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Abstract. We present new large time step methods for the shallow water flows in the
low Froude number limit. In order to take into account multiscale phenomena that typ-
ically appear in geophysical flows nonlinear fluxes are split into a linear part governing
the gravitational waves and the nonlinear advection. We propose to approximate fast
linear waves implicitly in time and in space by means of a genuinely multidimensional
evolution operator. On the other hand, we approximate nonlinear advection part ex-
plicitly in time and in space by means of the method of characteristics or some standard
numerical flux function. Time integration is realized by the implicit-explicit (IMEX)
method. We apply the IMEX Euler scheme, two step Runge Kutta Cranck Nicolson
scheme, as well as the semi-implicit BDF scheme and prove their asymptotic preserv-
ing property in the low Froude number limit. Numerical experiments demonstrate
stability, accuracy and robustness of these new large time step finite volume schemes
with respect to small Froude number.
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1 Introduction

In oceanography, meteorology or river flow engineering shallow water models are used
to describe a thin layer of constant density fluid in hydrostatic balance bounded from
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below by a rigid surface, see, e.g., [8, 11, 22, 45]. The shallow water equations (SWE)
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describe the motion of shallow water, where h is the water depth, u=(u,v); u,v are the
velocities in x- and y-direction and b̃ is time independent bottom topography. Further,

ε:=ure f /cre f =ure f /
√

ghre f is the reference Froude number, g is the gravitational constant,

ure f and hre f are the problem dependent reference values for velocity and water depth,
respectively. System (1.1) is a hyperbolic balance law, which can be derived by integrating
the Navier-Stokes equations along the vertical axis [45].

Let us note that geophysical flows are typically perturbations of some underlying
equilibrium state. One possibility to take the loss of significance into account is to ap-
proximate just the perturbation of the equilibrium states [15, 34]. For the shallow water
equations (1.1) the so-called lake at rest solution h+b=const., u=0=v is the equilibrium
state.

We would like to point out, that in literature there are already several approaches that
describe how to design a numerical scheme which satisfies some important equilibrium
conditions, such as the lake at rest state or the geostrophic equilibrium, exactly for given
discrete data. Such schemes are called well-balanced schemes or schemes satisfying the
so-called C-property, we refer a reader to, e.g., [4,7,10,16,24–27,32] and to [5], where the
C-property has been introduced firstly. We will discuss the question of well-balancing
more deeply in Sections 4.3 and 5 and show that our newly developed large time step
schemes are well-balanced for the lake at rest uniformly with respect to the Froude num-
ber ε.

Now, we introduce the following variable transformation w=(z,m,n) :=(h+b,hu,hv).
Here z is the perturbation of the constant water level H=h+ b̃ and b= b̃−RBC<0 with a
problem defined relative bottom topography constant RBC. We should also note that an
analogous variable transformation has been already used in [24, 26, 27, 41, 42]. The only
difference in our case is that we introduce explicitly a “shift” of the coordinate system in
the vertical direction by a suitable constant denoted by RBC in order to obtain a still water
level to be zero. Consequently, we aim to have the perturbation z to be a small positive or
negative value. Note that by this transformation we obtain bottom topography function
b < 0. System (1.1) can be now rewritten in the non-dimensional form using the new
variables z,m,n
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In geophysical problems low Froude number shallow water flows typically appear,
cf. [22, 33, 45]. This means that the advection speed ure f is much smaller then the speed
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of gravitational waves cre f and thus ε ≪ 1. Indeed, as stated in [33] the shallow water
theory is an appropriate approximation for atmospheric and oceanic motions in the mid-
latitudes with relatively large length and time scales. For example, in the atmosphere
typical scales of motion include wind speeds ure f =10 ms−1 and the vertical length scales

hre f =10 km; consequently the reference Froude number ε=ure f /
√

ghre f =0.03. Similarly,

the current velocity in oceans is approximately ure f =1 ms−1 and the vertical length depth
hre f is around 100 m. Therefore for the oceanic current motions we have again the Froude
number ε around 0.03. Consequently, we have in (1.2) terms of different ε-like orders. If
time explicit discretization is used in (1.2) then the Froude number dictates the time steps
via the following CFL condition

max

( |u|+c

∆x
,
|v|+c

∆y

)

∆t≈
(

1+
1

ε

)

max

( |u|
∆x

,
|v|
∆y

)

∆t=CFL≤1. (1.3)

In order to overcome a strong stability limitation of explicit schemes several split-
explicit, implicit or semi-implicit schemes have been proposed in the literature, cf. [6, 14,
15, 21, 23, 34, 35, 38, 39]. In the case of semi-implicit schemes slow waves are typically
approximated explicitly and fast implicitly in time. Since the problem is fully nonlinear,
the crucial question is how to split the governing equations into subsystems modelling
slow/fast waves. There are various methods, more or less efficient, that have been pro-
posed in the literature; see, e.g, [14, 15, 18, 21, 34, 36, 38, 39], as well as [2, 3, 30] for recent
results.

The aim of this paper is to derive and analyse a new large time step finite volume
scheme for the shallow water equations. We use implicit-explicit (IMEX) time discretiza-
tion and split the shallow water equations (1.2) into a linear system describing the gravi-
tational waves and a nonlinear advection part. The novelty of our approach is to approxi-
mate the fast gravitational waves in a multidimensional way. Indeed, we approximate the
gravitational waves implicitly in time and in space by means of a multidimensional evo-
lution operator that takes all infinitely many directions of wave propagation into account.
Nonlinear advection will be approximated explicitly in time and in space by means of a
characteristic scheme or by using some standard flux-vector splitting scheme. We will
derive first and second order large time step finite volume schemes and analyze them
from the viewpoint of accuracy and asymptotic behaviour with respect to ε. In order to
preserve the lake at rest steady state we will approximate the source term in a suitable
way. Further, we analyze the underlying elliptic eigenvalue problem that results from
our linear/nonlinear splitting approach and prove that our large time step schemes are
indeed well-balanced uniformly with respect to ε>0.

The paper is organized as follows. In the next section suitable IMEX time discretiza-
tions for the first and second order methods are proposed. Next, in Section 3 we will
derive exact integral representation and approximate evolution operators for both, the
linear operator describing the gravitational waves, as well as the nonlinear operator for
the advection. We will also prove that the proposed IMEX-type time discretization are the
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Figure 1: Variable transformation for the shallow water equations.

so-called asymptotically stable, i.e. the approximation is stable with respect to the small
parameter ε. Further, in Section 4 we derive the large time step finite volume scheme us-
ing the above IMEX-type time discretization and the finite volume spatial discretization.
As a predictor step to evaluate cell interface fluxes, the approximate evolution opera-
tors will be used. In Section 5 behaviour of the proposed large time step finite volume
schemes will be illustrated on a series of numerical experiments. Numerical experiments
demonstrate high accuracy as well as asymptotic preserving properties of new large time
step finite volume schemes.

2 Time discretization

The aim of this section is to propose suitable time discretizations that efficiently resolve
multiscale behaviour of the solution of the shallow water equations (1.2). We follow
Restelli et al. [14, 38] and split the full nonlinear flux and the source term from (1.2) into
a linear part governing the gravitational waves and the nonlinear part that models ad-
vection flow. Let us note that we will obtain in this way a splitting into stiff and nonstiff
parts. More precisely, we can rewrite (1.2), i.e.

wt=N (w)

as follows

wt=L(w)+(N−L)(w), (2.1)

where

L(w)=−∇·FL(w)+K(w) (2.2a)
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with
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and

(N−L)(w)=−∇·FNL(w) (2.3a)

with
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We would like to point out that the choice of the linear operatorL is a crucial step. Indeed,
it is the operator that has to model gravitational waves.

In order to relax the strong stability condition (1.3), we now approximate the linear
operator L implicitly in time, whereas the nonlinear operator N−L will be approxi-
mated explicitly. Consequently, we will use only the advection velocity as the restriction
for time step ∆t through the following CFL stability condition

max

( |u|
∆x

,
|v|
∆y

)

∆t=CFLu ≤1. (2.4)

In what follows we present three IMEX-type time discretizations of (1.2) and show
that they satisfy the so-called asymptotic preserving property, cf. [19].

The first order approximation is obtained by integrating (1.2) from tn to tn+1 and
approximating the flux integrals by the rectangle rule - implicitly for the linear part and
explicitly for the nonlinear one, yielding

wn+1=wn−∆t ∇·
[

FL(w
n+1)+FNL(w

n)
]

+∆t K(wn+1). (2.5)

Let us point out that since the source is stiff it is treated implicitly. The local truncation
error of this time discretization is of the second order. To obtain the third order local
truncation error we predict solution wn+ 1

2 at half time step with scheme (2.5) and then
use the midpoint rule for the nonlinear part and the trapezoidal rule for the linear one.
This yields us the so-called second order Runge-Kutta Cranck Nicolson (RK2CN) scheme

wn+ 1
2 =wn−∆t

2
∇·FNL(w

n)−∆t

2
∇·FL(w

n+ 1
2 )+

∆t

2
K(wn+ 1

2 ), (2.6a)

wn+1=wn−∆t∇·FNL(w
n+ 1

2 )−∆t

2
∇·
[

FL(w
n)+FL(w

n+1)
]

+
∆t

2

[

K(wn)+K(wn+1)
]

, (2.6b)
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see also [36] for another use of RK2CN for low Mach number problems. The third time
approximation scheme is obtained by applying the backward difference method to ap-
proximate the time derivative

wn+1−α0wn−α1wn−1

−β
≈wn+1

t =−∇·FL(w
n+1)−∇·FNL(w

n+1)+K(wn+1). (2.7)

This yields the fully implicit scheme

wn+1=α0wn+α1wn−1

+β
{

∇·FL(w
n+1)+∇·FNL(w

n+1)−K(wn+1)
}

, (2.8)

with α0,α1,β coefficients resulting from the corresponding Taylor expansion, see Table 1.

