is the jump of w across the edge E ⊂ ∂T , and

further, by continuity of u, e, zh across the edges, to −
∫

∂e[a∂n(uh)](e − zh). The
jump terms dominate in typical circumstances [13] for conforming discretizations.
Next, the local interpolation properties of finite element functions are exploited
to estimate e − zh for a particular choice of zh. This leads to the upper bounds
while the lower bounds are derived using bubble functions. The constants in these
estimates depend on P , and on the geometry of Ω, Th.

The estimators derived this way are explicit i.e. one can compute them directly
from the numerical solution without the need to solve any additional problems.
They are also reliable, i.e., they bound the true error from above. Unfortunately,
they are not very efficient i.e. the gap between the estimator and true error can be
substantial even for problems with P = 1 and simple domains [12]. Other families
of estimators [35, 12] are much more efficient and even asymptotically exact but
can be cumbersome in implementation and computationally expensive. We will not
study these but mention the work of [4, 2] on systems.

Aside of efficiency, the additional difficulty with residual estimators is the depen-
dence of the efficiency constants on the parameters of the problem. This is directly
related to dependence of the ellipticity, continuity, and equivalence constants on
the parameters. This issue was brought up in [9, 37], and a remedy involving a
particular scaling was proposed; we follow these ideas below.

The proof of the upper bound is tedious but not very complicated as it extends
the standard techniques to a system, and involves handling the coupling terms. The
lower bound is more delicate to obtain. We develop a global lower bound which is
valid for fine enough H, and a local lower bound. We also prove a bound for the
error in one component only.

4.1. Residual calculations. Let Qh : V 7→ Vh, QH : V 7→ VH be some quasi-
interpolators to be defined later. We first rewrite E := ‖(eu, ev)‖e using (13)

E2 = A((eu, ev), (eu, ev)) = A((eu, ev), (eu −Qheu, ev −QHev)).

Now we follow the standard procedure described above. We rewrite the last term
A((eu, ev), (φ, ψ)), with φ = eu − Qheu, ψ = ev − QHev, replacing

∫

Ω by
∑

T

∫

T ,
taking advantage of (2)–(3), and of the continuity of u, v, ψ, φ across each edge and
integrating by parts on each element T . As before, our calculations work for a
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general k ≥ 1. We obtain

(17) A((eu, ev), (φ, ψ))

=
∑

T

{∫

T

(λ1euφ+ λ2evψ + c(eu − ev)(φ− ψ))

−
∫

T

(a∆euφ+ b∆evψ) +

∫

∂T

(a∂neuφ+ b∂nevψ)

}

=
∑

T

∫

T

(λ1uφ+ λ2vψ + c(u− v)(φ − ψ)− a∆uφ− b∆vψ

−
∑

T

∫

T

(λ1uhφ+ λ2vHψ + c(uh − vH)(φ− ψ)− a∆uhφ− b∆vHψ)

+
∑

E

∫

E

([a∂n(u − uh)]φ + [b∂n(v − vH)]ψ)

=
∑

T

∫

T

(fφ+ gψ) +
∑

T

∫

T

(−λ1uhφ− λ2vHψ − c(uh − vH)(φ− ψ)

+
∑

E

∫

E

([a∂nuh]φ+ [b∂nvH ]ψ).

Combining the terms we get

(18) E2 =
∑

T∈Th

(R∗
T,u, eu −Qheu)T +

∑

E∈Eh

(RE,u, eu −Qheu)E

+
∑

K∈TH

(R∗
K,v, ev −QHev)K +

∑

F∈EH

(RF,v, ev −QHev)F ,

where we have used the element and edge residual terms defined as follows

R∗
T,u := f − λ1uh + a∆uh − c(uh − vH) = f − fh +

RT,u

︷ ︸︸ ︷

fh − λ1uh + a∆uh − c(uh − vH),

R∗
K,v := g − λ2vH + b∆vH − c(vH − uh) = g − gH +

RK,v

︷ ︸︸ ︷

gH − λ2vH + b∆vH − c(vH − uh)

RE,u := [a∂nuh]E ,

RF,v := [b∂nvH ]F ,

and where fh, gH are the L2-projections of f, g onto Vh, VH respectively.
Now we estimate the terms in (18) by Cauchy-Schwarz inequality to obtain

(19) E2 ≤
∑

T∈Th

‖R∗
T,u‖0,T‖eu −Qheu‖0,T +

∑

E⊂Eh

‖RE,u‖0,E‖eu −Qheu‖0,E

+
∑

K∈TH

‖R∗
K,v‖0,K‖ev −QHev‖0,K +

∑

F⊂EH

‖RF,v‖0,F ‖ev −QHev‖0,F .

Consider eu −Qheu. The idea is to bound the terms eu −Qheu from above by the
terms involving the energy norm of eu, without requiring more smoothness than
that eu ∈ V ; then the estimate for ‖(eu, ev)‖e will follow.

Such estimates are available for various quasi-interpolators [15, 35]. We use the
definition and properties of Qh as modified by Verfürth [35] and quote two basic
relevant interpolation estimates which work in any T ∈ Th and any E ∈ Eh.
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The first result ([37], Lemma 3.1) states that for any w ∈ Hk(ω̃T ), 0 ≤ k ≤ 1

‖∇l(w −Qhw)‖0,T ≤ Chk−l
T ‖∇kw‖0,ω̃T

0 ≤ l ≤ k ≤ 1,(20)

where the constant C is independent of h,w.
Next, we quote ([36], Lemma 3.1) to estimate the edge terms. Let E ∈ Eh and

let T be an element in Th which has E as an edge. The following trace inequality
holds for all w ∈ H1(T )

‖w‖0,E ≤ c3

(

h
−1/2
T ‖w‖0,T + ‖w‖1/20,T ‖∇w‖

1/2
0,T

)

,(21)

where c3 is a constant independent of w, hT .

4.2. Interpolation and scaling techniques. To derive the estimates in the en-
ergy norm we find that they involve various equivalence constants dependent on
P between ‖ · ‖V×V , ‖ · ‖s, ‖ · ‖e. To prevent the estimates from blowing up when
the parameters of the problem change, we define certain scaling factors following
[37, 36, 26].

