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Abstract. In this work the previously developed Lattice Boltzmann-Direct Forcing/
Fictitious Domain (LB-DF/FD) method is adopted to simulate the sedimentation of
eight circular particles under gravity at an intermediate Reynolds number of about
248. The particle clustering and the resulting Drafting-Kissing-Tumbling (DKT) mo-
tion which takes place for the first time are explored. The effects of initial particle-
particle gap on the DKT motion are found significant. In addition, the trajectories of
particles are presented under different initial particle-particle gaps, which display to-
tally three kinds of falling patterns provided that no DKT motion takes place, i.e. the
concave-down shape, the shape of letter “M” and “in-line” shape. Furthermore, the
lateral and vertical hydrodynamic forces on the particles are investigated. It has been
found that the value of Strouhal number for all particles is the same which is about
0.157 when initial particle-particle gap is relatively large. The wall effects on falling
patterns and particle expansions are examined in the final.

AMS subject classifications: 76T20, 76-02, 76M28

PACS: 47.11.-j, 47.57.ef, 47.57.E-, 47.55.-t
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1 Introduction

Solid particles immersed in a viscous fluid lead to a two-phase flow problem, which is
very common in nature and many industrial processes, including atmospheric currents,
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aerosol deposition, pharmaceutical sciences, hydraulic fracturing, fluidized beds and so
on. It is important to understand particle-particle interactions and particle-fluid interac-
tions, and their microstructure evolution in fluids, which usually relates to the collective
behaviour and self-organization of solid particles, and is central to physical phenomena
such as cloud formation, particle suspension and particle sedimentation. In comparison
with experimental measurements, numerical simulations have remarkable advantages in
exploring the inter-phase interactions in multiphase flows, especially for direct numeri-
cal simulation (DNS) methods. In a DNS method, the fluid flow and particle motion are
coupled to study the dynamics of individual particles suspended in fluids, which is the
highest-resolution numerical method without any empirical model.

So far extensive theoretical and numerical models (Hocking, 1964; Crowley, 1971; Le-
ichtberg et al., 1976; Brady and Bossis, 1988; Mo and Sangani, 1994; Feng and Joseph,
1995; Alexander et al., 2003; Nguyen and Ladd, 2005; Metzger et al., 2007; Koch and
Subramanian, 2011) have been proposed to simulate the dynamics of many interacting
particles in a viscous fluid at quasi-steady zero-Reynolds-number or low Reynolds num-
ber by ignoring the transient and nonlinear inertia effects, which are becoming crucial
at intermediate Reynolds numbers or high Reynolds numbers. The hydrodynamic inter-
actions between particles mediated by the fluid and particle interactions with the wall
are highly nonlinear and the dynamics of multiple particles can be quite complex by
taking into account the fluid inertia, which also introduces unsteadiness to particulate
flow problems. In comparison with the numerical studies at low Reynolds numbers,
much fewer studies have been found on particle interactions and clustering at interme-
diate Reynolds numbers due to the difficulty in dealing with the boundaries between
particles and fluid in a DNS framework. Jenny et al. (2004) numerically investigated a
sphere falling or ascending under the action of gravity in a Newtonian fluid at interme-
diate Reynolds numbers. Their results show that the sphere undergoes a transition to
a full spatio-temporal chaos in the range of asymptotic average Reynolds number lying
between 205 and 310, and the scenario is significantly different for falling and for ascend-
ing spheres (Jenny et al., 2004). Recently, Yacoubi et al. (2012) presented remarkable work
by studying the two-dimensional dynamics of horizontal arrays of settling cylinders in
a container at intermediate Reynolds numbers of 200 based on the immersed interface
method. They found that in the case of odd-numbered arrays, the middle cylinder is
always leading, whereas in the case of even-numbered arrays, the steady-state shape is
concave-down. Furthermore, in large arrays (the number of particles greater than 5) the
outer pairs tend to cluster. However, they did not further investigate the influence of
initial particle-particle gaps on falling patterns, especially for small or large initial gaps,
which is expected to be central to particle clustering and also to the resulting well-known
’Drafting-Kissing-Tumbling (DKT)’ motion. Furthermore, it is helpful to better under-
stand the dynamics of interacting particles moving freely under the action of gravity,
buoyancy and hydrodynamic forces by studying the lateral and longitudinal expansions
of the array. In addition, it is also necessary to examine the wall effects, i.e. the effects of
the width of container on the dynamics of particle clustering. The present work is mostly
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motivated by these reasons.