Table 1: Coefficients of the backward difference method for non-constant times steps a=tn+1−tn, c=tn−tn−1.

α0 α1 β β0 β1 β̃0 β̃1

(a+c)2

c(2a+c)
− a2

c(2a+c)
− a(a+c)

2a+c − a(a+c)2

c(2a+c)
a2(a+c)
c(2a+c)

a − a2

2a+c

In the case of equidistant time steps, this discretization reduces to the standard BDF2
method, cf. [15, 38]. Since we want to solve the nonlinear flux explicitly, we further ap-
proximate FNL(w

n+1) by a linear interpolation, obtaining

wn+1=α0wn+α1wn−1

+∇·
{

βFL(w
n+1)+β0FNL(w

n)+β1FNL(w
n−1)

}

−βK(wn+1). (2.9)

Alternatively, interpolating the nonlinear part of the flux at tn− 1
2 ,tn+ 1

2 leads to

wn+1=α0wn+α1wn−1

+∇·
{

βFL(w
n+1)+ β̃0FNL(w

n+ 1
2 )+ β̃1FNL(w

n− 1
2 )
}

−βK(wn+1). (2.10)

As we will see in the next section the implicit time approximation of the source term in
all cases is necessary for the method to satisfy the asymptotic preserving property.

2.1 Asymptotic preserving property

The aim of this section is to show the asymptotic preserving property of the time dis-
cretizations (2.5), (2.6), (2.9) and (2.10). To this end, let us consider a general singular per-
turbation problem P ε and suppose that its solution converges to the solution of a limit
problem P0 as ε→0. A scheme P ε,h with a discretization parameter h is called asymptotic
preserving (AP), if its limit, say P0,h, is a consistent approximation of the problem P0 and
a stability constraint on h is independent of ε.
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The asymptotic limit of the shallow water equations (1.1) can be investigated by the
procedure of Klainerman and Majda [20]. This means that we consider formally the
asymptotic expansion

f (x)= f (0)(x)+ε f (1)(x)+ε2 f (2)(x) (2.11)

for the unknown functions h,u,v. We plug in this expansion to the nondimensional form
of Eq. (1.1) and collect the like powers of ε:

ε2 : h(0)∇h(0)=−h(0)∇b, (2.12a)

ε1 : h(0)∇h(1)+h(1)∇h(0)=−h(1)∇b, (2.12b)

ε0 : h
(0)
t +∇·(h(0)u(0))=0, (2.12c)

(h(0)u(0))t+∇·(h(0)u(0)⊗u(0))+(h∇h)(2)=−h(2)∇b. (2.12d)

Obviously, we first have

h(0)+b=: z(0)(t), h(1)=h(1)(t), h
(0)
t +∇·(h(0)u(0))=0. (2.13)

We average (2.13) over the entire flow domain Ω and obtain by the Gauss theorem

−dz(0)

dt
=−dh(0)

dt
=

1

|Ω|
∫

∂Ω

h(0)u(0) ·n ds. (2.14)

Consequently, the limit equations read

h(0)+b= z(0)(t), (2.15a)

∇·(h(0)u(0))=−dz(0)

dt
=

1

|Ω|
∫

∂Ω

h(0)u(0) ·n ds, (2.15b)

(h(0)u(0))t+∇·(h(0)u(0)⊗u(0))+h(0)∇h(2)=0. (2.15c)

Then by (2.13) z(0) as well as h(1) are constant in space. Further, the integral over the
entire domain in (2.14) vanishes for certain boundary conditions, e.g. periodic boundary
conditions, slip boundary conditions or under the sublinear growth condition for u(0)

and h(0)

u(0)(x),h(0)(x)=o(|x|), x→∞, (2.16)

cf. [9, 17]. Then (2.15) yields for constant bottom topography the limit equations in the
following form

h(0)=const., (2.17a)

∇·u(0)=0, (2.17b)

u
(0)
t +∇·(u(0)⊗u(0))+∇h(2)=0. (2.17c)



314 G. Bispen et al. / Commun. Comput. Phys., 16 (2014), pp. 307-347

Rewriting (2.15) using the variables (z,m,n), m = (m,n), we obtain the following limit
equations

z(0)≡Z=const., (2.18a)

∇·m(0)=0, (2.18b)

m
(0)
t +

1

Z−b
∇·(m(0)⊗m(0))+(Z−b)∇z(2)=0. (2.18c)

In the next subsection we will show that the IMEX-type discretizations (2.5), (2.6), (2.9)
and (2.10) are asymptotic preserving, i.e. in the limit as ε → 0 they yield a consistent
approximation of the above limiting equations (2.18a), (2.18b) and (2.18c).

2.1.1 AP property of the IMEX-type time discretizations

In this section we will prove the AP property of the IMEX-type time discretization schemes
introduced above. Let us firstly assume well-prepared data of the following form

zn(x)= z(0),n+εz(1),n+ε2z(2),n(x), (2.19a)

mn(x)=m(0),n(x)+εm(1),n(x)+ε2m(2),n(x), (2.19b)

zn−1(x)= z(0),n−1+εz(1),n−1+ε2z(2),n−1(x), (2.19c)

mn−1(x)=m(0),n−1(x)+εm(1),n−1(x)+ε2m(2),n−1(x). (2.19d)

We now insert the expansions (2.19) into the scheme (2.9) and collect the like powers of
ε. The terms with ε−1, ε−2 give formally

∇z(0),n+1=∇z(1),n+1=0. (2.20)

Further the leading order terms in ε give

z(0),n+1=α0z(0),n+α1z(0),n−1+β∇·m(0),n+1, (2.21)

m(0),n+1=α0m(0),n+α1m(0),n−1−βb∇z(2),n+1

+β0

[

∇·(m(0),n⊗m(0),n)

z(0),n−b
+z(0),n∇z(2),n

]

+β1

[

∇·(m(0),n−1⊗m(0),n−1)

z(0),n−1−b
+z(0),n−1∇z(2),n−1

]

. (2.22)

Eq. (2.21) can be rewritten in the following way

∇·m(0),n+1=
z(0),n+1−α0z(0),n−α1z(0),n−1

β
=−z

(0),n+1
t +O(∆t2). (2.23)

We use now the same argument as in the continuous case and integrate (2.23) over
the computational domain to obtain that m(0),n+1 is divergence free using the sublinear
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growth condition (2.16) or the suitable boundary conditions, such as periodic boundary
conditions, slip boundary conditions. Hence z(0),n+1=const.≡Z.

For scheme (2.6) the proof is similar. We insert the asymptotic expansions (2.11) in the
time discretization (2.6) and obtain formally that

∇z(0),n+1=∇z(1),n+1=0.

Then we obtain z(0),n+1= z(0),n =Z and m(0),n+1 to be divergence free from the equation
for z

∇·m(0),n+1=−2
z(0),n+1−z(0),n

∆t
+z

(0),n
t =−z

(0),n+1
t +O(∆t).

The limit of the momentum equation reads

m(0),n+1=m(0),n−∆t

2
b∇
[

z(2),n+1+z(2),n
]

+∆t

[

∇·(m(0),n+ 1
2 ⊗m(0),n+ 1

2 )

z(0),n+
1
2 −b

+z(0),n+
1
2 ∇z(2),n+

1
2 ,

]

,

which is a consistent approximation of (2.18c).
The proof of the AP property for the time discretization schemes (2.9), (2.10) is anal-

ogous to that of the scheme (2.5). Summarizing the above results we have shown the
following lemma.

Lemma 2.1. The IMEX-type discretization schemes (2.5), (2.6), (2.9) and (2.10) are asymptotic
preserving.

3 Evolution operators

In the previous section we have proposed a suitable splitting of the whole shallow water
equations (1.2) into the linear and nonlinear parts governing the gravitational waves and
advection, respectively. Thus, using the operator splitting approach for (1.2) we will
obtain the corresponding subsystems

wt+∇·FL(w)=K(w), (3.1)

wt+∇·FNL(w)=0. (3.2)

Using the theory of bicharacteristics we will derive in this section exact and approximate
evolution operators EGL and EGNL for (3.1) and (3.2), respectively. The approximate evo-
lution operators are the main building blocks of the so-called evolution Galerkin schemes
(FVEG), that have been studied extensively by Lukáčová, Noelle, Arun and collabora-
tors. The main idea of the FVEG schemes is to apply the approximate evolution opera-
tors in order to predict a solution on cell interfaces and to evaluate cell interface fluxes.
The later are used in the finite volume corrector step. Numerical results presented, e.g.,
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in [1, 28, 29, 32], illustrate that the FVEG are approximating multidimensional flow phe-
nomena in a very accurate and stable way. We refer a reader for more details to our
review paper [31]. In what follows we will firstly derive exact integral representations
of the subsystems (3.1) and (3.2) and then derive corresponding approximate evolution
operators. These will be used later in Section 4 to formulate the finite volume update.

