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Abstract. We present a new splitting method for time-dependent convention-domin-
ated diffusion problems. The original convention diffusion system is split into two
sub-systems: a pure convection system and a diffusion system. At each time step, a
convection problem and a diffusion problem are solved successively. A few impor-
tant features of the scheme lie in the facts that the convection subproblem is solved
explicitly and multistep techniques can be used to essentially enlarge the stability re-
gion so that the resulting scheme behaves like an unconditionally stable scheme; while
the diffusion subproblem is always self-adjoint and coercive so that they can be solved
efficiently using many existing optimal preconditioned iterative solvers. The scheme
can be extended for solving the Navier-Stokes equations, where the nonlinearity is
resolved by a linear explicit multistep scheme at the convection step, while only a gen-
eralized Stokes problem is needed to solve at the diffusion step and the major stiffness
matrix stays invariant in the time marching process. Numerical simulations are pre-
sented to demonstrate the stability, convergence and performance of the single-step
and multistep variants of the new scheme.
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1 Introduction

In this work we shall first propose a new fully discrete splitting scheme for solving the
convention-dominated diffusion problems of the following general form

ut+∇·(bu)−∇·(ε∇u)+cu=F in Ω×(0,T), (1.1)

with the boundary and initial conditions

u=ub on ∂Ω×(0,T); u(0,x)=u0(x) in Ω, (1.2)

where Ω is an open bounded polyhedral domain in R
d (d=1,2,3) with boundary Γ=∂Ω,

and [0,T] is the time interval. Functions b and c in (1.1) are the convective field and
reactive coefficient respectively, and ε> 0 is a constant diffusion coefficient, while F, ub

and u0 are the specified source term, the boundary and initial data respectively. As we
are mainly interested in the construction of numerical schemes, we will not specify some
detailed regularity conditions on all these coefficients to ensure the well-posedness of the
initial-boundary value problem (1.1)-(1.2).

Then the new fully discrete splitting scheme will be extended for solving the Navier-
Stokes equations

{

ut+(u·∇)u−Re−1△u+∇p=F in Ω×(0,T),

∇·u=0 in Ω×(0,T),
(1.3)

with the boundary and initial conditions

u=ub on ∂Ω×(0,T); u(0,x)=u0(x) in Ω, (1.4)

where u, p, F and Re are respectively the velocity, the pressure, the body force and the
Reynolds number, while ub and u0 are the given boundary and initial data.

The numerical solution of a time-dependent problem requires a discretization in both
time and space, and possibly some linearization if the problem is nonlinear. A great
variety of time marching schemes are available in the literature, such as the classical
methods like the forward and backward Euler schemes, the Crank-Nicolson scheme, the
Adams-Bashforth method etc. Operator splitting is also a popular technique for time dis-
cretization, such as the Yanenko method, the Peaceman-Rachford method, the Douglas-
Rachford method and the θ scheme; see [1–3] and references therein.

In solving the convection-dominated diffusion equations and the Navier-Stokes equa-
tions with large Reynolds numbers, it is well known that standard finite element meth-
ods perform poorly and may exhibit nonphysical oscillations. Many spatial stabilization
techniques have been proposed and studied. The streamline-upwind Petrov-Galerkin
method was originally developed in [4, 5] for convective transport problems, and its ba-
sic idea is to modify the standard Petrov-Galerkin formulation by adding a streamline
upwind perturbation, which acts only in the flow direction and is solely defined in the
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interiors of elements. The Galerkin least-squares method [6] is a conceptual simplification
of the streamline-upwind Petrov-Galerkin method, and adds a stabilization that involves
an element-by-element weighted least-squares of the residual to the original differential
equation. The efficiency of these two stabilization techniques are affected by the choices
of stabilization parameters involved. There are still no precise general formulas to help
select optimal parameters in numerical simulations; see, e.g., [7, Remark 10.4]. These sta-
bilization parameters may depend possibly also on time step size for time-dependent
problems, so their choices become more tricky in practice as we have to balance between
temporal and spatial errors, which are usually given by the orders of the methods [8].

By changing the sign of the convective term in the weighted least-squares formu-
lation, the unusual stabilized finite element method (USFEM) can achieve the absolute
stability for any positive stabilization parameter involved in the scheme, but it is still a
tricky and inconclusive technical issue of how to choose this parameter in order to obtain
good accuracy [9–12]. The variational multiscale method was developed based on the in-
herent multiscale structure of the solutions [13–16]. This method defines the large scales
by a projection into an appropriate subspace, but also involves the technical issue of how
to select a stabilization parameter to balance the stability and accuracy.