The lattice Boltzmann method (LBM) has proved to be a powerful numerical scheme
for the simulation of particle suspensions, multiphase flow, microfluidics, and turbulence
due to its several remarkable advantages since it was originated. Application of LBM to
simulate particles suspended in a viscous fluid was first proposed by Ladd (1994) and
then improved by Aidun et al. (1998). In their applications, the non-slip condition on
the particle-fluid interface is treated by the bounce-back rule and the particle surface is
represented by the boundary nodes, which are essentially a set of the mid-points of the
links between two fixed grids. In order to better deal with fluid-solid interface prob-
lems, Feng and Michaelides (2004) incorporated the immersed boundary method (IBM)
into LBM for two-dimensional and three-dimensional fluid-particle systems, which is
known as IB-LBM. Similarly, Tian et al. (2011) successfully developed another immersed
boundary-lattice Boltzmann method for hydrodynamic interaction of deformable bod-
ies. Nie and Lin (2010) proposed a single-relaxation-time (SRT) based lattice Boltzmann-
Direct Forcing/Fictitious Domain (LB-DF/FD) method for the simulation of particle sus-
pensions, which was derived from SRT-LBM coupled with direct-forcing/fictitious do-
main (DF/FD) method (Yu and Shao, 2007). It has been shown that the LB-DF/FD
method is capable of dealing with spherical particle motion (Nie and Lin, 2011a) and
non-spherical particle motion (Nie et al., 2011; Nie and Lin, 2011b), which is also suitable
to simulate particle sedimentation in the intermediate Reynolds number regime (Nie et
al., 2012).

The main objective of this study is to numerically investigate the dynamics and in-
teractions of eight circular particles settling in a vertical container at a Reynolds number
of about 248 by the LB-DF/FD method. Firstly, the previously developed LB-DF/FD
method is updated by introducing the multiple-relaxation-time (MRT) model, instead of
the SRT model. The MRT model is the most general form derived from the linearized
collision model within the theoretical framework of the LB equations and kinetic theory
— it includes all possible degrees of freedom to optimize the LB equations (Luo et al.
2011). The validation of the MRT based LB-DF/FD method is presented in Section 3.1.
Secondly, this method is adopted to simulate eight particles falling in a Newtonian fluid
under gravity. The width of computational domain, i.e. the container with is relatively
large in the simulations, which is at least 50 times particle diameter. First of all the focus
attention would be on the DKT motion which takes place for the first time in the falling
process. Results show that the particle clustering depends on the initial particle-particle
gap. The observation that the outermost particles tend to cluster, which was made by
Yacoubi et al. (2012), is only one of possible situations. Then the focus moves to the
trajectories of particles which displays different falling patterns provided that particle
collisions do not occur when the initial gap varies. The detailed description is presented
in Section 3.2. The lateral and vertical expansions of the particles which are expressed
by their own variances are quantitatively presented in the following section. The lateral
and vertical hydrodynamic forces on the particles are investigated by introducing their
corresponding force coefficients in Section 3.4. In Section 3.5 the wall effects on the trajec-
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tories of particles and the lateral and longitudinal expansions are assessed. A summary
is presented in Section 4.

2 Numerical detail

2.1 Multiple-relaxation-time model

In LB-DF/FD method, the lattice Boltzmann equations are solved for the fluid flow and
the fictitious domain scheme is used to solve fluid-solid interactions. The lattice Boltz-
mann method is based on the SRT model, which is also known as the Bhatnagar-Gross-
Krook (BGK) model (Qian et al., 1992). In this work, the MRT model is introducing which
is shown to be superior over the SRT model (Nie and Lin, 2010). The discrete MRT lattice
Boltzmann equations under external forces are described as,

fi(x+ei∆t,t+∆t)− fi(x,t)=−M−1S
[

m−m(eq)
]

+F∆t, (2.1)

where S is the collision matrix which is diagonal. Through the transform matrix M, the
velocity space spanned by fi and the moment space spanned by mi are related by a linear
mapping: m=M· f , f =M−1 ·m. In this work we adopt the D2Q9 lattice model, of which
the discrete velocity set is,

ci =







(0,0), i=0,
(±1,0)c,(0,±1)c, i=1−4,
(±1,±1)c,(±1,±1)c, i=5−8,

where c=∆x/∆t, ∆x is the lattice spacing and ∆t is the time step. The speed of sound cs

is determined by,

cs =
1√
3

c.

