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Abstract. A new representation of spatio-temporal random processes is proposed in
this work. In practical applications, such processes are used to model velocity fields,
temperature distributions, response of vibrating systems, to name a few. Finding an
efficient representation for any random process leads to encapsulation of information
which makes it more convenient for a practical implementations, for instance, in a
computational mechanics problem. For a single-parameter process such as spatial or
temporal process, the eigenvalue decomposition of the covariance matrix leads to the
well-known Karhunen-Loève (KL) decomposition. However, for multiparameter pro-
cesses such as a spatio-temporal process, the covariance function itself can be defined
in multiple ways. Here the process is assumed to be measured at a finite set of spatial
locations and a finite number of time instants. Then the spatial covariance matrix at
different time instants are considered to define the covariance of the process. This set
of square, symmetric, positive semi-definite matrices is then represented as a third-
order tensor. A suitable decomposition of this tensor can identify the dominant com-
ponents of the process, and these components are then used to define a closed-form
representation of the process. The procedure is analogous to the KL decomposition for
a single-parameter process, however, the decompositions and interpretations vary sig-
nificantly. The tensor decompositions are successfully applied on (i) a heat conduction
problem, (ii) a vibration problem, and (iii) a covariance function taken from the liter-
ature that was fitted to model a measured wind velocity data. It is observed that the
proposed representation provides an efficient approximation to some processes. Fur-
thermore, a comparison with KL decomposition showed that the proposed method is
computationally cheaper than the KL, both in terms of computer memory and execu-
tion time.
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1 Introduction

In a probabilistic treatment of uncertainties in analyzing and designing physical systems,
random processes are used to describe and model various parameters and phenomena.
Sources of these uncertainties can be attributed to insufficient data, variability in man-
ufacturing process, error incurred during mathematical idealization of the problem, to
mention a few. Let (Ω,F ,µ) denote a probability space where Ω denotes the set of ele-
mentary events θ, F denotes a σ-algebra on this event set, and µ denotes the probability
measure. Let x∈R

d denote a spatial location where d= 1,2 or 3, and t∈R
+ denote the

time. Then the heterogeneity of Young’s modulus of a solid can be modeled as a spatial
random process or field u(x,θ), a time-varying excitation can be modeled as a temporal
random field u(t,θ). Similarly the parameters that are dependent upon both space and
time — such as a velocity field of a fluid in motion, temperature field, dynamic response
of a large structure — can be modeled as spatio-temporal process u(x,t,θ). In this work a
spatially and temporally discrete version of the real-valued processes is considered, that
is, the processes are measured or evaluated at spatial locations xi : i=1,2,··· ,Ns and time
instants tj : j=1,2,··· ,Nt. Therefore, the spatio-temporal processes can now be written in
the following matrix form

U(θ)=











u(x1,t1,θ) u(x1,t2,θ) ··· u(x1,tNt ,θ)
u(x2,t1,θ) u(x2,t2,θ) ··· u(x2,tNt ,θ)

...
...

...
...

u(xNs ,t1,θ) u(xNs ,t2,θ) ··· u(xNs ,tNt ,θ)











∈R
(Ns×Nt) . (1.1)

The spatial and temporal processes can accordingly be expressed in a vector form. How-
ever, this explicit form, which is often needed for computational purpose, is not known
in most practical cases. Either a few realizations of the process or some information about
the covariance is known. Therefore a representation of the process needs to be found us-
ing this available information. In the current work, it is assumed that the only available
information are the mean and spatial covariance for a set of time instants.

Let the mathematical expectation operator
∫

Ω
·dµ(θ) be denoted as E{·}. Then, for

a single-parameter process such as a spatial process u(x,θ) the covariance between two
spatial locations x1 and x2 is defined as

Cov(u(x1,θ),u(x2,θ))

=E{(u(x1,θ)−ū(x1))(u(x2,θ)−ū(x2))}, (1.2)

with ū∈R denoting the mean of the process. A few largest eigenvalues and correspond-
ing eigenvectors of this (Ns×Ns) symmetric positive-semidefinite covariance matrix hold
a significant amount of information about the process u(x,θ). These eigenvectors serve as
the set of bases in an approximate representation of this process, known as the Karhunen-
Loève (KL) decomposition [1–5]. Similarly, the covariance matrix for a spatio-temporal
process can be constructed with the elements as Cov(u(xi,tk,θ),u(xj,tl ,θ)), i, j=1,2,··· ,Ns
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and k,l = 1,2,··· ,Nt, computed in the similar way as in Eq. (1.2). In this definition of
covariance, no distinction is made between the notion of space and time [6]. However,
in this case the size of the covariance matrix is (Ns Nt×Ns Nt), which amounts to storing
and processing N2

s N2
t scalar quantities — and it could lead to a serious computational

overhead. A generalized form of this space-time covariance is used in some applica-
tions [7, 8], where the distinction between the notion of space and time are preserved, at
least in the continuous form of the process. A numerical treatment of this covariance will
again involve N2

s N2
t scalar quantities.