Define for all T ∈ Th and all K ∈ TH
θu,T := min{hTa−1/2, λ

−1/2
1 },(22)

θv,K := min{HKb
−1/2, λ

−1/2
2 },(23)

γu,E := a−1/4θ
1/2
u,E ,(24)

γv,F := b−1/4θ
1/2
v,F .(25)

Let T ∈ Th and K ∈ TH . Clearly eu ∈ H1(ω̃T ) and ev ∈ H1(ω̃K). By (20)

‖eu −Qheu‖0,T ≤ Cλ
−1/2
1

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

,(26)

‖eu −Qheu‖0,T ≤ ChTa
−1/2

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

.(27)

We combine these and (22) to get

‖eu −Qheu‖0,T ≤ Cmin
{

λ
−1/2
1 , hTa

−1/2
}{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

.(28)

Similar calculations can be done for ev, and it follows that we have

‖eu −Qheu‖0,T ≤ c1θu,T

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

(29)

‖ev −QHev‖0,K ≤ c2θv,K

{∫

ω̃K

b(∇ev)2 + λ2e
2
v

}1/2

,(30)

where c1, c2 are independent of P ,H.
On the edges the calculations are a bit longer. Apply (21) to w = eu −Qheu

‖eu −Qheu‖0,E ≤ c3

(

h
−1/2
T ‖eu −Qheu‖0,T + ‖eu −Qheu‖1/20,T‖∇(eu −Qheu)‖1/20,T

)

.

Next, apply (20) to get

‖∇(eu −Qheu)‖1/20,T ≤ a−1/4‖a1/2∇eu‖1/20,ω̃T
≤ a−1/4

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/4

.
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Using (29) and noticing h
−1/2
T θ

1/2
u,T + a−1/4 ≤ 2a−1/4 we get

‖eu −Qheu‖0,E ≤ c4

(

h
−1/2
T θu,T

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

+θ
1/2
u,Ta

−1/4

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2
)

,

and conclude

‖eu −Qheu‖0,E ≤ c4γu,E

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

.(31)

Similar estimates follow for the edges F ∈ EH

‖ev −QHev‖0,F ≤ c5γv,F

{∫

ω̃K

b(∇ev)2 + λ2e
2
v

}1/2

,(32)

where c4, c5 are independent of P ,H.
We apply the above estimates to (19) and obtain the Lemma.

Lemma 4.1. The following estimates hold

‖eu −Qheu‖0,T ≤ c1θu,T

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

,(33)

‖ev −QHev‖0,K ≤ c2θv,K

{∫

ω̃K

b(∇ev)2 + λ2e
2
v

}1/2

,(34)

‖eu −Qheu‖0,E ≤ c4γu,E

{∫

ω̃T

a(∇eu)2 + λ1e
2
u

}1/2

,(35)

‖ev −QHev‖0,F ≤ c5γv,F

{∫

ω̃K

b(∇ev)2 + λ2e
2
v

}1/2

.(36)

4.3. Upper bound. Now we define the local component error estimators

ηu,T := θ2u,T ‖RT,u‖20,T +
1

2

∑

E⊂∂T

γ2u,T ‖RE,u‖20,E,(37)

ηv,K := θ2v,K‖RK,v‖20,K +
1

2

∑

F⊂∂K

γ2v,K‖RF,v‖20,F ,(38)

and the global error estimator for the error in both variables (u, v)

(39) η :=

{
∑

T∈Th

ηu,T +
∑

K∈TH

ηv,K

}1/2

.

We recognize the two parts of each local component error estimator (37), (38)
as the terms which arise on the right hand side of (19). They are multiplied by
the factors which have been estimated in (33)–(36). Taking all these into account,
along with an additional application of the discrete Cauchy-Schwarz inequality,
yields finally the main result on the upper bound.

Theorem 4.2. Let the assumptions of Theorem 3.1 hold and in particular, let
(u, v) be the unique solution of (9) and (uh, vH) be the unique solution of (11).



A-POSTERIORI ESTIMATES FOR SYSTEMS 11

Then the following upper bound holds

E ≤ C∗η +

{
∑

T∈Th

θ2u,T ‖f − fh‖20,T +
∑

K∈TH

θ2v,K‖g − gH‖20,T

}1/2

,

where C∗ does not depend on H, P, or u, v.

4.4. Lower bound. In this section we want to establish the global lower bound
i.e. C∗η ≤ E , and some appropriate local counterpart, with some constant C∗

independent of H,P , u, v. Due to the coupling terms in our system this is not
possible without additional assumptions.

To establish the result, we proceed using the standard approach of bubble func-
tions [35]. Let T ∈ Th be fixed and denote by NT the set of its vertices. For x ∈ NT

denote by λx the nodal basis function from Vh associated with the point x. Define
the element bubble ΨT = ΓT

∏

x∈NT
λx where the constant ΓT is chosen so that

ΨT equals 1 at the barycenter of T . Now let E ∈ Eh and denote by NE the set of
all vertices of the edge E and define the edge bubble function ΨE = ΓE

∏

x∈Ne
λx

where the constant ΓE is chosen so that ΨE equals 1 at the barycenter of E.
The element and edge bubbles have the following properties shown in ([37],

Lemma 3.3), with generic constants depending only on the shape of the elements;
these constants are different from those in Section 4.3. Let T ∈ Th, E ∈ Eh and let
w ∈ P1(T ), σ ∈ P1(E) be arbitrary. We have

‖ΨT ‖∞ ≤ 1,(40)

c1‖w‖20,T ≤ (w,ΨTw)T ,(41)

‖∇ΨTw‖0,T ≤ c2h
−1
T ‖w‖0,T ,(42)

c3‖σ‖20,E ≤ (σ,ΨEσ)E(43)

‖∇ΨEσ‖0,T ≤ c4h
−1/2
E ‖σ‖0,E ,(44)

‖ΨEσ‖0,ωE
≤ c5h

1/2
E ‖σ‖0,E .(45)

Now we fix an element T , define ρT := ΨTRT,u, and estimate RT,u from above
in the goal to isolate the coupling terms and to get the bounds in terms of the
energy norm of the error.

(46) ‖RT,u‖20,T = ‖(fh +∇(a∇uh)− (λ1 + c)uh + cvH)‖20,T
(42)

≤ c−2
1

∫

T

(fh + a∆uh − (λ1 + c)uh + cvH)ρT

= c−2
1

[∫

T

(fh + a∆uh − (λ1 + c)uh + cvH)ρT +

∫

T

fρT −
∫

T

fρT

]

.

Next we integrate by parts over T , use the strong form of (2), i.e., f = λ1u−a∆u+
c(u− v), and the fact that ρT |∂T ≡ 0 to see from (46) that

(47) ‖RT,u‖20,T = c−2
1

[∫

T

(a∇(u − uh) · ∇ρT

+ [(λ1 + c)(u− uh)− c(v − vH)] ρT +

∫

T

(fh − f)ρT

]

Now we estimate both integrals using Cauchy-Schwarz inequality. For the second
integral in (47) we have, using (40) and Cauchy-Schwarz again

∫

T

(fh − f)ρT ≤ ‖fh − f‖0,T‖ρT ‖0,T ≤ ‖fh − f‖0,T‖RT,u‖0,T .(48)
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The bounds for the first integral in (47) involve
∫

T
(c(u − uh) − c(v − vH))ρT =

∫

T
c
2 (eu − ev)2ρT leading to, by a multiple application of Cauchy-Schwarz to the

upper bound for that term, to the expression

{∫

T

(a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2{∫

T

a(∇ρT )2 + (λ1 + 2c)ρ2T

}1/2

.