Corresponding to the D2Q9 model, the moments are given (Luo et al., 2011) by m0=ρ,
m1 = e, m2 = ε, m3 = jx, m4 = qx, m5 = jy, m6 = qy, m7 = pxx and m8 = pxy, among which
the density ρ and the flow momentum j = (jx, jy) = ρu are the conserved moments in
the system. The diagonal matrix of non-negative relaxation rates 0 < si < 2 is given by
S=diag(0,se,sε,0,sq,0,sq,sν,sν), and sν =1/τ, and τ is a non-dimensional relaxation time
associated with the fluid shear viscosity. If all the relaxation rates is equal to 1/τ, then
the MRT model reduces to the LBGK or SRT model. According to Luo et al. (2011), the
equilibria of the non-conserved moments are given below,

e(eq)=−2ρ+
3j · j

ρ
, ε(eq)=ρ− 3j · j

ρ
,

(

qx
(eq),qy

(eq)
)

=−
(

jx, jy
)

, (2.2a)

pxx
(eq)=

(

jx
2− jy

2
)

ρ
, pxy

(eq)=
jx jy

ρ
. (2.2b)
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With the discrete velocities of D2Q9 and the moments given above, the transformation
matrix M is determined by (Luo et al., 2011),

M=





























1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1





























. (2.3)

Guo et al. (Guo et al., 2002) presented a method to include the body force into the
LBM, in which the discrete lattice effect and the contributions of the body force to the
momentum flux are both considered, leading to the exact Navier-Stokes equations. In
this work we also adopt the proposed method (Guo et al., 2002). In Eq. (2.1), the forcing
term F is defined by,

F=M−1

(

I− 1

2
S

)

MF, Fi =wi

[

ci ·λ
c2

s

+
uλ : cici

c4
s

− uλ : c2
s I

c4
s

]

, (2.4)

where λ is a pseudo body force which is introduced to enforce the (fictitious) fluids to
satisfy the constraint of rigid body motion in the fictitious domain scheme (Nie and Lin,
2011a). wi are weights related to the lattice model which are chosen as the following
values: w0=4/9; wi=1/9, i=1∼4; wi=1/36, i=5∼8.

By applying the Chapman-Enskog analysis and Taylor expansion techniques, Eq. (2.1)
leads to the following hydrodynamic equations,

∇·u=0, (2.5a)

ρ f

(

∂u

∂t
+(u·∇)u

)

=−∇p+µ∇2u+λ. (2.5b)

The shear viscosity ν and the bulk viscosity ζ are,

ν=
1

3

(

1

sν
− 1

2

)

c∆x, ζ=
1

3

(

1

se
− 1

2

)

c∆x. (2.6)

2.2 LB-DF/FD method

The LB-DF/FD method is briefly explained in this section since those are explained in
detail elsewhere (Nie and Lin, 2010).

In DF/FD method, the interior domains of the particles are filled with the same flu-
ids as the surroundings and a pseudo body force λ is introduced to enforce the interior
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(fictitious) fluids to satisfy the constraint of rigid body motion, as described by,

u=U+ωs×r (the particle inner domain, P), (2.7)

where U and ωs are the particle translational velocity and angular velocity, respectively,
and r is the position vector with respect to the particle mass center. Moreover, in DF/FD
method, a certain number of Lagrangian nodes are distributed to represent the particle
in the simulations, which is shown in the following (Fig. 2).

The particle motion with mass Mp and moment of inertia Jp is governed by Newton’s
equations,

Mp
dU

dt
=F H+

(

1− 1

ρr

)

Mpg+FC, (2.8)

Jp
dωs

dt
=T H, (2.9)

where F H and T H are the hydrodynamic forces and torques on the particle, respectively,
defined as,

FC=
∫

∂P
n·σds, (2.10a)

TC =
∫

∂P
r×(n·σ)ds, (2.10b)

where σ is the fluid stress tensor, n is the unit outward normal on the particle surface. FC

denotes particle-particle and particle-wall collision forces. g is the gravitational accelera-
tion, and ρr is the solid-fluid density ratio, i.e., ρr =ρp/ρ f .

Based on a direct-forcing scheme, the forcing term exerted on the Lagrangian points
in the particle domain can be expressed as,

λn+1=ρ f
un+1−u∗

∆t
=ρ f

Un+1+ωs
n+1×r−u∗

∆t
, (2.11)

where u∗ is a temporary velocity which satisfies the momentum equation (2.5b) with zero
body-force.

From (2.7)-(2.11), one can obtain the equations for updating particle motion,

Mp
Un+1

∆t
=Mp

(

1− 1

ρr

)

Un

∆t
+

(

1− 1

ρr

)

Mpg+
∫

P
ρ f

u∗

∆t
dΩ+Fn+1

C , (2.12)

Jp
ωs

n+1

∆t
= Jp

(

1− 1

ρr

)

ωs
n

∆t
+
∫

P
ρ f r×

u∗

∆t
dΩ. (2.13)

As shown from (2.12) and (2.13), the hydrodynamic forces and torques exerted on the
particle do not appear explicitly. As a result it’s unnecessary to calculate them to update
the particle motion.