For some spatio-temporal processes, it can be expected that for a given pair of spa-
tial locations, the covariance at two distant time-instants may not be significant for some
spatio-temporal processes. Expressing mathematically, Cov(u(xi,tk,θ),u(xj,tl,θ)) may be
small for tk 6= tl , especially when |tk−tl | is large. For these processes an alternative defi-
nition of covariance is given here. Accordingly, for any given time instant tk the spatio-
temporal process reduces to a spatial process, and the (Ns×Ns) covariance matrix of
this spatial process can be computed using Eq. (1.2). This procedure is followed for
k = 1,2,··· ,Nt, and finally these Nt number of spatial covariance matrices are stored in
a third-order tensor of size (Ns×Ns×Nt) — which is a significant reduction in the size
compared to (NsNt×Ns Nt). This covariance tensor is then decomposed as a sum of outer
products of a set of vectors. Using this set of vectors as the bases, a new representation of
the spatio-temporal process is proposed.

Similar to matrix decompositions, there’s an active interest in finding several useful
decompositions of higher order tensors. An excellent review can be found in [9] with an
exhaustive list of references. In the current work the most relevant decompositions are (i)
Rank-1 [10], (ii) CANDECOMP/PARAFAC (CP) [11–14], and (iii) Tucker [10, 15–17] de-
compositions. In all these decompositions the goal is to decompose — or to approximate
when an exact decomposition does not exist — a tensor in terms of outer products of a
set of vectors. For the current work, the Rank-1 decomposition is directly used to find the
dominant component of the spatio-temporal process. Furthermore, another decomposi-
tion derived as a constrained version of both CP and Tucker decompositions is found to
model the covariance of a few processes better than the Rank-1 decomposition. The vec-
tors in these tensor decompositions are used here as the bases for a new representation of
spatio-temporal processes. It is observed that this technique reduces the computational
demand significantly, especially on memory. To comment on accuracy, it is observed
here that for a heat conduction problem the probability density functions are retrieved
accurately, whereas for a vibration problem only the covariance is retrieved accurately.

There exist a few different approaches to model spatio-temporal processes in differ-
ent application areas. In [18], targeted at meteorological applications, only the spatial
covariance is considered and a space-time separable representation is used — which is
apparently similar to our approach. However, there the bases in the spatial domain are
chosen as the KL eigenvectors of the spatial covariance at an arbitrary time instant and
the elements of the temporal bases are chosen to be independent. For a process that is
stationary in time and homogeneous in space, spectral decompositions can be used for
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both space and time [19]. A few more works on KL decomposition of spatio-temporal
processes can be found in [20,21]. One other extreme is to treat a spatio-temporal process
effectively as a pure spatial process by assuming that different time instants represent
different realizations of this spatial process [22]. In [23], the temporal variation of the
spatial covariance of the response of a structure was studied in a random vibration con-
text. In [24] a spatio-temporal process was approximated using the polynomial chaos
expansion (PCE), and applied to a temperature dataset obtained from an oceanographic
experiment. More about theory and applications of spatio-temporal processes and their
covariances can be found in [25–30]. The novelty of the current work lies in (i) using
tensor decomposition techniques in approximating the covariance of a spatio-temporal
process, and (ii) subsequently proposing closed-form expressions for this process using
the bases found by tensor decompositions. A few possible applications of this work could
be in (a) sampling realizations of a spatio-temporal process for a given covariance kernel,
(b) using the proposed closed-form expression as an input to a subsequent analysis, in
a way similar to the KL representation of a spatial field being used in solving stochastic
mechanics problems [1,3], (iii) obtaining a model for a spatio-temporal process from real
data by estimating the bases of the proposed representation.

Recently the tensor decomposition has drawn attraction in the stochastic mechanics
community. For instance, in [31] the tensor decomposition was used in solving a stochas-
tic elliptic partial differential equation (PDE). In that work, the solution is expressed in
PCE, followed by a Galerkin projection. The tensor decomposition was used to accelerate
the solution of a linear algebraic system arising from this Galerkin projection.

This paper is organized as follows. In the following section several definitions of
covariance of spatio-temporal processes are presented. Then tensor decompositions are
discussed in the next section. The proposed representations of the processes based upon
these tensor decompositions are presented next. KL representation of the spatio-temporal
processes is also presented in the same section. Then a numerical study is conducted
where the covariance decompositions and proposed process representations are imple-
mented and tested for three problems. A comparison with the KL representation is also
performed. Finally the conclusions are drawn.

2 Covariance of spatio-temporal processes

For a one-parameter process, the covariance is uniquely defined as Eq. (1.2). For a mul-
tiparameter such as a spatio-temporal process, the covariance can be defined in multiple
ways. Two distinct definitions are given in this section. In this work, the second defi-
nition will be used which has a better physical interpretation than the first one. Also it
leads to a significant amount of computational saving in modeling the process.

2.1 Covariance in space-time

One possible way to treat a spatio-temporal process is to ignore the distinction between
the physical interpretations of space and time. In other words, the covariance between
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two spatial locations at a fixed time instant has the same interpretation as the covariance
between two time instants for a fixed spatial location. According to this view, the covari-
ance between the process values measured at two spatial locations xi and xj and at two
time instants t1 and t2 is defined as

Cov(u(xi,t1,θ),u(xj,t2,θ))

=E{[u(xi,t1,θ)−ū(xi,t1)][u(xj,t2,θ)−ū(xj,t2)]}. (2.1)

In a discrete setting, where the process is evaluated at total Ns spatial locations and at
total Nt spatial notations, this covariance is represented as an (NsNt×Ns Nt) matrix Covuu

— which will be referred to here as the spatio-temporal covariance matrix. To discretize
this process in terms of a finite set of random variables, the KL expansion can be directly
used [6]. However, in this treatment, in addition to the lack of physical interpretation,
the amount of information processed here is significantly high: N2

s N2
t real numbers.