To estimate the second term in this expression from above by a multiple of ‖RT,u‖0,T ,
we first observe that by (22)

h−2
T a+ λ1 ≤ 2max{ah−2

T , λ1} = θ−2
u,T .(49)

Next, we estimate

{∫

T

a(∇ρT )2 + (λ1 + 2c)ρ2T

}1/2

≤ a1/2‖∇ρT‖0,T + (λ1 + 2c)1/2‖ρT ‖0,T
(42),(40)

≤ a1/2c2h
−1
T ‖RT,u‖0,T + (λ1 + 2c)1/2‖RT,u‖0,T

≤ max{c2, 1}(2max{a1/2h−1
T , λ

1/2
1 }+ (2c)1/2)‖RT,u‖0,T

(49)

≤ 2max{c2, 1}
︸ ︷︷ ︸

c̄2

(θ−1
u,T + c1/2)‖RT,u‖0,T .

Now we combine the estimates following (47) to get, upon dividing by ‖RT,u‖0,T

(50) ‖RT,u‖0,T ≤ c−2
1

[

c̄2(θ
−1
u,T + c1/2)

{∫

T

a(∇eu)2 + λ1(eu)
2 +

c

2
(eu − ev)

2

}1/2

+‖fh − f‖0,T ] .

Multiplying both sides by θ̄u,T := (θ−1
u,T + c1/2)−1 we finally obtain

θ̄u,T ‖RT,u‖0,T ≤ c−2
1

[

c̄2

{∫

T

a(∇eu)2 + λ1(eu)
2 +

c

2
(eu − ev)

2

}1/2

+θ̄u,T ‖fh − f‖0,T
]
.

Next we estimate the edge residuals. Consider an arbitrary edge E ∈ Eh and
denote by T1, T2 the two elements that it separates. Let ρE := βΨE [a∂nuh]E =
βΨERE,u with some scaling factor 0 < β ≤ 1 to be determined later as in [37]. We
will estimate ‖RE,u‖0,E from above using steps similar to those above: adding and
subtracting terms and integrating by parts over T1 ∪ T2 and taking advantage of
(2) and of the bubbles ωE vanishing conveniently at all edges of T1 ∪ T2 other than
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E, and estimating by Cauchy-Schwarz inequality

(51) ‖RE,u‖20,E = ‖[a∂nuh]E‖20,E ≤ c−2
3

∫

E

[a∂nuh]EρE

= c−2
3

[∫

T1∪T2

a∆uhρE +

∫

T1∪T2

a∇uh∇ρE +

∫

T1∪T2

fρE −
∫

T1∪T2

fρE

]

(2)
= c−2

3

[∫

T1∪T2

(f + a∆uh)ρE −
∫

T1∪T2

a∇eu∇ρE + (λ1u+ c(u− v))ρE

]

= c−2
3

[∫

T1∪T2

(fh + a∆uh − λ1uh + c(uh − vH)) ρE +

∫

T1∪T2

(f − fh)ρE

−
∫

T1∪T2

a∇eu∇ρE + (λ1eu + c(eu − ev)ρE

]

≤ c−2
3

2∑

i=1

[ ‖RT,u‖0,Ti
‖ρE‖0,Ti

+ ‖(f − fh)‖0,Ti
‖ρE‖0,Ti

+

{∫

Ti

a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2{∫

Ti

a(∇ρE)2 + (λ1 + 2c)ρE

}1/2
]

.

In the last inequality we need to bound ‖ρE‖0,T i and
{∫

Ti
a(∇ρE)2 + (λ1 + 2c)ρE

}1/2

in terms of the edge residuals. We have

‖ρE‖0,T i = ‖βΨERE,u‖0,Ti
≤ c5βh

1/2
E ‖RE,u‖0,E .

Also, by (44) and (45)

{∫

Ti

a(∇ρE)2 + (λ1 + 2c)ρE

}1/2

≤ 2max{c4, c5}β(h−1/2
E θ−1

u,E+h
1/2
E c1/2)‖RE,u‖0,E .

To remove the dependence of the constants on the right hand side on hE , we define

β := min{1, h−1/2
E a1/4λ

−1/4
1 }. Now we see a−1/2hEβ

2 = θ2u,E and further

βh
1/2
E θ−1

u,E = γ−1
u,E ,

βh
1/2
E = γu,Ea

1/2.

We obtain therefore

‖ρE‖0,T i ≤ c5γu,Ea
1/2‖RE,u‖0,E ,

{∫

Ti

a(∇ρE)2 + (λ1 + 2c)ρE

}1/2

≤ 2max{c4, c5}(γ−1
u,E + γu,Ea

1/2c1/2)‖RE,u‖0,E.

Using the above estimates we get from (51), upon dividing by ‖RE,u‖0,E

(52) ‖RE,u‖0,E ≤ c−2
3

2∑

i=1

[

c5γu,Ea
1/2 (‖RT,u‖0,Ti

+ ‖f − fh‖0,Ti
)

+2max{c4, c5}
(

γ−1
u,E + γu,Ea

1/2c1/2
){∫

Ti

a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2
]

.
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Substituting (50) in the bound above and with (22)-(23) we arrive at

‖RE,u‖0,E ≤ C
2∑

i=1

[

γu,Ea
1/2‖f − fh‖0,Ti

+
(

γ−1
u,E + γu,Ea

1/2c1/2
){∫

Ti

a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2
]

.

Equivalently, with γ̄u,E :=
(

γ−1
u,E + γu,Ea

1/2c1/2
)−1

we have

(53) γ̄u,E‖RE,u‖0,E ≤ C

2∑

i=1

[

γu,Ea
1/2γ̄u,E‖f − fh‖0,Ti

+

{∫

Ti

a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2
]

.

One can now prove similar lower bounds for the second component of the system
in terms of ‖RF,v‖0,F and ‖RK,v‖0,Ki

, and b, λ2 instead of a, λ1, respectively. Upon
adding the u and v components and by combining

∫

Ti
a(∇eu)2+λ1e2u+ c

2 (eu−ev)2
with

∫

Ti
b(∇ev)2+λ2e2v+ c

2 (eu−ev)2, we recover on the right hand-sides of (50) and

(53) the error E . On the left hand side we combine the element and edge residuals
corresponding to u and v. This seems superficially like a straightforward procedure
leading to the bounds of the type proven in [37].