The whole problem is decoupled into the fluid and solid particle sub-problems with
the fractional step scheme, which includes the following steps:
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(i) Calculate f ∗(x,t) from Eq. (2.1) without the body force and then u∗ is obtained.

(ii) Based on Eq. (2.12) and (2.13), calculate translational velocity U and angular veloc-
ity ωs.

(iii) Update pseudo body-force λn+1 inside the particle domain through Eq. (2.11).

(iv) Introduce body-force λn+1 into Eq. (2.1) and calculate f (x,t) without collision, then
the new ρ f and u determined.

2.3 Short-range repulsive force

In order to prevent particles overlapping, a model for particle-particle interactions is
needed in the simulations. The short range repulsive force proposed by Wan and Turek
(Wan and Turek, 2007) is adopted in this work, which is easily carried out in the code.
For particle-particle interactions, the repulsive force is determined as,

FP
i,j=











0, di,j >Ri+Rj+ξ,
1
ε′P

(

X i−X j

)(

Ri+Rj−di,j

)

, di,j6Ri+Rj,

1
εP

(

X i−X j

)(

Ri+Rj+ξ−di,j

)2
, Ri+Rj6di,j6Ri+Rj+ξ,

(2.14)

where Ri and Rj are the radius of the ith and jth particle, X i and X j are the coordinates of
their mass centers, di,j= |X i−X j| is the distance between their mass centers, ξ is the force
range which is usually set to be one or two lattice spacing. ε′p and εp are two small positive
stiffness parameters for particle-particle collisions. For the particle-wall interactions, the
corresponding repulsive force is determined as,

FW
i,j =











0, d′i >2Ri+ξ,
1

ε′ω
(X i−X ′

i)(2Ri−d′i), d′i62Ri,
1

εω
(X i−X ′

i)(2Ri+ξ−d′i)
2
, 2Ri6d′i62Ri+ξ,

(2.15)

where X′
i is the coordinate vector of the center of the nearest imaginary particle located

on the boundary and d′i = |Xi−X′
i |. ε′w and εw are another two small positive stiffness

parameters for particle-wall collisions.

2.4 Problem description

A schematic diagram of the physical model is shown in Fig. 1. Eight circular particles
in a horizontal arrangement with zero initial velocity are released in a vertical container.
In order to better visualize numerical results, four kinds of color are used to distinguish
among the particles, i.e. red, dark blue, purple, light blue, from the middle to the outside.
For convenience of description, the particles are named from Particle 1 to Particle 8 in
sequence, from left to right. D is the particle diameter and h0 is the initial particle-particle
gap which is the closest distance between two neighboring particles. The grid size is fixed
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Figure 1: A schematic diagram of the physical model.

at ∆x=1/48D and the container height is fixed at Ly=100D. In physical units, the density
of the fluid and the particle are taken to be ρ f =1.0g/cm3 and ρp=1.5g/cm3, respectively,
the diameter of the particle D is 0.2cm and the kinematic viscosity of the fluid ν is set to
be 0.01 cm2 s−1. The velocity scale in the simulations is given by,

U=

√

πD(ρr−1)g

2
. (2.16)

The time scale is expressed by T = D/U. Therefore, the Reynolds number defined by
Re = UD/ν is about 248 in the present simulations. In order to reduce the impact of
the container walls on flow pattern as much as possible, the container width is chosen
large enough in this work, which is depending on the initial inter-particle gap, as shown
in Table 1. The non-dimensional parameters h′0 and L′

x are defined by h′0 = h0/D and
L′

x= Lx/D. The impact of the container width will be investigated in this work. For con-
venience no-slip boundary conditions are set on all four fixed walls of the domain. This
avoids specifying the far-field boundary conditions on a finite computational domain.

Table 1: The container width L′
x for different initial particles gap h′0.

h′0 ≤0.7 ≤1.2 1.5 2.0 3.0 4.0 5.0

L′
x 50 60 80 80 80 80 80
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Figure 2: Arrangements of Lagrangian points for circular particle.

The arrangement of Lagrangian points inside the circular particle is shown in Fig. 2, one
point at the particle center, and 6i points on the ith ring.

3 Numerical results

3.1 Validation

First of all the benchmark problem of flow over a fixed circular cylinder at Re=100 and
200 is adopted to validate the present method. The lattice spacing is ∆x=1/40D. Table 2
presents the mean value and amplitude of drag and lift coefficients and Strouhal number
of present SRT and MRT results as well as numerical results of previous researchers. On
one hand it is observed that both of SRT and MRT results agree reasonably well with
those reported by other researchers. On the other hand, Fig. 3 shows the instantaneous
pressure distribution close to the cylinder. As shown in the figure, the general features
of the pressure obtained by the MRT and SRT model are similar, while severe oscillations

Table 2: Comparison of flow parameter values for flow past single circular cylinder at Re=100 and 200.