2.2 Temporal variation of spatial covariance

One other way to treat a spatio-temporal process where a significant reduction of the
storage requirement of the covariance will be achieved is to acknowledge the distinction
between the notion of time and space. Here, the covariance between two spatial locations
is considered for a fixed time instant t, and is expressed as

Cov(u(xi,t,θ),u(xj,t,θ))

=E{[u(xi,t,θ)−ū(xi,t)][u(xj,t,θ)−ū(xj,t)]}. (2.2)

Therefore, for a given time instant t, the covariance between Ns spatial locations is ex-
pressed as an (Ns×Ns) real symmetric matrix Covuu(t), with the (i, j)th element defined
as above. Considering all Nt time instants, the covariance of this process is completely
characterized by Nt number of (Ns×Ns) spatial covariance matrices, therefore the total
storage demand is N2

s Nt real numbers — lower by a factor Nt from the previous defi-
nition of covariance. In this work, this temporal variation of the spatial matrix will be
studied. This collection of matrices will be represented as a third order tensor C of size
(Ns×Ns×Nt) and decomposed accordingly.

3 Tensor decompositions and computation

Let A denote a third order tensor of size (I1× I2× I3), with its elements denoted as Aijk;
i = 1,··· , I1; j = 1,··· , I2; k = 1,··· , I3. A few relevant decompositions of this tensor are
discussed in this section. In this work although only the third-order tensors are used, the
following discussion is valid for higher order tensors as well.
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3.1 Tensor decompositions

For matrices, several powerful decompositions such as singular value decompositions
(SVD), spectral decompositions are found to be extremely useful in numerous applica-
tions. Therefore, naturally it has been of interest of various researchers to find similar
decompositions for the higher-order tensors. This is an active research area with a num-
ber of open problems, some interesting and important works can be found in [9, 10, 16]
and references therein. Extensions of the matrix decompositions to tensors are never
straightforward, and in most cases do not carry the same properties and physical inter-
pretation from matrices to tensors. However, from an approximation point of view, some
tensor decompositions are found to be useful for practical applications. Some of these
decompositions — that will be of most relevance for the current work — are described
here. In the following discussion although the word decomposition is used, in practice an
exact decomposition may not be attainable — even may not exist, in many cases only an
approximation to a desired decomposition form is attainable.

3.1.1 Rank-1 decomposition

A rank-1 tensor is defined as

Â=λ·v(1)◦v
(2)◦v

(3), (3.1)

where λ ∈ R, v
(i) ∈ R

Ii with unit-norm, i = 1,2,3, and ◦ denotes the outer product of
vectors. Here the hatˆover A will denote an approximation — described below, and this
notation is used for tensors with any rank. Writing Eq. (3.1) element-wise,

âi,j,k =λv
(1)
i v

(2)
j v

(3)
k , i=1,··· , I1, j=1,··· , I2, k=1,··· , I3, (3.2)

where âi,j,k denotes the (i, j,k)-th element of the tensor Â, v
(1)
i ,v

(2)
j ,v

(3)
k denote i-th, j-th,

k-th element of the vectors v
(1), v

(2), v
(3), respectively. A rank-1 tensor Â is referred to as

the best rank-1 approximation [9, 10] of a given tensor A if the quantity

erT =
‖A−Â‖Fr

‖A‖Fr
(3.3)

is minimized over all the rank-1 tensors of size (I1× I2× I3). Here ‖·‖Fr denotes the Frobe-
nius norm of a tensor defined as

‖A‖Fr =

√

√

√

√

I1

∑
i=1

I2

∑
j=1

I3

∑
k=1

a2
i,j,k. (3.4)

Therefore, to achieve this approximation, one needs to find the scalar λ and three vectors
v
(1), v

(2), v
(3).
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3.1.2 CANDECOMP/PARAFAC (CP) decomposition

A generalization of the aforementioned rank-1 decomposition is arrived when the tensor
is decomposed as the sum of R (> 1) rank-1 tensors, thereby leading to the expression
[11–14]

Â=
R

∑
r=1

λr ·v(1)
r ◦v

(2)
r ◦v

(3)
r , (3.5)

where λr ∈R, v
(i)
r ∈R

Ii with unit-norm, r=1,··· ,R, i=1,2,3. Writing element-wise,

âi,j,k =
R

∑
r=1

λrv
(1)
r,i v

(2)
r,j v

(3)
r,k , i=1,··· , I1, j=1,··· , I2, k=1,··· , I3, (3.6)

where v
(1)
r,i ,v

(2)
r,j ,v

(3)
r,k denote the i-th, j-th, k-th element of the vectors v

(1)
r , v

(2)
r , v

(3)
r , re-

spectively. This decomposition was first proposed in [11], and is also often referred to as
the CP decomposition, derived from its other names canonical decomposition (CANDE-
COMP) [13] and parallel factors (PARAFAC) [14]. The integer R is called as a rank of the
tensor — this is one of the several types of tensor ranks. For a given tensor A and an in-
teger R, an approximation Â is sought so that the error defined in Eq. (3.3) is minimized.
The basic approach of an algorithm for finding this approximation is presented in Section
3.2.