As it is known [5], explicit Galerkin solutions for flow problems could be quite under-
diffusive, and may effectively increase the Peclet or Reynolds number. Furthermore,
explicit methods are generally conditionally stable. But explicit schemes have their own
advantages, e.g., they may not need to solve systems of algebraic equations [17] or the
resulting stiff matrices stay the same in the time marching process.

The characteristic-based-split (CBS) method has been widely studied for fluid and
solid dynamic problems [18–21], and we refer to the monograph [22] and the references
therein for its detailed introduction and various applications. This method is based on the
splitting of the convection and diffusion parts. The convection part is formally handled
by the standard characteristics method, where the numerical solutions at the current time
are updated by the approximations at the previous time. But the computed spatial points,
which are determined by characteristics, are likely no longer grid points of the spatial
discretization. Therefore we need to compute the solutions at those spatial points using
the solutions and other quantities at grid points. Two natural ways for the purpose are by
updating the meshes and standard interpolation. An alternative technique, used in the
CBS method, is to approximate numerical solutions at computed spatial points by the
solutions and other quantities at grid points by Taylor expansion. In addition, the CBS
method needs to approximate the average convective field, for which different treatments
may lead to different schemes, such as fully explicit, semi-implicit or implicit ones, and
also different stabilization effects [22].

In the derivation of our new scheme, we shall use the same operator splitting as the
CBS method did, to split the convection diffusion system into a purely convective part
and a diffusion part. The diffusion part is discretized by the standard backward scheme.
But the central difference from the CBS method lies in our new treatment of the convec-
tion part, which is completely independent of the characteristic curves and any spatial
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grid points used, unlike the CBS method.
Another novel idea of our new method is the flexibility in its special explicit treatment

of the convection part: we can recursively execute the explicit convection step up to a
finite number of times with smaller local time step size during one diffusion correction.
This can essentially improve the stability of the resulting scheme.

The rest of the paper is arranged as follows. The single-step scheme is first derived for
the convection diffusion equation in Section 2.1, and its multistep variant in Section 2.2.
The new scheme is then extended in Section 3 for the Navier-Stokes equations. Numerical
experiments are carried out in Section 4 to check the accuracy, stability and performance
of the new schemes, as well as to investigate how the stability condition can be improved
by the multistep scheme compared with the single-step one. At the end of this numerical
section, the driven cavity flow problem is tested with the new scheme and compared with
the benchmark results to demonstrate the validity of the new method. Some concluding
remarks are given in Section 5.

2 Derivation of algorithms

In this section we shall derive a new method for solving the convection-dominated dif-
fusion equation (1.1). For this we introduce some notations. We first partition the time
interval [0,T]: 0= t0 < t1 < ···< tN =T, with tn =n∆t and ∆t=T/N. We will use un and
un+1/2 respectively for the approximate values of u(·,t) at t= tn and tn+∆t/2. But when
u(·,t) is given, un and un+1/2 will stand for its exact values at t= tn and tn+∆t/2, e.g.,
f n = f (·,tn), and bn=b(·,tn).

2.1 Single-step scheme for the convection diffusion equation

We first adopt the standard operator splitting technique [3] and split the convection dif-
fusion equation (1.1) into a pure convection equation and a diffusion equation. Then
we approximate the two equations in time by the central difference and backward Euler
schemes respectively to obtain

un+1
∗ −un

∆t
+∇·(bn+ 1

2 un+ 1
2 )= f n+ 1

2 , (2.1)

un+1−un+1
∗

∆t
−∇·(ε∇un+1)+cn+1un+1= gn+1, (2.2)

where f and g can be any functions such that F= f+g. However in order to have a unified
principle for the selection of the components f and g for both the convection diffusion
equation and Navier-Stokes equations, we will suggest some special selection of f and g
later on; see Remark 3.1.