Re=100 Re=200

CD CL St CD CL St

Uhlmann (2005) 1.453±0.011 ±0.339 0.169 Braza et al. (1986) 1.40±0.050 ±0.75 0.200

Xu and Wang (2006) 1.423±0.013 ±0.340 0.171 Mark et al. (2005) 1.37±0.046 ±0.70 0.199

Ding et al. (2007) 1.356±0.010 ±0.287 0.166 Ding et al. (2007) 1.348±0.050 ±0.659 0.196

Xu (2008) 1.42±0.010 ±0.353 0.172 Xu (2008) 1.43±0.050 ±0.71 0.202

Present SRT 1.406±0.011 ±0.364 0.165 Present SRT 1.419±0.052 ±0.751 0.195

Present MRT 1.398±0.011 ±0.359 0.165 Present MRT 1.414±0.052 ±0.745 0.196
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(a) SRT result (b) MRT result

Figure 3: Instantaneous pressure distribution close to the cylinder at Re=200.

close to the cylinder are observed in the pressure obtained by using the SRT model, in
contrast to the much smoother result obtained by using the MRT model, which states
that the MRT model has better ability of computing pressure than the SRT model. This is
consistent with the work done by Luo et al. (2011) and Nie et al. (2013). In addition, it’s
worth stating that if a coarser grid is adopted, i.e. if ∆x<1/40D, more severe oscillations
throughout the entire computational domain are expected to be observed in the pressure
field for the SRT model.

3.2 Falling pattern

Fig. 4 shows the instantaneous vorticity contours for initial gap h′0=0.1 at different times,
which is the smallest value of h′0 that was simulated. It’s noticeable that they are all bilat-
eral symmetrical about the centerline. As time evolves the four particles (dark blue and
red) in the middle tend to cluster and form two pairs (Particle 3 and Particle 4, Particle 5
and Particle 6), as shown in Figs. 4(c) and (d). After a while the left pair begins to tum-
ble clockwise. Similarly, the right pair tumbles counter-clockwise, as shown in Figs. 4(e)
and (f). The particles do not come into contact and their dynamics are reminiscent of the
well-known ‘Drafting-Kissing-Tumbling (DKT)’ motion. The name of DKT comes about
since the trailing particle drifts in the wake of the leading one to begin with, rapidly ap-
proaching it from behind, and the pair eventually tumbles with subsequent increase in
the transverse separation. The DKT pair interactions lead to a rapid local rearrangement
in particle positions, which is obvious in Fig. 4. Furthermore, as shown in Figs. 4(g)-(h),
the two outermost particles also tend to cluster and reproduce the DKT motion. The
leftmost pair (Particle 1 and Particle 2) tumbles clockwise and the rightmost pair (Parti-
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(a) t′=10.33 (b) t′=25.84 (c) t′=64.60

(d) t′=77.52 (e) t′=85.28 (f) t′=87.86

(g) t′=90.45 (h) t′=93.03 (i) t′=95.61

Figure 4: Instantaneous vorticity contour for h′0 =0.1.

cle 7 and Particle 8) tumbles counter-clockwise. It should be pointed out that the DKT
motion usually takes place more than once for small initial gap h0, which is the key mech-
anism of arranging particle positions in the sedimentation, as shown in our simulations.
However, the short range repulsive force model adopted in this work is a hypothetical
collision model to prevent particles overlapping. As matter of fact, the DKT motion is
sensitive to the repulsive force. Therefore, in this work much attention is paid to the DKT
motion which takes place for the first time in the sedimentation.

The first DKT motion in the sedimentation depends on the initial gap h′0, which can be
demonstrated by the snapshot of particle positions shown in Fig. 5 and Fig. 6. For h′0=0.5
Particle 2 (purple) and Particle 3 (dark blue) tend to cluster and form a pair with Particle
2 leading and Particle 3 trailing. Accordingly, as a result of flow symmetry Particle 6
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(a) t′=41.35 (b) t′=49.10 (c) t′=51.68

Figure 5: Instantaneous vorticity contour for h′0 =0.5.

(a) t′=49.10 (b) t′=56.86 (c) t′=59.44

Figure 6: Instantaneous vorticity contour for h′0 =1.0.

and Particle 7 also display the similar feature which is shown in Fig. 5. If increasing the
initial gap, such as h′0=1.0, the first DKT motion then shifts to the two outermost particles
(Particle 1 and Particle 2, Particle 7 and Particle 8) with the light blue particle (Particle 1
and Particle 8) leading and the purple one (Particle 2 and Particle 7) trailing, as shown in
Fig. 6. This is consistent with the observation made by Yacoubi et al. (2012). Moreover,
it has been shown from Figs. 4-6 that regardless of the value of h′0, the particles display
a left and right mirror symmetry in the vortex shedding pattern and correspondingly, a
mirror symmetry in the particle rotation. In other words, two particles symmetric about
the centreline rotate in opposite directions and shed counter-rotating vortices.