3.1 Evolution operator for the linear part

We will now derive the evolution operator for the linear part of the shallow water equa-
tions (3.1). Written in the quasilinear form wt+A1wx+A2wy=0, we have





z
m
n





t

+





0 1 0
s2 0 0
0 0 0









z
m
n





x

+





0 0 1
0 0 0
s2 0 0









z
m
n





y

=0, s=

√

−b(x,y)

ε
. (3.3)

The eigenvalues of the matrix pencil P = A1cos(θ)+A2sin(θ), θ ∈ [0,2π), are λ1 =−s,
λ2=0, λ3= s. The matrix consisting of the right eigenvectors reads

R(θ)=





−1
s 0 1

s
cos(θ) sin(θ) cos(θ)
sin(θ) −cos(θ) sin(θ)



. (3.4)

For s 6=0, R is regular and the inverse matrix has the following form

R−1(θ)=







−s
2

cos(θ)
2

sin(θ)
2

0 sin(θ) −cos(θ)
s
2

cos(θ)
2

sin(θ)
2






. (3.5)

Let Bi=R−1AiR for i=1,2. Multiplying (3.3) by the matrix R−1 from the left and denoting
v :=R−1w, the vector of characteristic variables, we get

vt+B1vx+B2vy =((R−1)t+B1(R−1)x+B2(R−1)y)w=: F. (3.6)

Here,

v=





1
2 [−zs+mcos(θ)+nsin(θ)]

msin(θ)−ncos(θ)
1
2 [zs+mcos(θ)+nsin(θ)]



. (3.7)

This is equivalent to the quasi-diagonal form

vt+D1vx+D2vy =((R−1)t+B1(R−1)x+B2(R−1)y)w−(B1−D1)vx−(B2−D2)vy

=: F+S, (3.8)
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where Di is the diagonal part of Bi and

B1=





−scosθ − s
2 sinθ 0

−ssinθ 0 ssinθ
0 s

2 sinθ scosθ



, B2=





−ssinθ s
2 cosθ 0

scosθ 0 −scosθ
0 − s

2 cosθ ssinθ



. (3.9)

Let us introduce the derivatives

D+
θ [ f ] :=cos(θ) fx+sin(θ) fy, (3.10)

D−
θ [ f ] :=sin(θ) fx−cos(θ) fy. (3.11)

Each equation of the system (3.8) is valid along a corresponding family of bicharacter-
istic curves xi = (xi,yi), i = 1,2,3. Time evolution of xi(t) and the normal n(θi(t)) =
(cos(θi(t)),sin(θi(t))) can be obtained from the extended lemma on bicharacteristics,
cf. [37]. This implies that

dxi

dt
(t)=∇nλi(x

i(t)), i=1,2,3,

where ∇nλi(x
i(t)) is the so-called ray velocity vector. Let us recall that the ray velocities

are the velocities with which a point on the bicharacteristic moves in the (x,y) plane.
More precisely, we can obtain the following system of ordinary differential equations

dx1

dt
=−s(x1)cos(θ1),

dy1

dt
=−s(x1)sin(θ1),

dθ1

dt
=−D−

θ1 [s](x
1), (3.12a)

dx2

dt
=0,

dy2

dt
=0,

dθ2

dt
=0, (3.12b)

dx3

dt
= s(x3)cos(θ3),

dy3

dt
= s(x3)sin(θ3),

dθ3

dt
=D−

θ3 [s](x
3), (3.12c)

where xi(tn+1) = (xP,yP), θi(tn+1) = ω and P = (xP,yP,tn+1) is the apex of the bicha-
racteristic cone, ω∈ [0,2π).

Integrating each equation of (3.8) along the corresponding bicharacteristics from tn to
tn+1 implies

vn+1
i =vn

i (x
i(tn;ω))+

tn+1
∫

tn

{

Fi(x
i(t;ω),t)+Si(x

i(t;ω),t)
}

dt, i=1,2,3. (3.13)

Now multiplying (3.13) by R(ω) and averaging over 0 to 2π we obtain after some lengthy
calculations, see Appendix, the following exact integral representation:

(sz)(P)=
1

2π

2π
∫

0

{sz−mcosθ−nsinθ}(x1(tn;ω),tn) dω

− 1

2π

2π
∫

0

tn+1
∫

tn

{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

(x1(t;ω),t) dt dω, (3.14)
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m(P)=− 1

π

2π
∫

0

cosω{sz−mcosθ−nsinθ}(x1(tn;ω),tn) dω

+
1

π

2π
∫

0

tn+1
∫

tn

cosω
{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

(x1(t;ω),t) dt dω, (3.15)

n(P)=− 1

π

2π
∫

0

sinω{sz−mcosθ−nsinθ}(x1(tn;ω),tn) dω

+
1

π

2π
∫

0

tn+1
∫

tn

sinω
{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

(x1(t;ω),t) dt dω, (3.16)

and

θ(x1(t;ω),t) := θ1(t;ω).

In what follows we will approximate (A.14)-(A.16) and derive a suitable approximate
evolution operator. Denoting ∆t= tn+1−tn, and applying the rectangle rule we approxi-
mate the bicharacteristic as follows

x1(tn;ω)=x1(tn+1;ω)+

tn+1
∫

tn

[

scos(θ)
ssin(θ)

]

(x1(τ;ω),τ) dτ

=

[

xP

yP

]

+∆ts(P)

[

cos(ω)
sin(ω)

]

+O(∆t2). (3.17)

Similarly,

θ1(tn;ω)= θ1(tn+1;ω)+

tn+1
∫

tn

D−
θ [s](x

1(τ;ω),τ) dτ

=ω+∆tD−
ω [s](Q(tn,ω))+O(∆t2). (3.18)

This yields the approximations

cos(θ)(x1(tn;ω),t)=cos(ω)−∆tsin(ω)D−
ω [s](Q(tn ,ω))+O(∆t2), (3.19a)

sin(θ)(x1(tn;ω),t)=sin(ω)+∆tcos(ω)D−
ω [s](Q(tn ,ω))+O(∆t2). (3.19b)

Using first (3.17)-(3.19) and the rectangle rule in time at t= tn , and then the product rule
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for the derivatives in the exact integral representation (A.14) yields

(sz)(P)

=
1

2π

2π
∫

0

{

sz−m[cos(ω)−∆tsin(ω)D−
ω [s]]−n[sin(ω)+∆tcos(ω)D−

ω [s]]
}

(Q(tn,ω))dω

− ∆t

2π

2π
∫

0

{

szD+
ω [s]+D−

ω [ms]sinω−D−
ω [ns]cosω

}

(Q(tn,ω)) dω+O(∆t2)

=
1

2π

2π
∫

0

{sz−mcos(ω)−nsin(ω)}(Q(tn,ω)) dω

− ∆t

2π

2π
∫

0

{

szD+
ω [s]+D−

ω [m]ssinω−D−
ω [n]scosω

}

(Q(tn,ω)) dω+O(∆t2), (3.20)

where

Q(tn,ω) :=

[

xP

yP

]

+∆ts(P)

[

cos(ω)
sin(ω)

]

.

The expression for m(P) and n(P) are analogous. In [43] the so-called local evolution
operator for the Euler equations has been derived by limiting ∆t → 0. Consequently,
time integrals vanish in the limit. Repeating the procedure from [43], we can derive the
local evolution operator also for the shallow water equations. Let us demonstrate the
derivation for Eq. (3.20).

To this end we need the following useful lemma, cf. [1, 43].

Lemma 3.1. Let f ∈C1(R2) and p∈C1(R). Partial integration leads to

β
∫

α

p′(ω) f (Q(tn,ω)) dω−p(β) f (Q(tn ,β))+p(α) f (Q(tn ,α))

=∆ts(P)

β
∫

α

p(ω)D−
ω [ f ](Q(tn ,ω)) dω, (α,β)∈ [0,2π).

We apply the lemma and rewrite the second term of (3.20) under the assumption of
piecewise smooth functions on each subinterval (αi,αi+1)⊂ (0,2π)†

s(P)∆t

αi+1
∫

αi

{

szD+
ω [s]+D−

ω [m]ssinω−D−
ω [n]scosω

}

(Q(tn,ω))dω

†We can divide the interval [0,2π] in the following way [0,2π] = [0= α0,α1]∪[α1,α2]∪···∪[αl ,αl+1 = 2π] so
that z,m,n,s are piecewise smooth on each [αi,αi+1].



320 G. Bispen et al. / Commun. Comput. Phys., 16 (2014), pp. 307-347

=

αi+1
∫

αi

{

s(P)∆tszD+
ω [s]+mscosω+nssinω

}

(Q(tn,ω)) dω

−sin(αi+1)m(Q(tn,αi+1))+sin(αi)m(Q(tn,αi))

+cos(αi+1)n(Q(tn,αi+1))−cos(αi)n(Q(tn,αi))

−→ 0 as ∆t→0. (3.21)

Analogously we obtain the limits of the double integrals in (A.15) and (A.16) for ∆t→0

s(P)∆t

αi+1
∫

αi

cosω
{

szD+
ω [s]+D−

ω [m]ssinω−D−
ω [n]scosω

}

(Q(tn,ω)) dω

=

αi+1
∫

αi

{

s(P)∆tcosωszD+
ω [s]+ms(2cos2 ω−1)+ns2sinωcosω

}

(Q(tn,ω)) dω

−cos(αi+1)sin(αi+1)m(Q(tn,αi+1))+cos(αi)sin(αi)m(Q(tn,αi))

+cos2(αi+1)n(Q(tn,αi+1))−cos2(αi)n(Q(tn,αi))

−→ 0 as ∆t→0, (3.22)

s(P)∆t

αi+1
∫

αi

sinω
{

szD+
ω [s]+D−

ω [m]ssinω−D−
ω [n]scosω

}

(Q(tn,ω)) dω

=

αi+1
∫

αi

{

s(P)∆tsinωszD+
ω [s]+ms2cosωsinω+ns(1−2cos2 ω)

}

(Q(tn,ω)) dω

−sin2(αi+1)m(Q(tn,αi+1))+sin2(αi)m(Q(tn,αi))

+cos(αi+1)sin(αi+1)n(Q(tn,αi+1))−cos(αi)sin(αi)n(Q(tn,αi))

−→0 as ∆t→0. (3.23)

Finally, we obtain the following approximation of (A.14)-(A.16) for ∆t→0

(sz)(P)=
1

2π

2π
∫

0

{s(P)zn−mn cosω−nn sinω}(Qτ) dω, (3.24a)

m(P)=− 1

π

2π
∫

0

cosω{s(P)zn−mncosω−nnsinω}(Qτ) dω, (3.24b)

n(P)=− 1

π

2π
∫

0

sinω{s(P)zn−mn cosω−nn sinω}(Qτ) dω, (3.24c)
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where

Qτ(ω)=

(

xp+τscos(ω)

yp+τssin(ω)

)

.