CP decomposition is unique only under certain conditions [9, 12]. Furthermore, exis-
tence of a CP decomposition of any given rank is not guaranteed. One other important
aspect of this decomposition is that a truncation of a rank-R decomposition to a lower
rank R′

< R with |λ1| ≥ |λ2| ≥ ··· ≥ |λR′ | ≥ ··· ≥ |λR| does not provide the best rank-R′

approximation — unlike matrix SVD. Therefore care must be taken in choosing the rank
R. However, when such a truncation is used the approximation error reduces monotoni-
cally with increasing R. That is, erT for a rank R decomposition is less than erT for a rank
R′ decomposition when R>R′.

3.1.3 Tucker decomposition

To explain the Tucker decomposition, the concept of the n−mode product of a tensor
and a matrix should be defined first. Let A denote an l−th order tensor, that is, A∈
R

(I1×I2×···×Il). The n−mode product ×n, where n=1,2,··· ,l of the tensor A and a (J× In)
matrix V is denoted as A×nV , and is defined as a tensor of size (I1×···× In−1× J× In+1×
···× Il) whose elements are

(A×n V)i1,···,in−1,j,in+1,···,il
=

In

∑
in=1

ai1 ,···,in−1,in,in+1,···,il
vj,in

, j=1,··· , J, (3.7)

where vj,in
denotes the (j,in)th element of the matrix V . For instance, when A is a third

order tensor, its product ×1 with a (J× I1) matrix V is a tensor of size (J× I2× I3) with the
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elements

(A×1V)j,i2,i3 =
I1

∑
i1=1

ai1 ,i2,i3 vj,i1 , j=1,··· , J. (3.8)

Given this definition, the Tucker decomposition of an (I1× I2× I3) tensor A is given
as [15, 16]

A=G×1V
(1)×2V

(2)×3V
(3)

=
I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

gi1,i2,i3 ·v
(1)
i1

◦v
(2)
i2

◦v
(3)
i3

, (3.9)

where G is a tensor of size (I1× I2× I3) — referred to as the core tensor, and V
(1),V (2),V (3)

are unitary matrices of size (I1× I1), (I2× I2), (I3× I3), respectively; v
(i)
j denotes the jth

column of the matrix V
(i). Although this decomposition — also referred to as the higher

order singular value decomposition (HOSVD) — exists for any tensor [17], it may be very
expensive to compute for large tensors. An alternative is to estimate an approximation Â
as

Â=Gred×1V
(1)
red ×2V

(2)
red ×3V

(3)
red , (3.10)

where the size of the core tensor Gred is (R1×R2×R3), the matrices V
(1)
red , V

(2)
red , V

(3)
red are of

size (I1×R1), (I2×R2), (I3×R3), respectively. The integers Ri are chosen by the user and
normally are much lower than Ii for all i. The approximation is sought for minimizing
the error defined in Eq. (3.3).

Once again, as opposed to the matrix SVD, for a given R1,R2,R3 any truncation
of the expression (3.9) does not guarantee to give the best approximation in the form
of Eq. (3.10). Therefore to achieve the best approximation one must compute directly
Eq. (3.10). An algorithm for this computation is proposed in [10], where it is called as
the rank-(R1,R2,··· ,RN) decomposition because Ri = ranki(Â) for all i. Here ranki(Â)
is defined as the rank of a matrix created using the vectors obtained by varying only the
index i of Â, keeping other indices fixed.

An important observation is that both rank-1 and CP decompositions can be seen
as special structural forms of the Tucker decomposition. The CP decomposition follows
when the core tensor G is superdiagonal, that is, gijk =0 except i= j= k. However, in CP,

the matrices V
(i) constructed using the vector set {v

(i)
r }R

r=1 no longer need to be unitary.
Moreover, in general the superdiagonalized form (that is, the exact CP decomposition)
does not exist. The rank-1 decomposition follows from the CP decomposition when only
one term is used.

3.2 Computation of tensor decompositions

As mentioned earlier, finding efficient methods for computing the tensor decompositions
is an active area of research. In this work, methods based on alternating least-square
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approach (ALS) are used. For CP decomposition the approach can be outlined as fol-

lows. Starting from an initial iterate, and freezing the sets {v
(2)
r }R

r=1 and {v
(3)
r }R

r=1, the set

{v
(1)
r }R

r=1 is estimated by solving a least-square minimization problem. Next, {v
(2)
r }R

r=1

is similarly computed by freezing the other two sets, and then {v
(3)
r }R

r=1 is computed by

freezing {v
(1)
r }R

r=1 and {v
(2)
r }R

r=1. This completes one iteration, the iterations are contin-
ued till the desired accuracy is attained. The λr-s are also updated within the iterations.
Analogous methods are used for the Rank-1 and Tucker decompositions.

4 Representation of spatio-temporal processes based upon

tensor decompositions

In the current work, the covariance is defined as the temporal variation of the spatial
covariance, as described in Section 2.2. This covariance, as defined in Eq. (2.2), is treated
as a third order tensor A of size (Ns×Ns×Nt) with the (i, j,k)th element as

E{(u(xi,tk,θ)−ū(xi,tk,θ))
(

u(xj,tk,θ)−ū(xj,tk,θ)
)

}. (4.1)

As mentioned in the previous section, a suitable decomposition or an approximation Â
will be used to find the dominant components of this covariance tensorA — analogous to
the eigenvalue or singular value decomposition of a matrix. The random process can then
be represented using the bases of this decomposition. To arrive at this representation, first
the process mentioned in Eq. (1.1) is written as

U(θ)= Ū+Urand(θ), (4.2)

where Ū and Urand(θ) denote the mean and the zero-mean random parts, respectively.
Then the proposed representation of the spatio-temporal process has the form