In order to deeply understand the effects of the initial gap on the DKT motion, several
simulations have been carried out by varying the initial gap. The dependence of the first
DKT motion on h′0 are summarized in Fig. 7, which shows totally three states of the first
DKT motion. As the initial gap increases, the first DKT motion takes place shifting from
the inside particles to the outside particles, as shown in Fig. 7. The black arrows on each
particle are used to visually identify their relative positions when they are drifting in the
sedimentation.

Fig. 8 shows trajectories of the settling particles for the initial gap ranging from h′0 =
0.7∼ 5.0. As the particles settle, the array spreads out due to repulsive interactions me-
diated by the fluid. The effects of the initial gap on the falling patterns are quite clear.
When the initial spacing is small such as h′0 =0.7, as shown in Fig. 8(a), the falling shape
of the array is concave-down and no collisions occur. However, if the simulations con-
tinue the DKT motion would take place for the two outermost particles, which has not
been observed in the present computational domain. As the initial gap increases, the
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Figure 7: Dependence of the first DKT motion on the initial gap h′0.

(a) h′0 =0.7 (b) h′0 =1.0 (c) h′0 =1.2 (d) h′0 =1.5

(e) h′0 =2.0 (f) h′0 =3.0 (g) h′0 =4.0 (h) h′0 =5.0

Figure 8: Trajectories of the particles for different initial gap h′0 =1.0.
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(a) h′0 =1.5 (b) h′0 =2.0 (c) h′0 =5.0

Figure 9: Instantaneous vorticity contour for different initial gaps.

settling particles still display the concave-down falling shape for h′0 up to 1.5, which is
broken down by the first DKT motion for h′0 =1.0 and h′0 =1.2, as shown in Fig. 8(b) and
Fig. 8(c). Moreover, the falling shape of h′0 = 1.5 is different from that of h′0 = 0.7. There
are four particles in the middle of the array which are falling nearly in line for h′0 = 0.7,
however, there are six particles nearly in line for h′0 = 1.5. As the initial gap is further
increasing, the concave-down shape of the array cannot be observed any more. The par-
ticles are shaped like the letter “M” when they reach a steady state, as shown in Fig. 8(e)
and Fig. 8(f). In these cases the outermost (light blue) particles are always leading. Im-
portantly, the DKT motion is not so easily expected to happen for the “M” falling shape,
unlike the concave-down shape. However, the shape of letter “M” is not so apparent
when the initial gap is further increasing, such as h′0 = 4.0 and 5.0, as shown in Fig. 8(g)
and Fig. 8(h). All particles are falling nearly in a horizontal line, which suggests that all
particles are sedimenting at a similar speed. Therefore, in most cases of an initial hori-
zontal arrangement the final configuration of the particles deviates significantly from the
horizontal, which agree with the conclusion made by Yacoubi et al. (2012). Nevertheless,
if the initial particle-particle gap is large enough, the final configuration is approaching
to the horizontal, which is denoted by “in-line” shape.

Fig. 9 shows the instantaneous vorticity contour of the falling particles with initial
gap h′0 = 1.5, 2.0 and 5.0 at t′ = 77.53, respectively. In all results shown in Fig. 9 the left
and right particles rotate in opposite directions and their wakes are symmetric about
the centerline. For the result of h′0 = 1.5, the outermost (light blue) particles are always
leading before collisions happen. In the case of h′0=2.0, which shows the falling shape of
letter “M”, the outermost particles are leading as well. However, the result of h′0 =5.0 is
different. The two (red) particles in the middle lead instead of the outermost ones.

3.3 Lateral and vertical expansion

Regardless of the value of h′0, it’s noticeable that the particles always spread out as they
settle. As shown in Fig. 8, the spread of the array is strongly depending on the initial gap.
In order to quantitatively understand it, the variance <X2(t′)> is introduced to describe
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Figure 10: Temporal evolution of the lateral variance of the array.

the lateral expansion of the array in this work, which is defined by,

〈

X2
(

t′
)〉

=

n

∑
k=1

[xk (t
′)−xk (0)]

2

nD2
, (3.1)

where n is the number of the particles, xk is the horizontal position of the kth particle
and t′ = t/T. Fig. 10 shows the temporal evolution the lateral variance of the array for
initial gap h′0 ranging from 1.5 to 5.0, which is relatively large so that the particle-particle
collisions do not happen. Obviously, the lateral variances of the array are increasing in a
nonlinear fashion all the time because of repulsive interaction force mediated by the fluid
except in the short initial period. In the initial period the array does not spread out for all
values of h′0. This is because the particle-particle interactions are indirectly transported
by the fluid inertia which needs some time to transfer among particles. Furthermore,
the larger the initial gap is the more time is needed, which is indicated in Fig. 10. After
the initial period, the particles expand laterally all the time. It’s also noticeable that the
lateral variance is steeply increasing for small initial gap, such as h′0=1.5, which is due to
the strong interaction force during the early time of sedimentation, as shown in Fig. 10.
Furthermore, it’s worth mentioning that oscillations are observed after a period of time
for all results except that of h′0=3.0. The reason is not clear.