However, due to the presence of the coupling terms, the scaling in the residuals
such as in (50), (53) involves the factors θ̄u,T and γ̄u,E instead of θu,T and γu,E ,
respectively. Since these scaling constants are dependent on additional parameters
as well as on the grid discretization, we cannot obtain the “usual” lower bounds
without additional mild assumptions. The main idea to get the lower bound which
is robust in P and H is then to find a lower bound for θ̄u,T and γ̄u,E in terms of
θu,T and γu,E . These can be established in various ways, for example, assuming
h,H are small enough.

Theorem 4.3. Let the assumptions of Theorem 3.1 hold. Assume also that

h ≤ √
amin{λ−1/2

1 , c−1/2},(54)

H ≤
√
bmin{λ−1/2

2 , c−1/2}.(55)

Then there is a constant C∗ such that

C∗η ≤ ‖(u− uh, v − vH)‖e +
{
∑

T∈Th

θ2u,T ‖f − fh‖20,T +
∑

K∈TH

θ2v,K‖g − gH‖20,T

}1/2

.

Proof. We note that by (54) we have from (22)

θu,T
√
c =

hT√
a

√
c ≤ 1.(56)

Next, from (24) we see that by (56) we have

γu,E = a−1/4
√

θu,E =

√
hE√
a
.(57)

Thus

θ̄u,T := (θ−1
u,T + c1/2)−1 =

θu,T
1 + θu,T

√
c
≥ θu,T

2
,(58)
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if only θu,T
√
c ≤ 1 which follows from (56). Similarly, we obtain that

γ̄u,E = (γ−1
u,E + γu,Ea

1/2c1/2)−1 =
γu,E

1 + γ2u,E
√
ac

≥ γu,E
2

,(59)

as long as γ2u,E
√
ac ≤ 1 which in turn is guaranteed by (57).

Analogous estimates hold for the v component as a consequence of (55)

θv,K ≥ θ̄v,K ≥ θv,K
2

,(60)

γv,F ≥ γ̄v,F ≥ γv,F
2
.(61)

The rest of the proof is straightforward. We collect (50), (53), apply (58) and
(59) to see that

(62) θu,T ‖RT,u‖0,T ≤ C

[{∫

T

(a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2

+θu,T ‖fh − f‖0,T ] ,

(63) γu,E‖RE,u‖0,E ≤ C
2∑

i=1

[θu,E‖f − fh‖0,Ti

+ 2

{∫

Ti

a(∇eu)2 + λ1e
2
u +

c

2
(eu − ev)

2

}1/2
]

.

We repeat the same steps to estimate ‖RK,v‖0,T , ‖RE,v‖0,E and obtain

(64) θv,K‖RK,v‖0,K ≤ C

[{∫

K

(b(∇ev)2 + λ2e
2
v +

c

2
(eu − ev)

2

}1/2

+θv,K‖g − gH‖0,K ] ,

(65) γv,F ‖RF,v‖0,F ≤ C
2∑

i=1

[θv,F ‖g − gH‖0,Ki

+2

{∫

Ki

b(∇ev)2 + λ2e
2
v +

c

2
(eu − ev)

2

}1/2
]

.

Adding these equations and summing over all elements T and all elements K com-
pletes the proof of the global lower bound. The constant C∗ := max{c̃2, c5c̃2+2c̄

c2
3

},
where c̃2 := max{c2,1}

c2
1

and c̄ := max{c4, c5} is independent of P and H. �

The bound in Theorem 4.3 is a global lower bound. We would like also to prove
some local lower bounds in analogy to those obtained for scalar equations. Define
ωT := ∪{ωE : E ⊂ ∂T }. The local lower bound follows by adding the terms similar
to those in (62)-(63) over all edges E of the element T which in turn requires adding
the contributions from ωT . The lower bound involves on the right hand side the
energy norm restricted to the neighborhood ωT of T .

On multilevel grids, in order to obtain a local lower bound between the error and
estimator over an element T , we must be able to combine on the left hand side the
contributions from all edges of T , and over all edges of K. On the right hand-side
a recombination in terms of energy norm is only possible if the summation is done
over all elements T : T ⊂ K and over all corresponding edges E,F . However, no
result for a lower bound local to T is available.
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Corollary 4.4. Let TH ∋ K =
⋃n

i=1 Ti where Ti ∈ Th and assume (54), (55) hold.
Then the following local lower bound holds

(66)

{

ηv,K +
1

n

n∑

i=1

ηu,Ti

}1/2

≤ ‖(u− uh, v − vH)‖ωK
+







1

n

n∑

i=1

∑

T ′

i
∈ωTi

θ2u,T ′

i
‖f − fh‖20,T ′

i
+

∑

K′∈ωK

θ2v,K′‖g − gH‖20,K′







1/2

.

Proof. To shorten the exposition let Ap := a(∇eu)2 + λ1e
2
u + c

2 (eu − ev)
2 and

Bp := b(∇ev)2 + λ2e
2
v +

c
2 (eu − ev)

2.
The equation (63) can be written as:

γu,E‖RE,u‖0,E ≤ C

[{∫

ωE

Ap

}1/2

+
∑

T ′∈ωE

θu,E‖f − fh‖0,T ′

]

.(67)

Adding the square of (62) and (67), and using (37) we have

ηu,T ≤ C

[∫

T

Ap + θ2u,T ‖fh − f‖20,T +
1

2

∑

E⊂∂T

(
∫

ωE

Ap +
∑

T ′∈ωE

θ2u,E‖f − fh‖20,T ′

)]

.

Note that
∑

E⊂∂T

∫

ωE
w ≤ s

∫

ωT
w for any positive-valued w, where s is the number

of sides of T . Also
∑

E⊂∂T

∑

T ′∈ωE
w =

∑

T ′∈ωT
w for any w. Thus

ηu,T ≤ C

[
∫

ωT

Ap +
∑

T ′∈ωT

θ2u,T ′‖fh − f‖20,T ′

]

.(68)

Similarly,

ηv,K ≤ C

[
∫

ωK

Bp +
∑

K′∈ωK

θ2v,K′‖gH − g‖20,K′

]

.(69)

Let K =
⋃n

i=1 Ti. Note that ωK ⊃ ⋃n
i=1 ωTi

. Then

n∑

i=1

ηu,Ti
≤ C

n∑

i=1





∫

ωTi

Ap +
∑

T ′

i
∈ωTi

θ2u,T ′

i
‖fh − f‖20,T ′

i





≤ C



n

∫

⋃
n
i=1

ωTi

Ap +

n∑

i=1

∑

T ′

i
∈ωTi

θ2u,T ′

i
‖fh − f‖20,T ′

i





≤ C



n

∫

ωK

Ap +

n∑

i=1

∑

T ′

i
∈ωTi

θ2u,T ′

i
‖fh − f‖20,T ′

i



 .