U(θ)= Ū+Urand(θ)= Ū+
i=N

∑
i=1

√

λiφiψ
T
i ηi , φi∈R

Ns , ψi ∈R
Nt . (4.3)

Here φi and ψj are the basis vectors corresponding to spatial and temporal components,
respectively, and to be estimated using a decomposition of the covariance tensor. The
zero-mean random variables ηi are functions of θ, and a method is needed to estimate
these random variables. Note that if the tensor decomposition is not exact, then U(θ)
and Urand(θ) should be replaced by Û(θ) and Ûrand(θ), respectively. However, this no-
tational strictness is relaxed to keep the discussion simpler. It will be shown later in
this section that the process in Eq. (4.3) yields the same covariance tensor A. Depending
upon the type of the tensor decomposition used, these bases φi and ψj may vary. Here
two decompositions are used, details of which is given later in this section.

Difference with the KL decomposition: In a KL decomposition, the covariance is
expressed as a (Ns Nt×Ns Nt) matrix Covuu with the elements defined in Eq. (2.1). Let
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us construct an NsNt dimensional vector u(θ) by arranging all the columns of U(θ) in
Eq. (1.1) in a single column. That is,

u(θ)T ={u(x1,t1,θ) u(x2,t1,θ) ··· u(xNs ,t1,θ) u(x1,t2,θ) ··· u(xNs ,tNt ,θ)}T . (4.4)

Then
Covuu=E{u(θ)u(θ)T}. (4.5)

Let λKL
i ,φKL

i denote the ith eigenpair of this covariance matrix, where the eigenvalues are
ordered in numerically ascending way. Accordingly, the KL representation of the process
u(θ) is written as

u(θ)= ū+
N

∑
i=1

√

λKL
i φKL

i ηi , (4.6)

where ū denotes the mean of the process and ηi are independent, zero-mean random
variables, N denotes the number of terms retained. Distributions of ηi are found by using
orthogonality of the eigenvectors φKL

i . Therefore the main difference between the tensor
decomposition based approach and KL approach lies in treating the covariance, which
is a tensor in the first case and a matrix in the second case. Note that the covariance
matrix (in KL) contains Nt times more elements than the covariance tensor (in the tensor
decomposition). As will be seen later in this section, unlike in KL, the choice of the
random variables ηi is not unique in the tensor decomposition.

4.1 Rank-1 tensor decomposition

First the spatio-temporal covariance tensor C is decomposed into its rank-1 decomposi-
tion, as defined in Eq. (3.1). For a given time instant t, the spatial covariance Covuu(t) is
a symmetric matrix of size (Ns×Ns). Due to this symmetry, the rank-1 decomposition of
the covariance tensor C yields v

(1)=v
(2), where v

(1),v(2) are defined in Eq. (3.1). When the
random process is expressed as Eq. (4.3) based on this decomposition, the natural choice

of the spatial basis becomes φ = v
(1). The temporal basis can be chosen as ψ =

√
v(3),

where the square-root is calculated term-wise. To avoid ambiguity in the sign conven-
tion here only the principal square root is taken, which means that only the positive roots
are considered. According to this choice of bases the expression of the random process
becomes

U(θ)= Ū+
√

λv
(1)

√

v(3)
T

η , v
(1)∈R

Ns , v
(3)∈R

Nt , E{η}=0. (4.7)

The covariance of the process can be retrieved from this expression as follows. Recall
from Eq. (1.1) that the (i,k)th element of the matrix U(θ) is u(xi,tk,θ). Accordingly, the
spatial covariance between the points xi and xj at a given time instant tk is estimated from
Eq. (4.7) as

E{(u(xi,tk,θ)−ū(xi,tk,θ))
(

u(xj,tk,θ)−ū(xj,tk,θ)
)

}
=λv

(1)
i v

(1)
j v

(3)
k E{η2}. (4.8)
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In this equation the left hand side is defined in Eq. (2.2), and if E{η2}=1 then the right
hand side equals the term defined in Eq. (3.2) — which is nothing but the (i, j,k)th ele-
ment in the decomposed tensor Â. Recall that the error erT incurred in approximating
the covariance tensor is measured by Eq. (3.3). This implies that if η is chosen as a ran-
dom variable with mean as zero and variance as one, then the covariance of the random
process in Eq. (4.7) converges to the covariance defined in Eq. (2.2) as the approximation
error erT reduces. A method to estimate this variable is now needed, which can be done

as follows. Multiplying both sides of Eq. (4.7) by v
(1)T

results in

v
(1)T

Urand(θ)=
√

λv
(1)T

v
(1)

√

v(3)
T

η , v
(1)∈R

Ns , v
(3)∈R

Nt . (4.9)

From this expression, the random coefficient η is computed as

η=
v
(1)T

Urand(θ)1√
λ
√

v(3)
T

1
, (4.10)

where 1 denotes a vector of length Nt with all elements as 1. The choice of the estimator
(4.10) is not unique. For instance, Eq. (4.9) could be post multiplied by any other Nt

dimensional vector than 1 which would yield in a different estimator.
From Eq. (4.7) it is clear that for the process to be real-valued, it is necessary for each

term of the vector λv
(3) to be non-negative. As was mentioned in Section 2.2, for any

given time instant, the spatial covariance is positive definite. Furthermore, the matrix

v
(1)

v
(1)T

is symmetric and positive-definite for any choice of the real vector v
(1). There-

fore each element of the product λv
(3) — which corresponds to a time instant — must

be non-negative. This argument also guarantees that the denominator in Eq. (4.10) is
non-zero (except the trivial case when the either λ or v

(3) is zero).