Similarly, the variance <Y2(t′)> describes the vertical expansion of the array in this
work, which is defined by,

〈

Y2(t)
〉

=

n

∑
k=1

[yk (t)−ya]
2

nD2
, ya =

n

∑
k=1

yk (t)

n
, (3.2)
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Figure 11: Temporal evolution of the vertical variance of the array.

where yk is the vertical position of the kth particle. Fig. 11 shows the temporal evolution
of the vertical variance of the array. For better visualization of comparison, log-log co-
ordinate system is adopted in Fig. 11. The vertical variance is increasing as time evolves
for all initial gap at the early stage (approximately t′<25), which is noticeable in Fig. 11.
In addition, all the observed results display the similar growth curve at the early stage.
Thereafter the variance continues to increase at a lower speed for small initial gaps, such
as h′0 = 1.5 and 2.0, after going through a transition region. This suggests that the array
expands in the vertical orientation for small initial gaps in the simulations. However, in
the transition region, for large initial gaps the variance firstly decreases after the early
stage, such as h′0 =3.0 and 4.0, which eventually increases after reaching a minimum, as
shown in Fig. 11. The decrease in the vertical variance for large initial gaps is due to the
transition from the shape of letter “M” to the shape of “in-line”. Interestingly, the similar
sub-linear growth is observed at long times for the results of h′0 = 1.5-4.0, as shown in
Fig. 11. Nevertheless, the variance of h′0=5.0 is different from other results, which is kept
as a constant of about 0.14 at long times. This suggests that if the initial particle-particle
gap is large enough the particles would not spread out any more in vertical orientation,
and display nearly “in-line” shape.

3.4 Hydrodynamic forces

The lateral and vertical hydrodynamic forces on the particles when they are settling are
investigated in this section. Fig. 12 shows the temporal evolution of the lateral (Cx) and
vertical (Cy) hydrodynamic force coefficients on the outermost particles, i.e. Particle 1
and Particle 8. The initial particle-particle gap is h′0 = 5.0. The coefficients are defined
as Cx = Fx/0.5ρ f U2D and Cy = Fy/0.5ρ f U2D, where Fx and Fy are the lateral and vertical
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Figure 12: Temporal evolution of lateral (Cx) and vertical (Cy) hydrodynamic force on the selected particles for

h′0 =5.0.

hydrodynamic force of the particle, respectively. As expected, their hydrodynamic forces
are symmetrically bilateral. The vertical force coefficients Cy for both particles are identi-
cal. In addition, as shown in the figure, they are periodically oscillating around the value
of 1.0 after an initial evolution, which indicates that the vertical hydrodynamic force is
balanced by the gravity and buoyancy force. Actually, the velocity scale U defined by
Eq. (3.1) is chosen in this manner. In the other hand, the lateral hydrodynamic forces for
the two particles are periodically anti-synchronous, as shown in Fig. 12. The maximum
value of the lateral force coefficient is about 0.19.

Numerical results show that for the other particles the vertical hydrodynamic forces
are similar to that of Particle 1 or Particle 8, thereafter, the lateral hydrodynamic forces
are concerned in the following part. Fig. 13 shows the time series of the lateral force
coefficients of Particle 1-Particle 4. It’s apparent that all the results are displaying similar
periodical oscillation after an initial stage of evolution. However, the maximum value
of Cx for Particle 1 is a little bigger than the other results. To gain more insight into
the lateral hydrodynamic forces of the particles, the power spectrums for the lateral force
coefficients of Particle 1 and Particle 4 are shown in Fig. 14, both of which indicate a single
frequency, confirming the sinusoidal nature of the lateral force signal for both particles.
The value of Strouhal number (Stp = f D/U, where f is the primary frequency) in this
case is about 0.157, which is smaller than those of flow past fixed cylinder at Re=100 or
Re=200 as shown in Table 2. Furthermore, numerical results have shown that the value of
Strouhal number is the same for all the particles (other results are not shown), indicating
that all the particles are oscillating in a similar manner during the sedimentation for h′0=
5.0.