We shall use finite element methods to solve (2.1) and (2.2) respectively for the solu-
tions un+1

∗ and un+1. For this purpose we need the variational formulations of these two
equations. It is straightforward to derive the variational form of (2.2):
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Find un+1∈H1(Ω) such that un+1=un+1
b on Γ and solves

(un+1,v)+∆t(ε∇un+1,∇v)+∆t(cn+1un+1,v)=(un+1
∗ ,v)+∆t(gn+1,v) ∀v∈H1

0(Ω). (2.3)

On the other hand, the solution of the convection step (2.1) is more tricky. Clearly the
scheme is implicit and involves the solution of a linear convection equation. The main
idea of this work is to propose an explicit scheme to solve this linear convection equation.
To do so, we apply the Taylor’s expansion to compute un+1/2 by the values at previous
times. We can write

un+ 1
2 ≈u

(

x,tn+
∆t

2

)

=u(x,tn)+
∆t

2
ut(x,tn)+O(∆t2),

then using the convection equation

ut+∇·(bu)= f (2.4)

we deduce

un+ 1
2 ≈un+

∆t

2

(

f n−∇·(bnun)
)

=: ξn. (2.5)

Using this relation, we can rewrite (2.1) as

un+1
∗ −un

∆t
+∇·

(

bn+ 1
2 ξn

)

= f n+ 1
2 . (2.6)

Noting that (2.4) is a pure convective equation, only partial boundary condition on
the inflow boundary

Γ
−
t :={x∈Γ; b(x,t)·n(x)<0} (2.7)

should be imposed. Accordingly we should set similar conditions on the inflow bound-
ary associated with the scheme (2.6). So for any positive integer n, we define

Γ
−
n :={x∈Γ; bn(x)·n(x)<0} . (2.8)

As the exact solution is specified on the entire boundary (cf. (1.1)), it is natural for us to
assume the values for the solution un+1

∗ to (2.6) on the inflow boundary Γ
−
n+1:

un+1
∗ =un+1

b on Γ
−
n+1. (2.9)

This induces the following test space for the scheme (2.6):

H1
Γ
−
n+1

(Ω)=
{

w∈H1(Ω); w=0 on Γ
−
n+1

}

.
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Now multiplying a test function v∈H1
Γ
−
n+1

(Ω) on both sides of (2.6), and integrating over

Ω and using the integration by parts we obtain

(un+1
∗ ,v)=(un,v)+∆t( f n+ 1

2 ,v)+∆t(ξn ,bn+ 1
2 ·∇v)−∆t< ξn ,vbn+ 1

2 ·n>
Γ\Γ

−
n+1

=(un,v)+∆t( f n+ 1
2 ,v)+∆t

(

un+
∆t

2
( f n−∇·(bnun)),bn+ 1

2 ·∇v

)

−∆t

〈

un+
∆t

2

(

f n−∇·(bnun)
)

,vbn+ 1
2 ·n

〉

Γ\Γ
−
n+1

. (2.10)

Now we move to the spatial discretization by some finite element method. Assume
that Vh is a finite element space approximating the Sobolev space H1(Ω), and Ih is the
interpolation operator of H1(Ω) into Vh. Then based on the variational formulations
(2.10) and (2.3), we propose the following single-step scheme for solving the convection-
dominated diffusion problem (1.1).

Algorithm 1 Single-step scheme.

Step 0. Compute the initial value u0
h = Ihu0. For each n=0,1,··· ,N−1, do the following.

Step 1. Find un+1
h,∗ ∈Vh such that un+1

h,∗ = Ihun+1
b on Γ

−
n+1 and solves

(un+1
h,∗ ,vh)=(un

h ,vh)+∆t( f n+ 1
2 ,vh)+∆t

(

un
h+

∆t

2

(

f n−∇·(bnun
h)
)

,bn+ 1
2 ·∇vh

)

−∆t
〈

un
h+

∆t

2

(

f n−∇·(bnun
h)
)

,vhbn+ 1
2 ·n

〉

Γ\Γ
−
n+1

∀vh ∈Vh∩H1
Γ
−
n+1

(Ω).

Step 2. Find un+1
h ∈Vh such that un+1

h = Ihun+1
b on Γ and solves

(un+1
h ,vh)+∆t(ε∇un+1

h ,∇vh)+∆t(cn+1un+1
h ,vh)=(un+1

h,∗ ,vh)+∆t(gn+1,vh)

∀vh ∈Vh∩H1
0(Ω).

Remark 2.1. By computing the term (un+1
h,∗ ,vh) in Step 1 using the standard mass-lumping

technique [17], un+1
h,∗ can be computed explicitly without solving a linear system.