Here, the local time step τ can be chosen arbitrary small, in particular we choose τ in
such a way that the following condition holds

s
τ

∆x
=CFLg≤1 (3.25)

with s= s(P)=

√
−b(P)

ε and CFLg being arbitrary small. The above evolution operator is
denoted by EGL

0 .

3.2 Evolution operator for the nonlinear part

Let us recall the nonlinear part of the shallow water equations (1.2)





z
m
n





t

+





0
m2

z−b +
1

2ε2 z2

mn
z−b





x

+





0
mn
z−b

n2

z−b +
1

2ε2 z2





y

=0. (3.26)

Obviously z is constant in time. Analyzing the system (3.26) we find out that it cre-
ates a hyperbolic conservation law with the eigenvalues λ1 =0, λ2 =ucosθ+vsinθ, λ3 =
2(ucosθ+vsinθ), θ ∈ [0,2π). Let us consider the characteristic curve x(t) = (x(t),y(t))
determined by the following equations

dx

dt
=u,

dy

dt
=v.

Time evolution of the momentum equation is determined by the following equations

Dm

Dt
=
(

u2− z

ε2

)

zx+uvzy−u(mx+ny)−u(ubx+vby),

Dn

Dt
=
(

v2− z

ε2

)

zy+uvzx−v(mx+ny)−v(ubx+vby),

where
D

Dt
:=

∂

∂t
+u

∂

∂x
+v

∂

∂y

denotes the time derivative along the characteristic x(t). Now, integrating along the char-
acteristic x(t) we get

mn+1(P)=mn(x(tn))

+

tn+1
∫

tn

[(

u2− z

ε2

)

zx+uvzy−u(mx+ny)−u(ubx+vby)
]

(x(t),t) dt, (3.27a)
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nn+1(P)=nn(x(tn))

+

tn+1
∫

tn

[(

v2− z

ε2

)

zy+uvzx−v(mx+ny)−v(ubx+vby)
]

(x(t),t) dt. (3.27b)

Denoting ∆t= tn+1−tn and approximating time integrals by means of the rectangle rule
we obtain

mn+1(P)=
[

m+∆t
{[

u2− z

ε2

]

zx+uvzy−u(mx+ny)−u(ubx+vby)
}]

(x(tn),tn), (3.28a)

nn+1(P)=
[

n+∆t
{[

v2− z

ε2

]

zy+uvzx−v(mx+ny)−v(ubx+vby)
}]

(x(tn),tn). (3.28b)

In order to evaluate (3.28) we had to freeze the characteristic direction and set

dx

dt
=u(x(tn),tn),

dy

dt
=v(x(tn),tn). (3.29)

We denote the evolution operator (3.28) by EGNL
∆t . Here the space derivatives in (3.28) can

be approximated, e.g., by central differences.

4 Large time step finite volume schemes

In this section we will describe the large time step finite volume evolution Galerkin meth-
ods that combine the IMEX-type time discretizations and the approximate evolution op-
erators for the linear part governing fast gravitational waves. The nonlinear advection
part can be approximated either using the characteristic method, as described in Section
3.2, or by some standard numerical flux functions. Both approaches will be compared
from the viewpoint of accuracy as well as asymptotic preserving property.

First, let us divide a computational domain Ω in a finite number of rectangular mesh
cells Cij, (i, j)∈J, where J is an index set. Denote by

f n
ij :=

1

|Cij|
∫

Cij

f (x,tn) dx

the cell average of a function f . For simplicity of presentation let us first consider the first
order IMEX time discretization scheme (2.5). Second order time discretization schemes
(2.6), (2.9) and (2.10) will be considered later analogously. Discretizing (2.5) in space by
the finite volume method we obtain the following scheme

wn+1
ij =wn

ij−
∆t

|Cij|
∫

∂Cij

FL(w
n+1)·n ds− ∆t

|Cij|
∫

∂Cij

FNL(w
n)·n ds+

∆t

|Cij|
∫

Cij

K(wn+1) dx, (4.1)
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where |Cij| denotes the volume of the mesh cell Cij, |Cij|=∆x∆y, ∆t is the time step and
n denotes the unit outer normal to ∂Cij. In what follows we will describe how to approx-
imate the cell interface integrals as well as the volume integral of the source term K. In
particular, we will use the flux-vector splitting numerical flux of Van Leer [13] as well as
the numerical fluxes based on the approximate evolution operators from Section 3.

Let us first approximate
∫

∂Cij
FL(w

n+1)·n ds. As already pointed out we predict the

cell interface values for the linear operator by the approximate evolution operator EGL
0 .

This is reasonable, since we take implicitly all infinitely many directions of the prop-
agation of gravitational waves into account but omit the restrictive stability condition

depending on cre f =
√

ghre f . More precisely, we set

∫

∂Cij

FL(w
n+1)·n ds≈∑

j

γjFL(EGL
0 (R(wn+1)(xj)))·n(xj)=:HL

ij(EGL
0 (Rwn+1)), (4.2)

where γj,xj are weights and nodes of a suitable quadrature along the cell interfaces. In
our numerical experiments we have used the Simpson rule. Further, the operator R is a
linear operator‡ that is either the identity or a reconstruction operator depending on the
order of spatial approximation. In the numerical experiments we are using the following
bilinear reconstruction for the second order schemes

R f |Cij
(xM+ x̃,yM+ ỹ)= fij+ x̃δ

ij
x f + ỹδ

ij
y f + x̃ỹδ

ij
xy f , (4.3a)

with

δ
ij
x f =

2
[

fi+1,j− fi−1,j

]

+ fi+1,j+1+ fi+1,j−1− fi−1,j+1− fi−1,j−1

8∆x
, (4.3b)

δ
ij
y f =

2
[

fi,j+1− fi,j−1

]

+ fi+1,j+1+ fi−1,j+1− fi+1,j−1− fi−1,j−1

8∆y
, (4.3c)

δ
ij
xy f =

fi−1,j−1+ fi+1,j+1− fi−1,j+1− fi+1,j−1

4∆x∆y
, (4.3d)

where (xM,yM) is the (bary)center of the cell Cij and f stays for the equilibrium variables
z,m,n.

Now in order to approximate the nonlinear flux term
∫

∂Cij
FNL(w

n)·n ds we can either

apply the approximate evolution operator derived in Section 3.2 or some standard one-
dimensional numerical fluxes. In our numerical experiments presented in Section 5 the
Van Leer numerical flux, cf. [13], is used

∫

∂Cij

FNL(w
n)·n ds≈

(

Fn
i+ 1

2 ,j
−Fn

i− 1
2 ,j

)

∆x+
(

Gn
i,j+ 1

2
−Gn

i,j− 1
2

)

∆y=:HVL
ij (Rwn), (4.4)

‡Note that it is important that R is a linear operator to preserve the linearity of the approximation of gravi-
tational waves.
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here F and G are numerical fluxes in x-,y-direction, respectively. More precisely, F =
FNL ·(1,0)T and G=FNL ·(0,1)T and for the first order method we have

Fn
i+ 1

2 ,j
=

1

2

[

F(wn
i+1,j)+F(wn

ij)−
∣

∣

∣

∣

∣

dF

dw

(

wn
i+1,j+wn

ij

2

)
∣

∣

∣

∣

∣

(wn
i+1,j−wn

ij)

]

with an analogous expressions for Fi− 1
2 ,j as well as for Gi,j± 1

2
. The second order method

is obtained via MUSCL-type approach using a bilinear reconstruction in space.

Another possibility is to use the approximate evolution operator (3.28) that in fact
yields the characteristic method for the nonlinear part

∫

∂Cij

FNL(w
n+ 1

2 )·n ds≈∑
j

γjFNL(EGNL
∆t
2
(Rwn(xj)))·n(xj)

=:HNL
ij (EGNL

∆t
2
(Rwn)). (4.5)

Here γj,xj are the weights and nodes of a numerical quadrature along the cell interfaces
and R a reconstruction operator.

Finally the volume integral over K will be approximated in a well-balanced way. It
means that suitable numerical quadratures in x- and y-directions are used, so that some
important equilibrium states are preserved for discrete data exactly. In [32] the following
well-balanced approximation of the source term has been used and shown to preserve
the lake at rest states, i.e. u=0=v,z= const equilibrium state exactly; see also [4, 5, 7, 10,
16, 24–27] for other well-balanced schemes. In particular, if in (4.2) the Simpson rule is
used, then the well-balanced approximation of the source term is as follows

∫

Cij

K(wn+1) dx=
∫

Cij

[

0
− z

ε2 ∇b

]

dx≈− 1

ε2

1

∑
k=−1

γk









0

µxz∗,n+1

i,j+ k
2

δxbi,j+ k
2

µyz∗,n+1

i+ k
2 ,j

δybi+ k
2 ,j









=:Kij(EGL
0 (Rwn+1)), (4.6)

where γk are the corresponding weights due to the Simpson rule, µx,δx are the averaging
and central difference operators in x-direction. More precisely,

µxzij =
zi+ 1

2 ,j+zi− 1
2 ,j

2
, δxbij=

bi+ 1
2 ,j−bi− 1

2 ,j

∆x
,

analogous notation holds in the y-direction. Further, the values z∗,n+1 denote the pre-
dicted cell-interface values obtained as follows

w∗,n+1=EGL
0 (R(wn+1)).
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4.1 First order schemes

In summary, the first order finite volume scheme with the IMEX-type time discretization
(2.5) is given in the following way

wn+1
ij =wn

ij−
∆t

|Cij|
(

HL
ij(EGL

0 (w
n+1))+HVL

ij (wn)−Kij(EGL
0 (w

n+1))
)

(4.7)

or

wn+1
ij =wn

ij−
∆t

|Cij|
(

HL
ij(EGL

0 (w
n+1))+HNL

ij (EGNL
∆t
2
(wn))−Kij(EGL

0 (w
n+1))

)

. (4.8)

4.2 Second order schemes

In order to derive the second order schemes we apply in space the bilinear reconstruction
(4.3) and either RK2CN scheme (2.6) or the BDF-type time discretizations (2.9) and (2.10).
These time discretizations belong to the class of IMEX-type schemes.