Thus

ηv,K +
1

n

n∑

i=1

ηu,Ti
≤ C

[∫

ωK

Ap +Bp+

1

n

n∑

i=1

∑

T ′

i
∈ωTi

θ2u,T ′

i
‖fh − f‖20,T ′

i
+

∑

K′∈ωK

θ2v,K′‖gH − g‖20,K′



 ,

which completes the proof. �
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4.5. Upper bound for the error in only one of the unknowns. In some
instances it may be known a priori that one of the unknowns is smoother than the
other and that its numerical approximation has a smaller error associated with it.
In such a case, we can use a multilevel grid. For the purposes of grid adaptation,
it is also useful to estimate the error only in the variable that contributes the bulk
fraction of the error. For example, if v is smoother than u, then it is natural to use
a multilevel grid with H >> h, and define an estimate for the error in u only.

Throughout this section we will assume that there is a constant 0 < α≪ 1 such
that cα < 1 and

‖ev‖0,T < α‖eu‖0,T , ∀T ∈ Th.(70)

We will consider the form on V × V

a(u, φ) =

∫

Ω

(λ1 + c)uφ+ a∇u · ∇φ,

and the norm ‖u‖2∗ := a(u, u) on V. With these we prove the following result, which
resembles the scalar estimates in [37] for a = 1.

Theorem 4.5. Let u, uh, v, vH be as in Theorem 3.1. and suppose that (70) holds.
Then

E∗ := ‖eu‖∗ ≤ C̄η∗,(71)

where C̄ := (1− cα)−1 max{c1, c4} and

η∗ :=
{∑

T∈Th
(θ∗u,T )

2‖R∗
T,u‖20,T + 1

2

∑

E⊂∂T (γ
∗
u,E)

2‖RE,u‖20,E
}1/2

(72)

with

θ∗u,T := min{hSa−1/2, (λ1 + c)−1/2} ∀S ∈ Th ∪ Eh,
γ∗u,E := a−1/4(θ∗u,E)

1/2.

Proof. Subtracting the first component of (11) from the respective one of (9) with
φ = φh we get

a(eu, φh) =

∫

Ω

c(v − λvH)φh
Remark (2.3)

=

∫

Ω

cevφh.(73)

By letting φh = Iheu in (73) we get

‖eu‖2∗ = a(eu, eu)
(73)
= a(eu, eu)−a(eu, Iheu)+(cev, Iheu) = a(eu, eu−Iheu)+(cev, Iheu).

Now we integrate by parts, use (2), and add and subtract c(vH , eu) in the second
identity to get

‖eu‖2∗ =
∑

T∈Th

(f − (λ1 + c)uh +∇(a∇uh) + cv, eu − Iheu)T + (cev, Iheu)

+
∑

E⊂Eh

([a∂nuh], eu−Iheu)E =
∑

T∈Th

(R∗
T,u, eu−Iheu)T+(cev, eu)+

∑

E⊂Eh

(RE,u, eu−Iheu)E .

Next we estimate the terms in this identity with Cauchy-Schwarz inequality

‖eu‖2∗ ≤
∑

T∈Th

‖R∗
T,u‖0,T‖eu − Iheu‖0,T + c‖ev‖0,T‖eu‖0,T +

∑

E⊂Eh

‖RE,u‖0,E‖eu − Iheu‖0,E ,

and by (70) we obtain

(1− cα)‖eu‖2∗ ≤
∑

T∈Th

‖R∗
T,u‖0,T‖eu − Iheu‖0,T +

∑

E⊂Eh

‖RE,u‖0,E‖eu − Iheu‖0,E.
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To conclude, we apply (29) and (31) replacing λ1 with λ1 + c to get the following
estimate

(1− cα)‖eu‖2∗ ≤
∑

T∈Th

c1θ
∗
u,T ‖R∗

T,u‖0,T ‖eu‖∗,ω̃T
+
∑

E⊂Eh

c4γ
∗
u,E‖RE,u‖0,e‖eu‖∗,ω̃T

≤ max{c1, c4}
[
∑

T∈Th

θ∗u,T ‖R∗
T,u‖0,T ‖eu‖∗ +

∑

E⊂Eh

γ∗u,E‖RE,u‖0,E‖eu‖∗
]

.

Dividing both sides by (1− cα) concludes the proof. �

5. Examples

In this section we provide examples illustrating the theory developed above.
We demonstrate the robustness of a-posteriori estimators with respect to P =
(λ1, λ2, a, b, c) and illustrate how the multilevel scheme and error estimation work
together.

On multilevel grids, we use grid parameters h andH with the number of elements
in Th and TH denoted, respectively, by n and N . In all examples except Example 6
we consider r-refinements Th of TH i.e. r = H/h where 1 ≤ r ∈ N. When r > 1 we
refer to Th as the fine mesh and to TH as the coarse mesh.

In each case, we obtain (uh, vH) by solving the linear system associated with
(11), and compute the error E using the known analytical solution (u, v). If (u, v)
are not known, then we estimate it from the finest grid possible or by Richardson’s
extrapolation.

We recall that the efficiency index Θ := η
E . For various implicit estimators,

asymptotically, Θ ↓ 1. However, for residual estimators Θ >> 1 [12, 27]. For
perspective, we show typical values of Θ for scalar and non-scalar model problems
below. In this paper our concern is in showing that Θ remains constant or at least
stable for a large range of values in P .

We start with a scalar example demonstrating the typical values of the efficiency
index Θs for the scalar problem.

Example 1. Let Ω = (0, 1), f(x) = x, a = 1. We solve (1) with homogeneous
boundary conditions imposed. Let u be the solution and uh be the corresponding
finite element solution. We compute Es := ‖u − uh‖∗ and η∗, using notation from

Section 4.5, with κ = λ1 and c ≡ 0. Let Θs = η∗

Es
; its values for a range of values

of κ are shown in Table 1.

From Table 1 it is clear that Θs is stable for all κ but not constant for large κ.
For a large κ we have a singularly perturbed problem and a developing boundary
layer which requires a small enough h for convergence of numerical method and for
efficiency of the estimator.

Next, we consider the numerical solution (11) to the coupled system (9). We
demonstrate that the algorithm converges on multilevel grids and that Θ remains
essentially constant. The latter is thanks to the appropriate scaling in the definition
of the estimator.