4.2 A constrained decomposition derived from the CP and Tucker

When the CP decomposition is used for finding the dominant components of the covari-
ance tensor, the following issues were faced in numerical studies:

1. The bases are not orthogonal in general.

2. All terms of the vector λrv
(3)
r are not positive, it will lead to a complex-valued pro-

cess.

3. v
(1)
r 6=v

(2)
r , that is, the symmetry is not preserved.

Whereas in the Tucker decomposition although the orthogonality and symmetry of the
bases are maintained, the challenges remaining are:

1. For a given i3 the vectors v
(3)
i3

in Eq. (3.9) may contain both positive and negative
entries, leading to a complex valued process.
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2. Finding an expression for the process itself is a complicated task due to the non-zero
off-diagonal terms in the core tensor G.

To address these issues a constrained version of both Tucker and CP decompositions
is considered here as

Ĉ=
[

R

∑
r=1

λr ·v(1)
r ◦v

(2)
r

]

◦v
(3) , (4.11)

with an added constraint that the vectors in the set {v
(1)
r }R

r=1 are orthogonal. This decom-
position can either be viewed as (i) the CP decomposition (3.5) with the added orthogo-

nality constraint and v
(3)
r being unaltered for any r, or (ii) as the Tucker decomposition

(3.10) with R3 = 1. Computationally, the Tucker decomposition algorithm is used with
the constraint R3=1. Note that the choice of R3=1 may not lead to the exact decomposi-
tion of the covariance tensor, that is, erT =0 may not always hold. However, this choice
led to a simplification in choosing an expression for the random process, as proposed in
Eq. (4.12). Note that the spatial covariance matrices are symmetric. For such tensors, it is

proved in [17] (Theorem 3) that v
(1)
r =v

(2)
r for all r. Taking advantage of this equality, the

following expression of the random process is proposed:

U(θ)= Ū+
R

∑
r=1

√

λrv
(1)
r

√

v(3)
T

ηr , v
(1)
r ∈R

Ns , v
(3)∈R

Nt , (4.12)

where ηr are independent, zero-mean random variables. Similar to the Rank-1 tensor
decomposition described earlier in this section, the covariance of the process can be re-
trieved from this expression as follows. Now the spatial covariance between the points
xi and xj at a given time instant tk is estimated from Eq. (4.12) as

E{(u(xi,tk,θ)−ū(xi,tk,θ))
(

u(xj,tk,θ)−ū(xj,tk,θ)
)

}

=
R

∑
r=1

λrv
(1)
r,i v

(1)
r,j v

(3)
r,k E{η2

r }. (4.13)

If the random variables ηr chosen such as E{η2
r }=1 for all r, then the right hand side of

this equation equals the (i, j,k)th element in the decomposed tensor in Eq. (4.11). There-
fore, once again, the covariance of the random process in Eq. (4.12) converges to the
covariance defined in Eq. (2.2) as the approximation error erT reduces.

Using the orthogonality among the bases {v
(1)
r }R

r=1 the random coefficients ηr are
computed as

ηr =
v
(1)
r

T
Urand(θ)1

√
λr

√
v(3)

T
1

. (4.14)

Once again, this choice is not unique as other conditions can be used to estimate these
coefficients.
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5 Numerical study

The tensor decompositions of the covariance and associated proposed representations
are numerically tested in this section. Three problems are considered here: a one-
dimensional heat equation, a vibration problem, and a readily available covariance func-
tion for wind velocity. A comparison with the KL decomposition is performed for ac-
curacy and computational cost. The tensor decomposition related computations are per-
formed using the MATLAB Tensor Toolbox [32].

5.1 Heat equation

The first problem considered is the heat equation in one-dimension, stated as

∂u(x,t)

∂t
=κ

∂2u(x,t)

∂x2
, 0≤ x≤2π, t≥0 (5.1)

with the initial condition as u(x,0) = sin(ϑx) and periodic boundary conditions. Here
u(x,t) denotes the temperature and κ denotes the thermal diffusivity. Two sources of
randomness are considered: (i) the initial condition is random with ϑ being a random
variable represented as ϑ=3+0.3 ξ1 and (ii) the thermal diffusivity κ is another random
variable represented as κ = 0.5+0.1 ξ2, where ξ1 and ξ2 are two uniformly distributed
independent random variables varying between 0 and 1. For this problem, Eq. (5.1) is
first solved numerically. The spatial domain is discretized using 101 equally spaced grid
points, and 200 time-steps of 0.001 seconds each are considered. This resolution implies
Ns =101 and Nt =201. The covariance is estimated using a Monte Carlo simulation with
104 realizations. Accordingly, for each realization a deterministic heat equation is solved
and the solution is stored. Finally the covariance defined in Eq. (2.2) is estimated by
statistical averaging. The mean temperature is plotted in Fig. 1.
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Figure 1: Heat problem: Mean of the field u(x,t).
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Figure 2: Heat problem: Probability density function of η1.
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Figure 3: Heat problem: Probability density function of η2.