2.2 Multistep scheme for the convection diffusion equation

As we are interested mainly in the convection-dominated case in the system (1.1), the
single-step scheme (Algorithm 1) may not be stable enough as it is explicit. To improve
the stability, we may execute the convection step (Step 1) a few times for each diffusion
correction (Step 2) so that we can use much smaller time step size for the convection part.
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To do so, we write the result un+1
h,∗ of Step 1 formally as

un+1
h,∗ =FCD

conv

(

∆t, f n, f n+1,bn,bn+1,un
h ,un+1

b

)

. (2.11)

Then the multistep scheme is to run this convection step m times with smaller time step
size ∆t

m in order to get un+1
h,∗ , namely we compute

u
n+ i

m

h,∗ =FCD
conv

(

∆t

m
, f n+ i−1

m , f n+ i
m ,bn+ i−1

m ,bn+ i
m ,u

n+ i−1
m

h,∗ ,u
n+ i

m

b

)

, (2.12)

recursively for i=1,2,··· ,m, with un
h,∗=un

h .

We shall call δt=∆t/m and ∆t as the local time step size and the global time step size
respectively. Replacing Step 1 by the multistep iteration (2.12), we propose the following
multistep scheme for the convection diffusion equation (1.1).

Algorithm 2 Multistep scheme with index m.

Step 0. Compute the initial value u0
h= Ihu0. For each n=0,1,··· ,N−1, do the following.

Step 1. Set un
h,∗=un

h . For i=1,2,··· ,m, compute un+i/m
h,∗ ∈Vh such that un+i/m

h,∗ = Ihu
n+ i

m

b on

Γ
−
n+i/m and solves for all vh ∈Vh∩H1

Γ
−
n+i/m

(Ω),

(u
n+ i

m

h,∗ ,vh)=(u
n+ i−1

m

h,∗ ,v)+δt( f n+ 2i−1
2m ,vh)

+δt

(

u
n+ i−1

m

h,∗ +
δt

2
( f n+ i−1

m −∇·(bn+ i−1
m u

n+ i−1
m

h,∗ )),bn+ 2i−1
2m ·∇vh

)

−δt

〈

u
n+ i−1

m

h,∗ +
δt

2

(

f n+ i−1
m −∇·(bn+ i−1

m u
n+ i−1

m

h,∗ )

)

,vhbn+ 2i−1
2m ·n

〉

Γ\Γ
−
n+i/m

.

Step 2. Compute un+1
h ∈Vh such that un+1

h = Ihun+1
b on Γ and solves for all vh∈Vh∩H1

0(Ω),

(un+1
h ,vh)+∆t(ε∇un+1

h ,∇vh)+∆t(cn+1un+1
h ,vh)=(un+1

h,∗ ,vh)+∆t(gn+1,vh).

3 Single-step and multistep schemes for Navier-Stokes equations

We are now going to extend the new schemes proposed in Sections 2.1-2.2 for the
convection-dominated diffusion equation to the Navier-Stokes equations (1.3). For the
purpose, we split the system (1.3) into a pure convection system and a diffusion system
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(the generalized Stokes problem) as follows:

un+1
∗ −un

∆t
+(un+ 1

2 ·∇)un+ 1
2 = fn+ 1

2 , (3.1)

un+1−un+1
∗

∆t
−Re−1△un+1+∇pn+1=gn+1, (3.2)

∇·un+1=0. (3.3)

It is straightforward to derive the variational form of the generalized Stokes system
(3.2)-(3.3):

Find un+1∈H1(Ω)d and p∈L2
0(Ω) such that un+1=un+1

b on Γ and solve

(∆t)−1(un+1,v)+Re−1(∇un+1,∇v)−(pn+1,∇·v)=(∆t)−1(un+1
∗ ,v)+(gn+1,v), (3.4)

(∇·un+1,q)=0 (3.5)

for any v∈H1
0(Ω)d and q∈L2

0(Ω).
Next we will do the same as we did in Section 2.1 to propose an explicit scheme

for solving the convection system (3.1). To do so, we first handle the convection term

involving un+ 1
2 . In fact, combining the Taylor’s expansion

un+ 1
2 ≈u

(

x,tn+
∆t

2

)

=u(x,tn)+
∆t

2
ut(x,tn)+O(∆t2),

and the pure convection equation

ut+(u·∇)u= f, (3.6)

we can obtain a similar approximation to (2.5) but in a vector-valued form:

un+ 1
2 ≈un+

∆t

2

(

fn−(un ·∇)un
)

=: ηn. (3.7)

We introduce the inflow boundary

Γ
−
n+1=

{

x∈Ω; un+1
b ·n(x)<0

}

.