Applying the RK2CN time discretization (2.6), the van Leer numerical flux for the
nonlinear operator and the local approximate evolution operator EGL

0 for the linear part
we obtain the following fully discrete scheme

w
n+ 1

2
ij =wn

ij−
∆t

2|Cij|
(

HL
ij(EGL

0 (Rwn+1/2))+HVL
ij (Rwn)−Kij(EGL

0 (Rwn+1/2))
)

, (4.9a)

wn+1
ij =wn

ij−
∆t

2|Cij|
(

HL
ij(EGL

0 (Rwn+1))+HL
ij(EGL

0 (Rwn))+2HVL
ij (Rwn+1/2)

)

+
∆t

2|Cij|
(

Kij(EGL
0 (Rwn))+Kij(EGL

0 (Rwn+1))
)

. (4.9b)

Similarly, using the BDF time discretization (2.9) instead, the local evolution operator
EGL

0 for the linear and the van Leer numerical flux for the nonlinear part, we obtain

wn+1
ij =α0wn

ij+α1wn−1
ij − 1

|Cij|
βHL

ij(EGL
0 (Rwn+1))+β0HVL

ij (Rwn)

+β1HVL
ij (Rwn−1)+

β

|Cij|
Kij(EGL

0 (Rwn+1)). (4.10)

Using (2.10) and predict a solution at half time steps by means of the approximate evolu-
tion operator EGNL

∆t
2

for the nonlinear advection part we obtain

wn+1
ij =α0wn

ij+α1wn−1
ij − 1

|Cij|
βHL

ij(EGL
0 (Rwn+1))+ β̃0HNL

ij (EGNL
∆t
2
(Rwn))

+ β̃1HNL
ij (EGNL

∆t
2
(Rwn−1))+

β

|Cij|
Kij(EGL

0 (Rwn+1)), (4.11)

where β̃k, k=0,1, are the corresponding interpolation coefficients.
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4.3 Well-balanced property

The aim of this subsection is to show that our IMEX large time step schemes are well-
balanced for the lake at rest. Let us first consider the first order semi-discrete scheme,
cf. (2.5),

wn+1+∆t(∇·FL−K)(wn+1)=wn−∆t∇·FNL(w
n). (4.12)

Further, let us assume that at time step tn the discrete solution wn is the lake at rest
solution, i.e. z=const., m=n=0. Then the nonlinear flux FNL(w

n)=0. Denoting Φ(w) :=
(∇·FL−K)(w), we obtain from (4.12) that

wn+1+∆tΦ(wn+1)=

[

zn+1

mn+1

]

+∆t

[ ∇·mn+1

− b
ε2 ∇zn+1

]

=wn. (4.13)

Consequently, the lake at rest is one solution of (4.13) and wn+1=wn.

Lemma 4.1. Let Ω⊂R2 be a bounded Lipschitz-continuous domain and the bottom topography
b∈W1,∞(Ω), b≤0. Then the following problem

w+∆tΦ(w)=0 (4.14)

has a unique solution w∈H1(Ω), provided
∫

∂Ω

bz∂νz ds≥0. (4.15)

Proof. From Eq. (4.14) it follows that z=−∆t∇·m and m=∆t b
ε2 ∇z. Plugging the momen-

tum m into the equation for the perturbation z, we obtain the following elliptic eigen-
value problem

−∇·(b∇z)=λz, λ :=
ε2

∆t2
>0. (4.16)

Let us multiply (4.16) with z and integrate over the domain Ω

0≤λ‖z‖2
L2(Ω)= 〈z,−∇(b∇z)〉L2(Ω)=

∫

Ω

b∇z·∇z dx−
∫

∂Ω

bz∂νz ds≤0. (4.17)

Therefore z=0 and hence m=0. Consequently, there exists the only one solution of the
problem (4.13), which is the lake at rest solution z=0 and u=0=v.

Let us note that the above condition on the boundary integral (4.15) is satisfied in
many practical situations; for example, when the homogeneous Dirichlet or Neumann
boundary conditions are assumed for the perturbation z or in the case of periodic bound-
ary conditions.

Corollary 4.1. The first order schemes (4.7), (4.8) are well-balanced for the lake at rest uniformly
with respect to the Froude number ε>0.
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Proof. Lemma 4.1 implies that by starting initially from the lake at rest solution, we get
by the first order semi-discrete scheme a new solution wn+1=(const.,0,0) , that is again a
lake at rest solution.

Indeed, as we have shown by Lemma 4.1 the time discretization yields wn+1 = wn.
It is easy to show that the space discretization of the linear flux FL(w

n+1) and of the
source term K(wn+1) preserves the well-balance property in space, too. More precisely,
the space discretization of FL(w

n+1) yields for the momentum equation in the x-direction
the following approximation, cf. (4.2)

∫

∂Cij

− 1

ε2
b(x,y)zn+1(x,y)nx ds≈− 1

ε2

1

∑
k=−1

γkδx(z
∗,n+1b)i,j+ k

2
. (4.18)

On the other hand the space discretization of the source term yields according to (4.6) for
the momentum in the x-direction

∫

Cij

K(wn+1)dx≈− 1

ε2

1

∑
k=−1

γkµxz∗,n+1

i,j+ k
2

δxbi,j+ k
2
. (4.19)

Analogous relations hold for the y-direction. From (4.18) and (4.19) it is easy to see that
the space discretization of the linear fluxes balances out the source term discretization,
provided z∗,n+1 = const. But this is a consequence of Lemma 4.1 and of the fact that the
evolution operator (3.24) is well-balanced for the lake at rest. The latter can be verified
directly by plugging the lake at rest solution in the evolution operator; see also [32].

Realizing that w = (z,m,n) are in fact the equilibrium variables for the lake at rest
state, we obtain that the bilinear reconstruction Rw, cf. (4.3), preserves the lake at rest
conditions (z,m,n)=(const.,0,0). Now applying the analogous arguments as for the first
order schemes the following result follows, too.

Corollary 4.2. The second order schemes (4.9), (4.10), (4.11) are well-balanced for the lake at
rest uniformly with respect to the Froude number ε>0.

4.4 Summary of the algorithm

In what follows we give a brief summary of the algorithms for our large time step schemes.
We present the algorithms for the first order schemes (4.7), (4.8) and for the second order
schemes (4.10), (4.11). Algorithm for the RK2CN scheme (4.9) is analogous.

Let us denote by w the column vector containing all cell averages, w = (wij)
T
(i,j)∈J

,

where J is the set of all cell indices (i, j). Recall that wij = (zij,mij,nij)
T. Then, we can

rewrite the first order large time step schemes symbolically in the following way

(Id+∆tA)wn+1=RHS(wn), (4.20)

where the matrix A contains (constant) coefficients arising from the interface integrals
of the linear flux and of the source term composed with the linear evolution operator,
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i.e. 1
|Cij|
(HL

ij(EGL
0 (w

n+1))−Kij(EGL
0 (w

n+1))
)

. The right hand side vector RHS(wn) is com-

posed from a sum of wn and the terms arising from the discretization of the nonlinear flux
interface integrals −∆t

|Cij|H
VL
ij (wn) or −∆t

|Cij|H
NL
ij (EGNL

∆t
2

(wn)) by applying the scheme (4.7) or

(4.8), respectively.

Algorithm 1 First order schemes (4.7) or (4.8)

Input: Vector w contains the initial conditions for cell averages of z,m,n for all finite volume cells
1: assemble the matrix A, cf. (4.20), according to (4.7) or (4.8) and (3.24)
2: t=0
3: while t<Tf inal do
4: compute ∆t according to (2.4)
5: compute the right hand side of (4.20); RHS :=RHS(w)
6: solve (Id+∆tA)w=RHS
7: update time; t := t+∆t
8: end while

Analogously, we can rewrite the large time step second order BDF-type schemes (4.10)
or (4.11) in the following way

(Id−βA)wn+1=RHS(wn,wn−1), (4.21)

where β < 0 is given in Table 1, RHS(wn,wn−1) is the right hand side vector arising
from the sum of α0wn+α1wn−1 and from the discretization of the nonlinear flux in-

terface integrals
−β̃0

|Cij|H
NL
ij (EGNL

∆t
2

(Rwn)) − β̃1

|Cij|H
NL
ij (EGNL

∆t
2

(Rwn−1)) with the coefficients

αi, β̃i,β, i=1,2, given in Section 2. Analogous expression of the RHS holds for the second
order BDF-type scheme (4.10) with the Van Leer numerical flux for the nonlinear flux
terms.