Next this (101×101×201) covariance tensor is decomposed using the constrained de-

composition (4.11). Therefore v
(1)
r ,v

(2)
r ∈R

101, v
(3) ∈R

201. The approximation error erT

defined in Eq. (3.3) is found to be 0.13 for R=1, and 0.077 for R=2. The error remains al-
most constant thereafter as R grows. For a three-term approximation of the process using
Eq. (4.12) with R=2, the random variables η1 and η2 are estimated using Eq. (4.14). The
probability density functions (PDF) of these two variables are plotted in Figs. 2 and 3.
One interesting observation here is that although the random variables ϑ and κ are uni-
formly distributed, distribution of the variable η1 departs significantly from a uniform
distribution. To check the accuracy of the approximation, for arbitrarily chosen spatial
location and time instant the random temperature is sampled using Eq. (4.12) and the
PDF is plotted in Fig. 4. A comparison with the PDF estimated using the original process
(found during the Monte Carlo simulation involving the Heat equation) shows that the
proposed tensor decomposition based representation offers a good approximation of the
original process. Also the PDF is estimated using KL decomposition. For this purpose
the covariance matrix given in Eq. (4.5) is first estimated using a Monte Carlo simulation.
Upon finding the dominant eigenvalues and eigenvectors, the process is regenerated us-
ing Eq. (4.6), with N = 2. The PDF of the temperature thus estimated is also plotted in
Fig. 4 and a good match is observed.
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Figure 4: Heat problem: Probability density function of u at arbitrarily chosen point and time instant. The
regenerated processes using both tensor decomposition and KL decomposition show a fair agreement with the
original process.

However, the main difference between the proposed tensor decomposition based ap-
proximation and KL decomposition lies in the computational cost, which is presented in
Table 1. Here only the cost of decomposition is reported since in a practical application
the covariance is not intended to be estimated from a simulation. One such applica-
tion will be given in the third example in this paper, where the covariance is evaluated
from an analytical expression. From Table 1 it is observed that the KL decomposition is
computationally more expensive than the tensor decomposition, especially the memory
requirement becomes prohibitive.

Table 1: Comparison of computational cost for the heat problem.

Discretization Tensor KL

Spatial (Ns) Temporal (Nt) Memory CPU time Memory CPU time

101 201 16 MB 2.2 sec 3.3 GB 10 sec

5.2 Vibration of a plate

The next problem considered is a forced linear vibration problem of a square plate of
size 3m×3m with a uniform thickness of 5mm. Total seven random variables are used
to model the uncertainty of the system: (i) Young’s modulus, (ii) mass density, (iii) three
spatial dimensions, (iv) Poisson’s ratio, and (v) loading. Except the excitation all other
random parameters are modeled as positive-valued random variables. For instance, the
Young’s modulus is modeled as

E(ξ1)= Ē+
σE√

2
(ξ2

1−1), (5.2)

where Ē denotes the mean value, σE denotes the standard deviation, and ξ1 denotes
a standard normal random variable. To ensure the positivity of the Young’s modulus
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Figure 5: Vibration problem: Probability density function of η.

E(ξ1) for all values of ξ1, one constraint needs to be added as σE√
2
< Ē. Similarly the

other five random parameters are modeled using a set of independent standard normal
random variables {ξi}i=6

i=2. The assumed mean values are as follows. Young’s modulus:
2×105 MPa, mass density: 7860 Kg/m3, Poisson’s ratio: 0.3. The standard deviations of
these parameters are chosen as 5% of their mean. The plate is modeled using four-noded
bicubic rectangular conforming elements with sixteen degrees-of-freedom (DOF) per el-
ement. Total sixteen elements are used to discretize the plate. The random excitation is
modeled as

f (t)= f1 sin(ω f 1t)+ f2 sin(ω f 2t)+ξ7 f3 sin(ω f 3t), (5.3)

where ξ7 denotes a standard normal random variable independent of the set {ξi}i=6
i=1,

f1, f2, f3, denote arbitrarily chosen amplitude vectors of loading components, the frequen-
cies ω f 1,ω f 2,ω f 3 are chosen arbitrarily but remain within the range of first four natural
frequencies of the system.

For this problem, the covariance tensor of the response is estimated using the a Monte
Carlo simulation and the tensor decompositions are computed. It is observed that the
Rank-1 decomposition defined in Eq. (3.1) gave a good approximate with an error of
0.003. Therefore, the expansion in Eq. (4.3) with N = 1 can be expected to yield a good
approximation of the spatio-temporal response process. However, when the η was es-
timated using Eq. (4.10), the recomputed process showed a different variance from the
original process. The PDF of η is plotted in Fig. 5, the variance of theta is far less than
one, whereas it should be equal to one as was discussed in Section 4.1. Therefore it is
concluded from this example that although a tensor decomposition may yield a good ap-
proximation of the covariance tensor, the regenerated process using Eq. (4.3) with the η
estimated using Eq. (4.10) may not yield a good approximation of the process.

Further investigation on the results from the Monte Carlo simulation shows that the
for a given spatial location, the type of distribution of the response varies with time.
However, the representation (4.3) with N=1 is unable to capture the change in the type
of distribution with time, as it depends only upon one random variable η. Furthermore,
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the formula (4.10) yields a time-averaged random variable. This also could be a reason
for η not being of unit variance (as the average of a set of zero-mean unit-variance ran-
dom variables is not always a variable with unit-variance). However, further detailed
exploration on suitability of either the representation (4.3) or the formula (4.10) is needed
and modifications are required for more robust applicability.