Example 2. Let Ω = (0, 1) and u(x) = x2 sin(πx), v(x) = x − x3, be the exact
solution of (9) with P = 15. We compute the corresponding f and g, and solve for
the numerical solutions uh, vH . We consider here various uniform multilevel grids
with r = 1, 2, 5, 100. Table 2 shows the value of the error and of the error estimate
as well as of the efficiency index Θ.
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Table 1. Efficiency index Θs for the scalar equation (1) from
Example 1 and Ps = {1, κ}

n κ = 10−5 κ = 10−4 κ = 10−3 κ = 10−2 κ = 10−1 κ = 1

8 4.6810 4.6810 4.6810 4.6808 4.6790 4.6613
16 4.7871 4.7871 4.7871 4.7870 4.7858 4.7747
32 4.8423 4.8423 4.8423 4.8422 4.8416 4.8354
64 4.8705 4.8705 4.8705 4.8704 4.8701 4.8668
128 4.8847 4.8847 4.8847 4.8847 4.8845 4.8828
256 4.8918 4.8918 4.8918 4.8918 4.8917 4.8909
512 4.8954 4.8954 4.8954 4.8954 4.8953 4.8949
1024 4.8972 4.8972 4.8972 4.8972 4.8972 4.8970

n κ = 10 κ = 102 κ = 103 κ = 104 κ = 105

8 4.5231 3.5583 1.5819 1.1502 1.0573
16 4.6831 4.4072 2.4450 1.3288 1.0952
32 4.7835 4.5898 4.3229 1.7912 1.1940
64 4.8393 4.7267 4.4699 2.9479 1.4383
128 4.8686 4.8082 4.6431 4.3557 2.0793
256 4.8837 4.8524 4.7597 4.5333 3.5948
512 4.8913 4.8754 4.8264 4.6893 4.4102
1024 4.8951 4.8871 4.8619 4.7870 4.5926

We see that for any grid level r, the error and the estimator converge linearly
with H : the error decreases by 1/2 when N is halved. This example also shows
robustness of the estimator with respect to h and r: Θ remains essentially constant
in all Tables. The value Θ ≈ 7 is typical for the coupled system and should be
compared to Θs ≈ 4 in Example 1.

Next we discuss the error for a fixed H and varying r, in order to understand
the merits of multilevel discretizations. For example we compare the error and the
estimator for N = 160 i.e. fourth row in the list for each r in Table 2. We see that
the error decreases quite a bit initially between r = 1 and r = 2 but that it remains
dominated by the O(H) component for large r.

These results illustrate in what instances it makes sense to refine the grid in
one component only. In general, the refinement in u-component increases the to-
tal number of unknowns from N + N = 2N to rN + N = (r + 1)N . If useful,
this should be accompanied by a proportional decrease in the error by a factor of
(1 + r)/2. In Example 2 for large r this is not true since for small h the error re-
mains bounded by the O(H) contribution. However, for r = 2 we have the desired
proportional decrease in the error. Here the number of unknowns between r = 1
and r = 2 increases by a factor of 1.5 while the error decreases by the factor of
0.0136/0.00870≈ 1.563.

The computational cost of a multilevel algorithm obviously is case-dependent
since the error components depend on u, v, h,H . Example 2 can be seen as the
“worst case scenario” since the components u and v have comparable variability
and P = 15. However, the usefullness of multilevel grids is evident in other cases
to follow, and in particular in the next example which is a variation on Example 2.

Example 3. Here we modify Example 2 and choose a fast oscillating u component
u(x) = x2 sin(10πx). We keep v(x) = x− x3 with P = (1, 1, 1, 1, 1). Table 3 shows
the results.
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Table 2. Results for Example 2

N E η Θ
r = 1

20 0.109 0.814 7.46
40 0.0545 0.415 7.61
80 0.0272 0.209 7.68
160 0.0136 0.105 7.71
320 0.0068 0.0526 7.73
640 0.00341 0.0264 7.74
1280 0.00170 0.0132 7.74
2560 0.00085 0.0066 7.74
5120 0.00042 0.0033 7.74

N E η Θ
r = 2

20 0.0696 0.526 7.56
40 0.0348 0.266 7.62
80 0.0174 0.134 7.70
160 0.00870 0.0672 7.72
320 0.00435 0.0336 7.73
640 0.00218 0.0168 7.74
1280 0.00109 0.00842 7.74
2560 0.000544 0.00421 7.74
5120 0.000272 0.00211 7.74

N E η Θ
r = 5

20 0.0536 0.404 7.54
40 0.0268 0.205 7.64
80 0.0134 0.103 7.69
160 0.00670 0.052 7.72
320 0.00335 0.026 7.73
640 0.00168 0.013 7.74
1280 0.000838 0.0065 7.74
2560 0.000419 0.0032 7.74
5120 0.000209 0.0016 7.74

N E η Θ
r = 100

20 0.0500 0.376 7.52
40 0.0250 0.191 7.63
80 0.0125 0.0961 7.69
160 0.00625 0.0482 7.72
320 0.00312 0.0242 7.73
640 0.00156 0.0121 7.74

Table 3. Results for Example 3

n E η Θ
r = 1

20 4.4206 30.049 6.7975
40 2.2704 16.996 7.4860
80 1.1433 8.7785 7.6780
160 0.57269 4.4259 7.7281
320 0.28648 2.2176 7.7411
640 0.14325 1.1094 7.7446
1280 0.071629 0.55480 7.7455
2560 0.035815 0.27741 7.7458
5120 0.017907 0.13871 7.7459

n E η Θ
r = 5

20 4.4274 30.094 6.7971
40 2.2737 17.019 7.4850
80 1.1450 8.7904 7.6774
160 0.57351 4.4320 7.7278
320 0.28688 2.2208 7.7409
640 0.14346 1.1110 7.7445
1280 0.071731 0.55559 7.7455
2560 0.035866 0.27781 7.7458
5120 0.017933 0.13891 7.7459

Consider the error in Example 3 for a fixed h and varying r. For instance, focus
on n = 160 and the fourth row in each r in Table 3. The error remains almost
constant between r = 1 and r = 5 despite the fact that we are coarsening the H
grid by a factor of 5. This is because the error is dominated by the O(h) terms
for small r. The number of elements between r = 1 and r = 5 decreases from 320
down to 192, i.e. , by the factor of 1.66 while the error increases only by less than
one percent since 0.5735/0.5727≈ 1.0014.

Next we illustrate other properties of the estimator. First we verify how η
behaves for a system close to being degenerate.