Algorithm 2 BDF-type second order schemes (4.10) or (4.11)

Input: Vector wold contains the initial conditions for cell averages of z,m,n for all finite volume
cells and the vector w the solution after the first time step obtained, e.g., by (4.9)

1: assemble the matrix A, cf. (4.21), according to (4.10) or (4.11) and (3.24)
2: t=0
3: while t<Tf inal do
4: compute ∆t according to (2.4)
5: reconstruct w using (4.3)
6: compute the right hand side of (4.21); RHS :=RHS(w,wold)
7: wold :=w
8: solve (Id−βA)w=RHS
9: update time; t := t+∆t

10: end while
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5 Numerical experiments

In the previous sections we have proposed new first and second order large time step
schemes for the shallow water equations (1.2). Our aim now is to analyze their behaviour
on a series of numerical experiments and compare their accuracy, stability and asymp-
totic behaviour with respect to small Froude number. In order to easily refer to different
variants of our large time step schemes we introduce here the following abbreviations:
the first order IMEX-type scheme (4.7) will be denoted by VLO1, if the van Leer numer-
ical flux for the nonlinear flux is used and by CHARO1, respectively, if the characteristic
scheme is used for the nonlinear flux, cf. (4.8). Further, the second order IMEX-type
scheme based on the Runge-Kutta Cranck Nicolson approximation (4.9) is denoted by
RK2CN and the two variants of the BDF scheme (4.10) and (4.11) by BDFVLO2 and BD-
FCHARO2, respectively.

5.1 Traveling vortex

In [40] an analytical solution to the two-dimensional shallow water equations for the
so-called traveling vortex experiments has been presented, see also [44] for further ex-
periments. The computational domain is a unit square [0,1]×[0,1]. We use the periodic
boundary conditions in x-direction, the absorbing boundary conditions in y-direction
and the following initial conditions

h(x,y,0)=110+

{

(

εΓ
ω

)2
(k(ωrc)−k(π)), if ωrc≤π,

0, otherwise,
(5.1a)

u(x,y,0)=0.6+

{

Γ(1+cos(ωrc))(0.5−y), if ωrc ≤π,

0, otherwise,
(5.1b)

v(x,y,0)=

{

Γ(1+cos(ωrc))(x−0.5), if ωrc≤π,

0, otherwise,
(5.1c)

rc =‖x−(0.5,0.5)‖, Γ=1.5, ω=4π, (5.1d)

k(r)=2cos(r)+2rsin(r)+
1

8
cos(2r)+

r

4
sin(2r)+

3

4
r2. (5.1e)

A rotating vortex initially positioned at (0.5,0.5) is transported by the uniform flow with
the advection velocity uref=(0.6,0) to the right. Due to the periodic boundary conditions
the exact solution is periodic with the period T=5/3

h(x,y,t)=h(x−t/T,y,0), (5.2a)

u(x,y,t)=u(x−t/T,y,0), (5.2b)

v(x,y,t)=v(x−t/T,y,0). (5.2c)
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In Figs. 2, 3, 4 numerical solutions for ε=0.8, 0.01 and 0.05 using 160×160 mesh cells are
shown, respectively. Time evolution is controlled by the CFL condition (2.4), where CFLu

is set to 0.45 in the experiments presented in Figs. 2,4 and to 0.9 in Fig. 3. For the local
evolution operator EGL

0 we set CFLg to 0.01. Note that this parameter just controls small
local time step τ in the predictor step EGL

0 but has no influence on the actual time step ∆t
of the large time step finite volume update.

In Figs. 2,3 results obtained by the second order BDFVLO2 scheme (4.10) are pre-
sented for ε=0.8 and ε=0.01, respectively. In both figures we can also see time evolution
of the CFL numbers, cf. (1.3), up to time T= 0.1. For small ε, ε= 0.01, the CFL numbers
may raise dramatically, reaching even the values up to 69. In Fig. 4 we have compared

Table 2: Experimental order of convergence for the first order VLO1 scheme; traveling vortex test.

ε=0.8, CFLu=0.45, CFL≈0.9, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.21019 0.50860 0.44681

40 0.14303 0.55539 0.29634 0.77926 0.25680 0.79900

80 0.08408 0.76648 0.16136 0.87697 0.13759 0.90028

160 0.04578 0.87704 0.08455 0.93239 0.07160 0.94225

ε=0.05, CFLu=0.45, CFL≈7.25, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.00408 1.18800 1.16980

40 0.00320 0.34894 0.87983 0.43328 0.87707 0.41547

80 0.00210 0.60779 0.57048 0.62504 0.57483 0.60955

160 0.00123 0.77580 0.33396 0.77250 0.33783 0.76682

Table 3: Experimental order of convergence for the first order CHARO1 scheme; traveling vortex test.

ε=0.8, CFLu=0.45, CFL≈0.9, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.19721 0.45503 0.42936

40 0.13170 0.58251 0.26401 0.78537 0.24486 0.81021

80 0.07813 0.75324 0.14160 0.89881 0.13177 0.89399

160 0.04323 0.85400 0.07374 0.94123 0.06960 0.92092

ε=0.05, CFLu=0.45, CFL≈7.25, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.00400 1.17950 1.15880

40 0.00314 0.34839 0.87069 0.43792 0.86655 0.41925

80 0.00206 0.60798 0.56184 0.63200 0.56670 0.61269

160 0.00120 0.77839 0.32800 0.77644 0.33262 0.76871
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Figure 2: Numerical solution of the traveling vortex experiment at time T=0.1 computed with the second order
BDFVLO2 scheme,the Froude number ε= 0.8 and CFLu = 0.45. The pictures show (from top to bottom and
left to right): water depth, CFL numbers used and the first and second momentum component m,n.
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Figure 3: Numerical solution of the traveling vortex experiment at time T=0.1 computed with the second order
BDFVLO2 scheme, the Froude number ε=0.01 and CFLu=0.9. The pictures show (from top to bottom and
left to right): water depth, CFL numbers used and the first and second momentum component m,n.
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Figure 4: Cuts of numerical solutions of the traveling vortex experiment with Froude number ε=0.05 at x=0.56,
T=0.1 on the left and x=0.5, T=5/3 on the right. In the first row results obtained by the first order schemes
CHARO1, VLO1 are depicted. The second order schemes BDFCHARO2, BDFVLO2 and RK2CN are presented
in the middle and last row (zoomed solution). A mesh with 160×160 cells was used.

for the Froude number ε=0.05 horizontal cuts at x=0.5 and x=0.56 of all presented large
time step finite volume schemes with the analytical solution at times T=0.1 and 5/3, re-
spectively, using a mesh 160×160 cells. We can clearly see that the first order schemes are
quite diffusive; after one time period at T= 5/3 the local maximum of the approximate
solutions is reduced strongly. On the other hand the second order schemes still approxi-
mate local extrema quite accurately. We can notice that the second order RK2CN and the
BDFVLO2 scheme yield almost identical results. On the other hand the BDFCHARO2
scheme yields more diffusive results. This can be explained in the following way: in
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Figure 5: Comparison of the L1-errors of the explicit FVEG scheme [32] and the large time step IMEX-
type BDFVLO2 scheme for travelling vortex experiment with ǫ = 0.001 and different mesh resolutions ∆x =
5,10,20,40,80,160. The relative kinetic energy (bottom right) is computed on two meshes with 80×80 and
160×160 cells.

the characteristic based BDF-type scheme (4.11) the nonlinear evolution operator EGNL
∆t

corresponds only to a nonlinear subsystem; it does not give any information about the
intermediate solution of the whole hyperbolic conservation at tn+1/2. Consequently, we

only have by the Taylor expansion that ‖wn+ 1
2 −EGNL

∆t
2

(wn)‖=O(∆t) and the local trun-

cation error for (4.11) is only of second order. For other second order IMEX-type schemes
the local truncation error is of third order. Numerical experiments for the experimental
order of convergence, presented below, also indicate that the smaller the Froude number
ε is, the higher the accuracy of the BDFCHARO2, cf. Table 6. Thus, the effects due to a
larger local truncation error in the characteristic scheme is less dominant.

Still the results obtained by our large time step schemes are less dissipative than those
obtained by fully explicit schemes, due to much larger time steps that are allowed by
(2.4). See Fig. 5, where we have compared for ε=0.001 the L1-errors of the explicit second
order FVEG scheme derived in [32] and our new IMEX-type schemes; in particular we
plot here results for the BDFVLO2 scheme, but the others behave analogously. Moreover
we also present time evolution of the relative kinetic energy 1

2 h(t)|u(t)|2/ 1
2 h(0)|u(0)|2 for
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Table 4: Experimental order of convergence for the second order RK2CN scheme; traveling vortex test.

ε=0.8, CFLu=0.9, CFL≈1.75, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.06944 0.17415 0.18840

40 0.01584 2.1323 0.03977 2.1306 0.05377 1.8089

80 0.00327 2.2766 0.00906 2.1349 0.01609 1.7407

160 0.00085 1.9419 0.00230 1.9780 0.00445 1.8534

ε=0.05, CFLu=0.9, CFL≈14.5, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.00240 0.49009 0.50795

40 0.00067 1.8431 0.11370 2.1078 0.12483 2.0248

80 0.00019 1.8415 0.02305 2.3023 0.02788 2.1627

160 3.89e-5 2.2637 0.00469 2.2984 0.00650 2.0996

ε=0.01, CFLu=0.9, CFL≈69, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 5.07e-4 1.14180 1.17160

40 1.23e-4 2.0472 0.35999 1.6653 0.36423 1.6855

80 3.20e-5 1.9363 0.07283 2.3054 0.07454 2.2888

160 8.25e-6 1.9569 0.01347 2.4348 0.01434 2.3781

Table 5: Experimental order of convergence for the second order BDFVLO2 scheme; traveling vortex test.