Then we can write by using integration by parts for any v∈H1(Ω) with v|
Γ
−
n+1

=0 that

(

(ηn ·∇)ηn,v
)

= 〈ηn,ηn ·nv〉
Γ\Γ

−
n+1

−(ηn,∇·ηnv)−
(

ηn,(ηn ·∇)v
)

, (3.8)

using this relation and plugging (3.7) in (3.1) we derive the variational form of (3.1):

(un+1
∗ ,v)=(un,v)+∆t(fn+ 1

2 ,v)−∆t〈ηn,ηn ·nv〉
Γ\Γ

−
n+1

+∆t(ηn,∇·ηnv)

+∆t
(

ηn,(ηn ·∇)v
)

. (3.9)
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Remark 3.1. We observe from the formulation (3.9) that ∇·fn is needed in the term ∇·ηn,
hence it adds some extra regularity on the source component f. This suggests us to better
choose f ≡ 0 in the decomposition F= f+g for the Navier-Stokes equations so that the
new scheme does not need the evaluation of ∇·fn. For the unification of the numeri-
cal schemes for both the convection diffusion equation and Navier-Stokes equations, we
shall always select f ≡0 in Algorithms 1 and 2 from now on for the convection diffusion
equation.

Let Vh and Mh be two finite element spaces approximating the Sobolev space H1(Ω)
and L2

0(Ω) respectively and satisfying the standard inf-sup condition, and Ih be an inter-
polation operator of H1(Ω) into Vh. By virtue of the variational formulations (3.9) and
(3.4), we propose the following single-step scheme for solving the Navier-Stokes equa-
tions (1.3).

Algorithm 3 Single-step scheme.

Step 0. Compute the initial value u0
h= Ihu0. For each n=0,1,··· ,N−1, do the following.

Step 1. Compute ηn
h =un

h−
∆t
2 (u

n
h ·∇)un

h ;

Find un+1
h,∗ ∈Vh such that un+1

h,∗ = Ihun+1
b on Γ

−
n+1 and solves

(un+1
h,∗ ,v)=(un

h ,vh)−∆t〈ηn
h ,ηn

h ·nvh〉Γ\Γ
−
n+1

+∆t(ηn
h ,∇·ηn

h vh)+∆t
(

ηn
h ,(ηn

h ·∇)vh

)

∀vh∈Vh∩H1
Γ
−
n+1

(Ω).

Step 2. Find un+1
h ∈Vh and ph ∈Mh, such that un+1

h = Ihun+1
b on Γ and solves

(∆t)−1(un+1
h ,vh)+Re−1(∇un+1

h ,∇vh)−(pn+1
h ,∇·vh)=(∆t)−1(un+1

h,∗ ,vh)+(gn+1,vh),

(∇·un+1
h ,qh)=0,

for any vh ∈Vh∩H1
0(Ω) and qh∈Mh.

We observe from Algorithm 3 that the nonlinear convection term (u·∇)u in Navier-
Stokes equations has been treated explicitly in the time marching process, which may
severely restrict the time step size in order to ensure the stability of the scheme. To im-
prove the stability, we may apply Step 1 several times with a smaller time step size during
one diffusion correction (Step 2). For this purpose we write the result of Step 1 formally
as

un+1
h,∗ =FNS

conv

(

∆t,un
h ,un+1

b

)

. (3.10)

Then a multistep variant of this scheme is to execute this Step 1 m times with a smaller
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time step size ∆t
m to derive un+1

h,∗ :

u
n+ i

m

h,∗ =FNS
conv

(

∆t

m
,u

n+ i−1
m

h,∗ ,u
n+ i

m

b

)

(3.11)

for i = 1,2,··· ,m, with un
h,∗ = un

h . This leads to the following multistep scheme for the
Navier-Stokes equations.

Algorithm 4 Multistep scheme with index m.

Step 0. Compute the initial value u0
h = Ihu0. For each n=0,1,··· ,N−1, do the following.