Example 4. Let Ω = (0, 1) and u(x) = v(x) = x2 sin(πx) be the exact solution of
(2)-(3). Let P = (1, 1, 1, 10−5, 10). We use r = 1, 5, 40, see Table 4.
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Table 4. Results for Example 4 with degenerate P

N E η Θ
r = 1

20 0.049999 0.37583 7.52
40 0.025000 0.19076 7.63
80 0.012500 0.096101 7.68
160 0.0062500 0.048231 7.71
320 0.0031250 0.024161 7.73
640 0.0015625 0.012092 7.73
1280 0.00078125 0.0060487 7.74
2560 0.00039063 0.0030251 7.74
5120 0.00019531 0.0015127 7.74

N E η Θ
r = 5

20 0.010069 0.077007 7.64
40 0.0050085 0.038615 7.71
80 0.0025013 0.019336 7.73
160 0.0012503 0.0096758 7.74
320 0.00062509 0.0048400 7.74
640 0.00031254 0.0024205 7.74
1280 0.00015627 0.0012103 7.74
2560 7.81× 10−5 0.00060520 7.74
5120 3.91× 10−5 0.00030261 7.74

N E η Θ
r = 40

20 0.0017252 0.0098209 5.69
40 0.00069009 0.0048530 7.03
80 0.00032240 0.0024250 7.52
160 0.00015841 0.0012146 7.67
320 7.89× 10−5 0.00060995 7.73
640 3.94× 10−5 0.00030498 7.74
1280 1.97× 10−5 0.00015249 7.74

In Example 4 we demonstrate the robustness of the estimator with respect to
H, r, i.e., we show that the estimator converges and that Θ is essentially constant
with respect to H and r. This Example also provides yet another motivation for
the use of multilevel grids. The error between r = 1 and r = 5 appears to decrease
by the factor 0.0625/0.0015 ≈ 4.1 while the number of unknowns increases by
(1+5)/2 = 3 (cf. row 4). With r > 5 the advantages of multilevel grids deteriorate
slowly as r increases because the error in u gets resolved better and it slowly
stops dominating the total error. For r = 40 we have a decrease of the error by
0.0625/0.00015 ≈ 40 in row 4 but only 0.0499/0.0017 ≈ 29 while the number of
unknowns increases by about 20.5. This suggests that r = 40 is close to the final
value of r beyond which no decrease of the error can happen.

Now we demonstrate the robustness of the estimator with respect to P .

Example 5. Here we have Ω = (0, 1) and f, g as in Example 2. We now vary
the coefficients in P. Since an analytical solution is not easily obtained for such
a problem, we approximate (u, v) ≈ (u∗, v∗) where the latter is obtained on a grid
with n∗ = 5210 elements. We fix the grid and set N = 160 elements. and let the
various coefficients in P vary, one at a time, by several orders of magnitude. In
Table 5 we show the variation of the efficiency index Θ with respect to P and r.

We observe in Table 5 that the ratio Θ is essentially constant i.e. the estimator
η is quite robust with respect to r and c, λ1. It is also stable with respect to a, b.
However, for a, b ↓ 0 the efficiency index Θ varies, even though it changes only by
a factor less than 4 when a, b change by a factor of 1010. This variability arises
in a context similar to the singularly perturbed problem in Example 1; for a small
enough H,h it disappears.

Next we consider application of the multilevel estimator to grid adaptivity.



22 V. KLEIN AND M. PESZYŃSKA

Table 5. Efficiency index Θ in Example 5. Each row corresponds
to a different value of a parameter from P as indicated while other
parameters are kept fixed with value 1. Each column corresponds
to the different r

a / r 1 2 4 16
1010 7.76 7.75 7.76 7.72
105 7.76 7.75 7.76 7.72
1 7.76 7.82 7.92 7.73

10−5 3.06 5.59 6.89 8.08
10−10 1.42 1.63 1.48 2.26

b / r 1 2 4 16
1010 7.76 7.89 8.67 8.94
105 7.76 7.89 8.67 8.94
1 7.76 7.8199 7.92 7.73

10−5 3.19 3.11 3.10 3.06
10−10 1.53 1.53 1.42 1.43

c / r 1 2 4 16
1010 7.76 6.94 6.24 5.67
105 7.76 7.61 7.60 7.51
1 7.76 7.82 7.92 7.73

10−5 7.76 7.82 7.92 7.74
10−10 7.76 7.82 7.92 7.74

λ1 / r 1 2 4 16
1010 7.76 7.75 7.7635 7.72
105 7.69 7.74 7.7629 7.72
1 7.76 7.82 7.92 7.73

10−5 7.76 7.82 7.92 7.74
10−10 7.76 7.82 7.92 7.74

Figure 1. Solutions u, v in Example 6. Left: plot over (0, 1).
Right: zoomed in boundary layer for u, v with an additional bound-
ary layer for u.
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Remark 5.1. Various adaptive strategies based on a-posteriori error estimates can
be defined.
Component-based strategy: In each step we mark for refinement those elements T ′ ∈
Th for which the local estimator

ηT ′,u > 0.5max
T

ηT,u.

Analogously we mark the elements K ∈ TH . The actual choice of new grid elements
honors the requirement that Th be a refinement of TH .

Alternative strategy: we refine those T ′ ∈ Th for which

ηT ′,u > 0.5min(max
T

ηT,u,max
K

ηK,v),

with a natural K-analogue.
These two strategies frequently mark the same elements for refinement. How-

ever, in some cases the alternative method leads to a faster decrease in E than the
component-based strategy.

Example 6. Let P = (1, 1, a, b, 1) and Ω = (0, 1), f = g ≡ 1. This example is
from ([23], Example 1) where it is shown that both u, v have both boundary layers of
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Table 6. Refinement at each step (recall symmetry of the domain)

1st Step 2nd Step 3rd Step
max ηu,T 0.2318 0.0518 0.0178
max ηv,K 0.2315 0.1087 0.0444

η 0.4818 0.2120 0.140
# of elements 5 + 5 =10 43+43 = 86 79 + 61 = 140

width O(b1/2 ln b), and that u has an extra layer of width O(a1/2 ln a). Let a = 10−7,
b = 10−4. The solution is shown in Figure 1.

Starting from a uniform grid T 0
h = T 0

H with h = 0.2 and n = N = 5, we use our
a-posteriori estimator η to guide the appropriate grid refinement in the boundary
layer as in Remark 5.1. We show details of the first few steps of this strategy,
refering only to the boundary layer on the left hand side; the other side follows by
symmetry. Table 6 summarizes the quantitative information and Figure 2 illustrates
its effects.

(1) After we compute the solution (uh, vH) and the local error estimator for
T 0
h = T 0

H we find that we need to refine the grid in the intervals [0, 0.2] for
both u and v components, according to both strategies in Remark 5.1. We
denote this grid by T 1

h = T 1
H .