ε=0.8, CFLu=0.45, CFL≈0.9, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.071621 0.17748 0.19415

40 0.017248 2.0539 0.03939 2.1717 0.05861 1.7279

80 0.003682 2.2277 0.00898 2.1339 0.01670 1.8115

160 0.000979 1.9119 0.00227 1.9838 0.00456 1.8721

ε=0.05, CFLu=0.45, CFL≈7.25, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.00151 0.49335 0.51883

40 3.07e-4 2.2999 0.11430 2.1098 0.12815 2.0175

80 5.36e-5 2.5146 0.02224 2.3616 0.02782 2.2036

160 1.51e-5 1.8287 0.00458 2.2813 0.00650 2.0971

ε=0.01, CFLu=0.45, CFL≈35, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 1.35e-4 1.15890 1.20690

40 4.28e-5 1.6523 0.36384 1.6714 0.37117 1.7011

80 6.37e-6 2.7500 0.07260 2.3253 0.07506 2.3061

160 8.20e-7 2.9578 0.01339 2.4390 0.01426 2.3958
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Table 6: Experimental order of convergence for the second order BDFCHARO2 scheme; traveling vortex test.

ε=0.8, CFLu=0.45, CFL≈0.9, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 0.07541 0.14852 0.14989

40 0.02770 1.4448 0.03881 1.9363 0.03482 2.1061

80 0.01202 1.2041 0.01430 1.4405 0.00886 1.9746

160 0.00577 1.0602 0.00639 1.1627 0.00285 1.6338

ε=0.05, CFLu=0.45, CFL≈7.25, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 1.44e-3 0.47355 0.48297

40 3.39e-4 2.0929 0.11162 2.0849 0.11298 2.0958

80 1.03e-4 1.7218 0.02394 2.2211 0.02382 2.2458

160 4.66e-5 1.1423 0.00708 1.7579 0.00625 1.9306

ε=0.01, CFLu=0.45, CFL≈35, T=0.1

N L1-error in z EOC L1-error in m EOC L1-error in n EOC

20 1.37e-4 1.14530 1.17380

40 4.23e-5 1.6990 0.35955 1.6715 0.35994 1.7053

80 7.10e-6 2.5745 0.07350 2.2904 0.07324 2.2970

160 1.44e-6 2.3019 0.01469 2.3203 0.01438 2.3489

two different mesh resolution with 80×80 and 160×160 cells. We can see clearly that the
energy decay is more profound in the case of explicit FVEG scheme than for semi-implicit
BDFVLO2 scheme.

Tables 2-6 present results of the experimental order of convergence (EOC) for the
first and second order large time step finite volume schemes VLO1 (4.7), CHARO1 (4.8),
RK2CN (4.9), BDFVLO2 (4.10) and BDFCHARO2 (4.11). Here the EOC is computed using
the following formula

EOC= log2

( ‖wN−w‖
‖w2N−w‖

)

,

where wN is the approximate solution on a mesh with N×N mesh cells and w is the exact
reference solution. Results computed for various Froude numbers ε= 0.8,0.05 and 0.01
demonstrate asymptotic preserving property for both the first as well as second order
schemes. Indeed, depending on the order of time/space discretization we obtain the
first or second order EOC uniformly with respect to ε. Moreover, we can notice that for
smaller ε the EOC increases, e.g. for ε = 0.01 the EOC of the second order schemes is
around 2.3∼2.4. Concerning the efficiency of the approximative schemes we would like
to point out that CFLu-number for the RK2CN scheme (4.9) is half of the corresponding
CFLu-number for the BDFVLO2 scheme (4.10). Consequently, computational costs for
both schemes are comparable, since the number of linear systems to be solved is the
same.



336 G. Bispen et al. / Commun. Comput. Phys., 16 (2014), pp. 307-347

0 0.5 1 1.5 20
0.5

1

109.94

109.96

109.98

110

110.02

110.04

110.06

x
y

w
at

er
 d

ep
th

0 0.5 1 1.5 20
0.5

1

109.94

109.96

109.98

110

110.02

110.04

110.06

x
y

w
at

er
 d

ep
th

0 0.5 1 1.5 20
0.5

1

109.94

109.96

109.98

110

110.02

110.04

110.06

x
y

w
at

er
 d

ep
th

0 0.5 1 1.5 20
0.5

1

109.94

109.96

109.98

110

110.02

110.04

110.06

x
y

w
at

er
 d

ep
th

0 0.5 1 1.5 20
0.5

1

109.94

109.96

109.98

110

110.02

110.04

110.06

x
y

w
at

er
 d

ep
th

0 0.5 1 1.5 20
0.5

1

109.94

109.96

109.98

110

110.02

110.04

110.06

x
y

w
at

er
 d

ep
th

Figure 6: Time evolution of the water depth for the travelling vortex test with non-constant bottom to-
pography, the Froude number ε = 0.05, time instants are (from left to right and from top to bottom)
T=0,0.24,0.71,1.18,1.65,2.35.

If in addition bottom topography is non-constant more complex wave pattern devel-
ops. In Figs. 6, 7 we have plotted time evolution of the water depth h and its isolines
for bottom topography b̃=10exp(−5(x−1)2−50(y−0.5)2) and Froude number ε=0.05.
We can clearly identify a periodic sine-type gravitational wave as well as advected vortex
structure. Time instants are T=0,0.24,0.71,1.18,1.65 and 2.35. Time step is controlled only
by advection, i.e. CFLu = 0.45. This leads to CFL numbers from 7.1 to 7.5. The solution
presented in Figs. 6, 7 is computed by the second order BDFVLO2 scheme. The results
obtained by other second order methods, not presented here, are analogous.
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Figure 7: Isolines for the water depth for the travelling vortex test with non-constant bottom topogra-
phy, the Froude number ε = 0.05, time instants are (from left to right and from top to bottom) T =
0,0.24,0.71,1.18,1.65,2.35.

5.2 Sine wave evolution

In this experiment we study behaviour of our large time step schemes on smooth so-
lutions for small Froude numbers. In [12] Degond and Tang provided an asymptotic
preserving all Mach number scheme for the isentropic Euler equations. Comparing the
mathematical structure of the isentropic Euler equations and the homogeneous shallow
water equations (1.1) we can notice that both are analogous when identifying the water
depth h with the gas density ρ and setting the equation of state for compressible gas to
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be p(ρ) := 1
2 ρ2. This allows us to compare our results with the results presented in [12].

We consider a computational domain [0,1]×[0,1], use periodic boundary conditions
and the following initial conditions

h(x,y,0)=1+ε2 sin2(2π(x+y)), (5.3a)

m(x,y,0)=sin(2π(x−y))+ε2 sin(2π(x+y)), (5.3b)

n(x,y,0)=sin(2π(x−y))+ε2 cos(2π(x+y)). (5.3c)

In Figs. 8, 9 numerical solutions for ε = 0.05 and 0.01, respectively, on a mesh with
160×160 cells at T = 1 are shown. Results are obtained by the BDFCHARO2 scheme
(4.11) using the nonlinear operator EGNL (3.28). We set CFLu = 0.6 that yields the total
CFL around 18 for ε=0.05 and around 85 for ε=0.01. For the local linear operator EGL

0

the local time step τ is obtained using the corresponding CFLg=0.01.

We can clearly see that z and ∂xm+∂yn converge to 0 as far as ε goes to 0. Indeed,
z=O(10−6), ∂xm+∂yn=O(10−4) for ε= 0.05 and z=O(10−9), ∂xm+∂yn=O(10−6) for
ε=0.01. Our results for ε=0.05 are analogous to those of Degond and Tang [12].
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Figure 8: Numerical solution of the sine wave example with ε= 0.05 at time T= 1. The pictures show (from
top to bottom and left to right): water depth perturbation of RBC= 1.00125, divergence of momentum, first
and second component of momentum.
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Figure 9: Numerical solution of the sine wave example with Froude number ε = 0.01 at time T = 1. The
pictures show (from top to bottom and left to right): water depth perturbation of RBC=1.00005, divergence
of momentum, first and second component of momentum.

5.3 Lake at rest steady state

The aim of this experiment is to demonstrate experimentally that our newly developed
large time step schemes are indeed well-balanced for the lake at rest state. To this end let
us consider the following experiment proposed by Canestrelli et al. in [10]. We consider
the shallow water system (1.2) with a smooth

b̃s(x,y)=5exp

(

−2

5
((x−5)2+(y−5)2)

)

(5.4)

and a discontinuous

b̃d(x,y)=

{

4, if 4≤ x,y≤8,

0, else,
(5.5)

bottom topography. The initial condition is a lake at rest state with h+b̃=10 and m=n=0.
We have computed numerical solutions for all schemes and different RBC constants. The
L1- and L∞-errors of the water depth z, z= h+b, b= b̃−RBC, and the specific discharge
q=

√
m2+n2 at T=10 are presented in Table 7. Numerical solution is computed using a
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Table 7: Errors between the exact and numerical solution at time T=10 for the lake at rest test with smooth
and discontinuous bottom topographies b̃s, b̃d.

bottom topography scheme RBC z q

L1-error L∞-error L1-error L∞-error

smooth VLO1 13 4.1e−14 5.3e−14 1.1e−13 3.6e−13

smooth VLO1 11 2.8e−15 3.1e−15 2.6e−14 8.6e−14

smooth VLO1 10 0 0 0 0

discontinuous VLO1 13 9.9e−14 1.0e−13 5.6e−14 2.4e−13

discontinuous VLO1 11 6.8e−15 7.3e−15 4.1e−14 2.0e−13

discontinuous VLO1 10 0 0 0 0

smooth BDFVLO2 13 2.2e−14 2.4e−14 2.6e−13 7.3e−13

smooth BDFVLO2 11 4.8e−15 5.3e−15 7.3e−14 2.6e−13

smooth BDFVLO2 10 0 0 0 0

discontinuous BDFVLO2 13 2.7e−13 2.7e−13 1.0e−13 5.3e−13

discontinuous BDFVLO2 11 5.6e−14 5.7e−14 2.5e−14 1.2e−13

discontinuous BDFVLO2 10 0 0 0 0

smooth RK2CN 13 1.0e−14 1.4e−14 1.3e−13 5.1e−13

smooth RK2CN 11 5.8e−15 7.2e−15 3.5e−14 1.2e−13

discontinuous RK2CN 13 1.0e−14 1.4e−14 1.3e−13 5.1e−13

discontinuous RK2CN 11 5.8e−15 7.2e−15 3.5e−14 1.2e−13

mesh with 45×45 cells. We can notice that using a particular value for the RBC constant,
i.e. h+ b̃ = RBC = 10, we have a special lake at rest state z = m = n = 0. In this case,
the right-hand side of the linear system obtained after the finite volume update is zero.
Consequently, the numerical solution for the next time step is zero and the error between
a numerical and exact solution is zero, as well.