5.3 Sampling from a readily available covariance function

In the previous two examples the target was to demonstrate and test the validity of tensor
decompositions and the proposed process representations. Now an example is consid-
ered which could be a potential application of the present work. Here the realizations of
a random process are sampled from the known covariance function. Similar sampling
problem occurs in stochastic mechanics examples, where samples of random material
properties are drawn from a KL expansion starting from a spatial covariance function.
However, here the goal is to sample from a spatio-temporal process.

A readily available analytical covariance model from the literature [8] is used for this
sampling example. A generic form of this covariance function is

C(xdist;tdi f f )=
σ2

f (|tdi f f |2)d/2
×g

( ||xdist||2
f (|tdi f f |2)

)

, (5.4)

where xdist denotes a vector joining two spatial locations in the d-dimensional spatial
domain, tdi f f denotes the lag between two time instants, f and g are two functions deter-

mining the actual form of the covariance kernel, σ2 is the variance of the spatio-temporal
process. Based on this generic form, using an available dataset on Irish wind [33], the
following correlation model of the velocity (technically a velocity-measure, derived after
performing a series of pre-processing steps on the actual velocity, including a square-root
transformation) was developed in [8]:

C(xdist;tdi f f )=



















(0.901|tdi f f |1.544+1)−1 if xdist=0,

0.968(0.901|tdi f f |1.544+1)−1

×exp
(

− 0.00134||xdist||
(0.901|tdi f f |1.544+1)0.305

)

otherwise.

(5.5)

This model is used with a spatial domain being a circular area of radius 300 kilometers
over a 24 hours timespan. The spatial covariance from this model at an arbitrarily chosen
time instant is plotted in Fig. 6. For Ns=50 and Nt=10, first the elements of the covariance
matrix Covuu and the covariance tensor C are evaluated directly from Eq. (5.5). Therefore,
unlike the previous two examples, a Monte Carlo simulation is not needed to estimate the
covariance matrix and tensor. The constrained decomposition given in Eq. (4.11) is then
carried out for the covariance tensor. For different values of R, the approximation error
erT is plotted in Fig. 7. To compare the results with KL decomposition, an eigenvalue
decomposition of the covariance matrix is then carried out. For a given truncation level
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Figure 6: Spatial covariance of the wind velocity covariance model at an arbitrarily chosen time instant.

of the KL expansion in Eq. (4.6), the relative error between the actual covariance and the
covariance of the generated process is measured in a similar way as erT by replacing the
tensor norm by a matrix norm. Decay of this error with respect to the levels of truncation
is also plotted in Fig. 7. From this figure it is observed that both the decompositions
follow a similar pattern of convergence. However, the error in the tensor decomposition
is lower than the error in the KL decomposition when the level of truncation is low.

The PDF of the velocity at arbitrarily chosen spatial location and time instant is esti-
mated using the KL expansion in Eq. (4.6) and the proposed representation in Eq. (4.12),
and are plotted as in Fig. 8. In the KL expansion 10 terms are included whereas in the
proposed representation only 5 terms are included as they show equal level of accuracy
in Fig. 7. The distribution is chosen as Gaussian due to the lack of further information.
Also the mean part is left out in this plot, that is, only the random fluctuation is consid-
ered. Inclusion of the mean will shift both the PDFs rightward by an equal amount. The
PDFs estimated from these two methods are found to be in good agreement. The relative
computational cost is presented in Table 2. Here the computational time includes both
computing the covariance matrix or tensor, and their decompositions. Once again it is ob-
served that the proposed tensor-based representation is computationally cheaper. Note
that with an increase in Nt, the increase in the cost in KL decomposition is significantly
higher than the tensor decomposition. This difference is due to the fact that the number
of elements in the covariance matrix varies quadratically with Nt whereas for covariance
tensor it varies linearly.

Table 2: Comparison of computational cost for the wind velocity covariance model.

Discretization Tensor KL

Spatial (Ns) Temporal (Nt) Memory CPU time Memory CPU time

50 10 0.2 MB less than 1 sec 2 MB ∼3 sec

50 50 1 MB ∼ 2 sec 50 MB 70 sec
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Figure 7: Convergence of KL and tensor approximations for the covariance model of the wind data.
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Figure 8: Comparison of PDFs generated by the tensor decomposition and KL expansion of the wind velocity
covariance model, only the fluctuating part is considered. The time instant and the spatial location are chosen
arbitrarily.

6 Concluding remarks

It is observed that for some random spatio-temporal processes, if the covariance is de-
fined as the temporal variation of the spatial covariance, the resulting tensor can be de-
composed into a low-rank tensor decomposition. This property allows representing the
processes in a proposed series form, analogous to the KL expansion for a one-parameter
process. In this work, for the heat equation, both the tensor decomposition and the pro-
posed series representation of the process yielded results with sufficient accuracy. Also
this approach is found to be computationally cheaper than the KL approach. However,
for the vibration problem, only the tensor decomposition worked and not the represen-
tation of the process. To demonstrate a practical application of the proposed method,
an example is presented where the realizations of a spatio-temporal process are success-
fully sampled from a readily available covariance function. These successful implemen-
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tations of this representation opens up avenues of developing approximations to spatio-
temporal processes in a computationally efficient way. Further studies are needed to
identify the characteristics of the processes or physical phenomena that will make a pro-
cess suitable for this tensor decomposition and series representation. Estimation of the
scalar-valued random coefficients in this series representation also needs further explo-
ration as the choice of this coefficient is not unique.
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