(2) Compute the solution and the local error estimator for T 1
h = T 1

H , here
n = N = 43. We find that we need to refine the elements in [0, 0.1] for u
components and in [0, 0.1], [0.1, 0.2] for v component. The marking is the
same for both strategies. We denote the resulting grid by T 2

h , T 2
H . Note that

T 2
h 6= T 2

H .
(3) Compute the solution and the local error estimator for T 2

h , T 2
H . Here we

have n = 79, N = 61. Using the component-based strategy, we find that
we need to refine in the interval [0, 0.001] for u and in [0.02, 0.03] for v
component.

The alternative strategy marks [0, 0.001] for u and [0.01, 0.02], [0.02, 0.03]
for v.

(4) Continue . . .

Analyzing this last Example we see that the a-posteriori error estimators suggest
after Step 2 that a multilevel rather than identical grid should be used for the two
components. In order to refine separately the u- and v- grids, we need an ability
to estimate the error in each component separately and at best locally.

Our next example shows the application of the error estimate in one variable
only.

Example 7. Let Ω = (0, 1) and u(x) = x2 sin(10πx), v(x) = x − x2 be the exact
solution of (2)–(3) with P = (1, 1, 10−3, 1, 100). We note that c = 100 indicates a
rather strong coupling in the system. We use N = 320 and let r vary. Table 7 shows
the application of the global estimator η and of the estimator η∗ for u-variable only.

Studying the first row of Table 7 and comparing E with E∗ and η with η∗ we
notice that that they are close, i.e., error is dominated by the error in u. It is
important to notice that since both estimators are robust in r, we can use the
estimators instead of the error information as a tool to determine the dominating
component. To decrease that component of the error, we refine the mesh on which
u is computed. This helps to decrease the error significantly while making the total
number of unknowns grow by a factor smaller than 2r between each grid steps.
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Figure 2. Illustration of adaptive steps from Example 6: plot of
solution (uh, vH). Top: solution in steps 1 (left) and step 2 (right).
Bottom: step 3 with original strategy (left) and with alternative
strategy (right). Zoom is indicated by the range of x.
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Table 7. Robustness and use of estimators η, η∗ in Example 7.
Shown on the left are the error, estimate, and efficiency index cor-
responding to the usual estimator (39). On the right we show the
corresponding values for the quantities computed in the u variable

only (72) and in particular η∗ and E∗ := ‖u− uh‖∗, and Θ∗ := η∗

E∗

rN η E Θ
320 0.071569 0.0093135 7.6844
640 0.037764 0.0048850 7.7305
1280 0.022419 0.0028967 7.7396
2560 0.016486 0.0021303 7.7387
5120 0.014631 0.0018910 7.7371
10240 0.014129 0.0018263 7.7365

rN η∗ E∗ η∗/E∗

320 0.070195 0.0091370 7.6825
640 0.035090 0.0045396 7.7296
1280 0.017544 0.0022662 7.7416
2560 0.0087722 0.0011327 7.7443
5120 0.0043861 0.00056644 7.7433
10240 0.0021931 0.00028347 7.7365

However, in row 6 the errors and the estimators vary already by a factor of ≈ 6
that is, we have decreased the dominating component of the error.

As for computational complexity, we see that the error decreases by a factor
of almost 2 between the first row and the second while the number of unknowns
increased by a factor of 3/2 = 1.5. Without multilevel grids, we would have to
refine grid in u, v simultaneously, i.e., double the total number of unknowns. We
conclude that multilevel grids are quite useful in this example.

In summary, Example 7 is a nice illustration of applicability of the estimator
associated with the strongly varying component only.

Next we consider a few examples in d = 2 dimensions.

Example 8. Use as exact solution to (9) the functions u(x, y) = sin(2πx)(y2 − y),
v(x, y) = (x2 − x)(y2 − x). Let Ω = (0, 1)2. The coefficients are set to be P =
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Table 8. Convergence of the error and estimator for Example 8,
N = n that is r = 1 (left) and N = 4n or r = 4 (right)

1
h E η Θ
16 0.13244 1.6367 12.358
32 0.066409 0.83876 12.630
64 0.033228 0.42340 12.742
128 0.016617 0.21255 12.791

1
h E η Θ
4 0.13966 1.6731 11.979
8 0.067145 0.84301 12.555
16 0.033321 0.42397 12.724
32 0.016632 0.21265 12.786

Table 9. Efficiency index Θ for Example 9

a/ λ2 10−10 10−5 1 105 1010

10−10 3.8324 3.8324 3.7714 1.3563 1.3563
10−5 4.5796 4.5796 4.5117 1.8375 1.8375
1 12.237 12.237 12.231 12.076 12.076
105 13.839 13.839 13.839 12.025 12.076
1010 13.840 13.840 13.839 2.2928 12.039

(1, 1, 1, 10−3, 10). We calculate the corresponding f, g. Next, we solve for (uh, vH)
and consider the rate of convergence of the energy error and of the estimator. We
use N = rn for r = 1, 4. In Table 8 we can see that Θ changes a little with N but
not much with r.

Example 9. Now we vary P in Example 8. Since the analytical solution for general
P is not easy to find, we use Richardson extrapolation with n∗ = 131072 elements
to approximate the true error. We are interested in the behavior of Θ for P =
(1, λ2, a, 1, 10) when a and λ2 decrease; this example is relevant to a steady-state
pseudo-parabolic system [24]. The solution uh, vH is computed with n = 8192, N =
2048 elements. The results are presented in Table 9

Our last example shows the application of the global error estimate to adapt the
grid uniformly in the goal to satisfy a prescribed tolerance. Specifically, we want
to ensure

‖(eu, ev)‖e ≤ τ(74)

for a given τ . This follows of course if we ensure η ≤ τ .

Example 10. We consider P = (0.1, 1, 1, 10−3, 10) and Ω = (0, 1)2 in (2)-(3). The
analytical solution is given by u(x, y) = sin(2πx)(y2−y), v(x, y) = (x2−x)(y2−x).

To satisfy (74) with τ = 0.02 we can use either Th = TH and h = H = 1/128
with a total 16641 + 16641 = 33282 nodes. On the other hand, to satisfy the same
tolerance with multilevel mesh it suffices to have h = 1/128, H = 1/16, r = 8 and
16641 + 289 = 16930 nodes.

For τ = 0.05, we find that 4225+4225 = 8450 nodes are necessary while 4225+81
nodes of multilevel mesh will suffice. Here h = 1/64 = 0.015625, and H = 1/8 =
0.0125, so r = H/h = 8.

6. Summary

Above we have defined a convergent multilevel scheme for a stationary system
of reaction-diffusion systems coupled by zero’th order terms. We also proposed
a-posteriori error estimators and have shown them to be efficient, reliable, and
robust.
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Our current work involves extensions of these results. In particular, in a forth-
coming paper we address the time-dependent case. Analysis of (2)–(3) is a proto-
type of considerations for more complex systems and more complicated discretiza-
tions to be addressed in the future.
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