Furthermore, our results presented in Table 7 demonstrate clearly, that all large time
step schemes derived in the paper preserve the lake at rest steady state also for other
values of RBC, the difference between the numerical and exact solution is only due to
round-off errors.

6 Conclusion

In the present paper we have derived and analyzed new large time step finite volume
schemes for the shallow water flows with low Froude numbers. The main idea of the
method is to split the nonlinear shallow water equations into the linear part describing
the gravitational waves and the nonlinear part modelling the nonlinear advection. We
have used IMEX-type time discretization to approximate linear waves implicitly and
nonlinear explicitly. Consequently, time step is dictated only by the flow velocity u,
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cf. (2.4). In present paper we have tested for time discretization first order implicit-
explicit Euler scheme (2.5), second order Runge Kutta Cranck Nicolson (2.6) and second
order BDF scheme (2.8).

The novelty of our approach lies in approximating fast gravitational waves in a truly
multidimensional way. To this end the approximate evolution operator EGL

0 is derived
using the theory of bicharacteristics. Further, the nonlinear advection is approximated
either by means of the characteristic method EGNL or by using some standard nonlin-
ear flux function. In our experiments we have chosen the van Leer flux that belongs to
the class of flux-vector splitting schemes, but any standard numerical flux for the hyper-
bolic conservation laws may be used as well. The above combinations yield two first
order (4.7), (4.8) and three second order (4.9), (4.10), (4.11) large time step finite volume
schemes. In Section 2 we have proven theoretically that the proposed time approxima-
tions yield asymptotic preserving schemes. In future we want to analyse theoretically
the asymptotic preserving property also for spatial discretization. Fully discrete large
time step finite volume schemes for both first and second order are derived in Section 4,
where the well-balanced property is studied as well. Analyzing the underlying elliptic
eigenvalue problem (4.16) that follows from our splitting approach, we are able to prove
that both the first as well as second order time discretizations yield well-balanced semi-
discrete schemes. In order to approximate the source term integrals we apply a suitable
quadrature rule (4.19), that yields a preservation of the lake at rest steady state in space as
well. We want to point out that the well-balanced property holds uniformly with respect
to ε.

Numerical experiments presented in Section 5 demonstrate clearly that the proposed
large time step finite volume schemes yield accurate, stable, well-balanced and asymp-
totic preserving approximation for low Froude number flows.
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Appendix: Derivation of the exact integral representation

In what follows our aim is to present the derivation of the exact integral representation
(A.14)-(A.16). Due to the symmetry of (3.12) for any fixed values (P,ω) we have

x1(t,ω)=x3(t,ω+π), x3(t,ω)=x1(t,ω+π), (A.1a)

y1(t,ω)=y3(t,ω+π), y3(t,ω)=y1(t,ω+π), (A.1b)
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θ1(t,ω)+π= θ3(t,ω+π), θ3(t,ω)+π= θ1(t,ω+π), (A.1c)

θ1
t (t,ω)= θ3

t (t,ω+π), θ3
t (t,ω)= θ1

t (t,ω+π), (A.1d)

for all t≤ tn+1. By substitution one gets easily

2π
∫

0

sinm(θ1)cosn(θ1) f (x1) dω=(−1)m+n

2π
∫

0

sinm(θ3)cosn(θ3) f (x3) dω. (A.2)

Let us define

ṽ=





v1(x
1)

v2(x2)
v3(x3)



 (A.3)

and analogously F̃,S̃. Using (3.6), (3.8), (3.12), we get

F̃+S̃=





1
2{szD+

θ [s]+sinθD−
θ [ms]−cosθD−

θ [ns]}(x1)
−s2D−

θ [z](x
2)

1
2{szD+

θ [s]−sinθD−
θ [ms]+cosθD−

θ [ns]}(x3)



. (A.4)

Now multiplying (3.13) by R(ω) and averaging over 0 to 2π implies

wn+1(P)=
1

2π

2π
∫

0

R(ω)ṽn dω+
1

2π

2π
∫

0

tn+1
∫

tn

R(ω)(F̃+S̃) dt dω. (A.5)

Remark A.1. (3.12) implies that the transformation θ 7→θ+π is equivalent to the following
transformations in the first and third components of the integrand in (A.5):

x3 7→ x1, (A.6a)

sinω 7→ −sinω, (A.6b)

cosω 7→ −cosω, (A.6c)

D±
θ3 [ f ](x

3) 7→ D±
θ1 [ f ](x

1). (A.6d)

Note that for the second bicharacteristic

(x2(t,ω),y2(t,ω),θ2(t,ω))=(xP,yP,ω). (A.7)

Recall that
2π
∫

0

sin(ω)mcos(ω)n dω=

{

0, m or n odd,

π, m and n even.
(A.8)
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Using (A.6)-(A.8) we get

I1 :=

2π
∫

0

R(ω)ṽn dω

=

2π
∫

0







szn−mncos(θ)−nnsin(θ)
s(xP,yP)

−cos(ω)[szn−mn cos(θ)−nn sin(θ)]
−sin(ω)[szn−mn cos(θ)−nn sin(θ)]






dω +





0
πmn(xP,yP)
πnn(xP,yP)



, (A.9)

where

zn = zn(x1(tn,ω),tn), mn =mn(x1(tn,ω),tn), nn =nn(x1(tn,ω),tn),

θ= θ1(tn,ω), s= s(x1(tn,ω)).

Further we obtain for the second integral term in (A.5)

I2 :=

2π
∫

0

tn+1
∫

tn

R(ω)(F̃+S̃) dt dω

=

tn+1
∫

tn

2π
∫

0





− 1
sP

{

szD+
θ [s]+sin(θ)D−

θ [ms]−cos(θ)D−
θ [ns]

}

cos(ω)
{

szD+
θ [s]+sin(θ)D−

θ [ms]−cos(θ)D−
θ [ns]

}

sin(ω)
{

szD+
θ [s]+sin(θ)D−

θ [ms]−cos(θ)D−
θ [ns]

}



 dω dt

+s2
Pπ

tn+1
∫

tn





0
zx(x2,t)
zy(x2,t)



 dt, (A.10)

where

z= z(x1(t,ω),t), m=m(x1(t,ω),t), n=n(x1(t,ω),t),

θ= θ1(t,ω), s= s(x1(t,ω)).

Finally we get the following evolution operator for w(P):

z(P)=
1

2πsP

2π
∫

0

{szn−mn cosθ−nn sinθ} dω

− 1

2πsP

2π
∫

0

tn+1
∫

tn

{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

dt dω, (A.11)
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m(P)=− 1

2π

2π
∫

0

cosω{szn−mn cosθ−nn sinθ} dω

+
1

2π

2π
∫

0

tn+1
∫

tn

cosω
{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

dt dω

+
mn(xP,yP)

2
− s2

P

2

2π
∫

0

zx(x
2(t),t) dt, (A.12)

n(P)=− 1

2π

2π
∫

0

sinω{szn−mncosθ−nn sinθ} dω

+
1

2π

2π
∫

0

tn+1
∫

tn

sinω
{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

dt dω

+
nn(xP,yP)

2
− s2

P

2

2π
∫

0

zy(x
2(t),t) dt. (A.13)

Integrating the second and third equation of (3.3) along the second bicharacteristic from
tn to tn+1 leads to

mn+1(xP,yP)−mn(xP,yP)=−s2
P

2π
∫

0

zx(x
2(t),t) dt,

nn+1(xP,yP)−nn(xP,yP)=−s2
P

2π
∫

0

zy(x
2(t),t) dt.

Plug in the last expressions in Eqs. (A.12), (A.13) for m(P),n(P) we obtain the exact inte-
gral representation (A.14)-(A.16)

z(P)=
1

2πsP

2π
∫

0

{szn−mncosθ−nn sinθ} dω

− 1

2πsP

2π
∫

0

tn+1
∫

tn

{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

dt dω, (A.14)
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m(P)=− 1

π

2π
∫

0

cosω{szn−mn cosθ−nn sinθ} dω

+
1

π

2π
∫

0

tn+1
∫

tn

cosω
{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

dt dω, (A.15)

n(P)=− 1

π

2π
∫

0

sinω{szn−mn cosθ−nn sinθ} dω

+
1

π

2π
∫

0

tn+1
∫

tn

sinω
{

szD+
θ [s]+D−

θ [ms]sinθ−D−
θ [ns]cosθ

}

dt dω. (A.16)

Note that we use here the same numbering of the exact integral representation as in Sec-
tion 3.
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