The effect of initial gap h0 is also studied. Fig. 15 shows the temporal evolution of
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lateral force coefficients of the far left particle (Particle 1) for h′0=2, 3 and 5. The maximum
value of lateral force coefficient for h′0=3 is similar to that of h′0=5, which is a little larger
than that of h′0 = 2, as shown in the figure. The power spectrums of these three lateral
force coefficients are also shown in Fig. 16. The value of Strouhal number is the same for
all cases.
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Figure 16: Power spectra of the far left particle for different h′0.

3.5 Wall effects

In this section the effects of the walls, i.e. the width of the container, on the expansions
of the array and falling patterns are examined. Fig. 17 and Fig. 18 shows the temporal
evolution of the lateral and vertical variance for h′0 =5.0, respectively. Both of the results
of L′

x = 80 and L′
x = 90 are presented. The effects of the container width are obvious.

It’s expected that the lateral expansion is dependent on the container width, which is
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larger to maintain more tendency for the particles to expand laterally, as shown in Fig. 17.
However, for the vertical expansion the result of L′

x =80 is almost the same as the result
of L′

x=90, which states that the effects of the container width on the vertical expansion is
negligible.

Fig. 19 shows the trajectories of the falling particles for h′0 = 0.7, 1.5 and 5.0. For
each case two kinds of container width are taken into consideration. The corresponding
results are shown in the left side and right side of each figure, respectively. The effects
of the container width on falling patterns are insignificant, as shown in Fig. 19. The
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(a) h′0 =0.7 (b) h′0 =1.5 (c) h′0 =5.0

Figure 19: Falling patterns for different container width: (a) L′
x=50 (left) and L′

x=60 (right) (b) L′
x=64 (left)

and L′
x =80 (right) (c) L′

x =80 (left) and L′
x =90 (right).

general feature of left side and right side is the same though fine distinction is observed,
suggesting that the present computational domains are reasonable for numerical study
of falling patterns.

4 Conclusion remarks

In this work the previously developed LB-DF/FD method is updated by replacing the
SRT model with the MRT model. The MRT based method is superior to the previous
method in computing pressure. Then the method is used to numerically investigate eight
circular particles settling under gravity in a container.

Results have shown that the DKT motion may take place several times when the
particles are falling. First of all, close attention has been paid to the DKT motion which
takes place for the first time because the subsequent DKT motion could be dependent
on the repulsive force which is determined through a hypothetical collision model in the
simulations. It has been shown that the first DKT motion depends on the initial particle-
particle gap, which shifts from the inside particles to the outside particles as initial gap
increases.

In addition, the trajectories of the particles, i.e. falling patterns, are studied in detail.
The effect of initial gap on the falling pattern is significant. Totally speaking, three kinds
of falling patterns are shown when the particle-particle initial gap varies. The concave-
down shape of the array is observed when the initial gap is small, while this shape is
broken down when the DKT motion takes place. As the initial gap increases the concave-
down shape develops to the shape of letter “M”, with the outermost particles leading.
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In this case the DKT motion is not observed in the simulations. Furthermore, the array
is almost in-line when the initial gap is further increasing, and the two particles in the
middlemost are leading, instead.

The lateral and vertical expansions of the array, which are expressed by their own
variances, are also studied in this work. The lateral variance increases as time evolves,
which is larger for smaller initial gap due to stronger repulsive interactions. It is more
complex for the vertical variance, which displays the similar growth curve for all initial
gaps at the early stage. Thereafter, there exists a transition region for each case, after
which all results continue to increase at a similar lower speed except the result of the
largest initial particle-particle gap that was simulated, i.e. h′0=5.0. The vertical variance of
h′0=5.0 is kept as a constant, instead. This states that the array is shaped like a horizontal
line which is expanding laterally when the particles are falling.

The hydrodynamic forces on the particles are studied by introducing their lateral and
vertical force coefficients. The results for large initial gap, i.e. h′0 ≥ 2.0, are taken into
account. On one hand, the vertical force coefficients are periodically oscillating with
an average value of 1.0 at long times for all particles, indicating that for each particle
the vertical hydrodynamic force is balanced by the gravity and buoyant force. On the
other hand, the lateral force coefficients are periodically oscillating in a sinusoidal form
at long times. The oscillation frequency of lateral force coefficients is the same for all
particles and the Strouhal number is about 0.157. Furthermore, there’s no significant
difference among the amplitudes of lateral force coefficients. The effect of initial gap on
the oscillation frequency is negligible.

Finally, the wall effects are examined. The lateral expansion is dependent on the con-
tainer width, but the vertical expansion is opposite. Importantly, the wall effects on the
trajectories of the particles are insignificant, which suggests that this work presents uni-
versal features of falling patterns in the present configurations.
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