Step 1. Set un
h,∗=un

h ; For i=1,2,··· ,m, calculate

η
n+ i−1

m

h,∗ =u
n+ i−1

m

h,∗ −
∆t

2

(

u
n+ i−1

m

h,∗ ·∇

)

u
n+ i−1

m

h,∗ ,

and compute u
n+ i

m

h,∗ ∈Vh such that un+i/m
h,∗ = Ihun+i/m

b on Γ
−
n+i/m and solves

(u
n+ i

m

h,∗ ,v)=(u
n+ i−1

m

h,∗ ,vh)−δt

〈

η
n+ i−1

m

h,∗ ,η
n+ i−1

m

h,∗ ·nvh

〉

Γ\Γ
−
n+i/m

+δt

(

η
n+ i−1

m

h,∗ ,∇·η
n+ i−1

m

h,∗ vh

)

+δt

(

η
n+ i−1

m

h,∗ ,(η
n+ i−1

m

h,∗ ·∇)vh

)

.

Step 2. Compute (un+1
h ,pn+1

h )∈Vh×Mh such that un+1
h = Ihun+1

b on Γ and solves

(∆t)−1(un+1
h ,vh)+Re−1(∇un+1

h ,∇vh)−(pn+1
h ,∇·vh)=(∆t)−1(un+1

h,∗ ,vh)+(gn+1,vh),

(∇·un+1
h ,qh)=0

for any (vh,qh)∈ (Vh∩H1
0(Ω))×Mh.

Remark 3.2. The second steps in Algorithms 3 and 4 can be replaced by the projection-
type methods so that the pair of finite element spaces for approximating the velocity and
pressure does not need to meet the LBB condition and only Poisson problems are needed
to solve for updating both the velocity and pressure. For the projection method, we refer
to the pioneering work by Chorin [23] and Temam [24].

Remark 3.3. The newly proposed Algorithms 1-4 are only first-order accurate in time.
In order to work out numerical schemes that are of similar nature to Algorithms 1-4 but
with second-order accuracy in time, we should combine our current derivations of the
first-order algorithms with the existing second-order time-marching schemes [25, 26] for
the diffusion steps.
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4 Numerical experiments

In this section we shall carry out two sets of numerical tests to check the actual con-
vergence orders of the single-step and multistep schemes proposed in the previous two
sections and how the multistep scheme improves the stability region of the single-step
scheme.

Let Th be a regular triangulation of Ω, with hK = diam(K) for K ∈ Th, and h =
maxK∈Th

hK. We shall use the following linear finite element space Vh⊂H1(Ω):

Vh=
{

wh∈H1(Ω); wh|K ∈P1(K) ∀K∈Th

}

(4.1)

for the solution of the convection diffusion equation (1.1), and the following Taylor-Hood
finite element spaces [27]







Vh=
{

vh∈H1(Ω)2; vh|K ∈P2(K)2 ∀K∈Th

}

,

Mh=
{

qh∈H1(Ω); qh|K ∈P1(K) ∀K∈Th

}

,
(4.2)

for the solution of the Navier-Stokes equations (1.3).
We recall that we have used the central finite difference scheme for the convection

diffusion equation and the backward Euler scheme for the diffusion equation in time dis-
cretization. Therefore it is natural for us to expect the following numerical convergence
orders when the finite element spaces in (4.1) and (4.2) are used:

‖uN−uN
h ‖L2(Ω)≤C(h2+∆t)

for the convection diffusion equation (1.1), and

‖uN−uN
h ‖L2(Ω)≤C(h3+∆t) and ‖pN−pN

h ‖L2(Ω)≤C(h2+∆t)

respectively for the velocity and pressure of the Navier-Stokes equations (1.3).
We remark that all the errors shown in this section are the L2-norm errors at the ter-

minal time t=T unless specified otherwise.

4.1 Tests for the convection diffusion equation

We first apply the new single-step and multistep schemes to the following two examples
which are taken from Refs. [8] and [16].

Example 4.1. The coefficients and domain in Eq. (1.1) are taken to be the following:

d=2, T=1, ε=10−8, b=(1,−1)T, c=1, Ω=(0,1)2,

with the exact solution given by u(x,y,t)= e2πt sin(2πx)sin(2πy).
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This example is a slight modification of the one in [8], where esin(2πt) is used. Instead
we use e2πt, which makes the solution vary in a much larger range, namely in the interval
[−e2π ,e2π ], and has a much larger norm, i.e., ‖u(·,1)‖= e2π /2≈267.7458.

Example 4.2. The coefficients and domain in equation (1.1) are taken to be the following:

d=2, T=1, ε=10−8, b=(2,−1)T , c=1, Ω=(0,1)2,

with the exact solution given by u(x,y,t)= t2 cos(xy2).

To compute the actual convergence orders of the numerical schemes, we shall use
the uniform triangulations of domain Ω with triangular elements in all our numerical
simulations.

4.1.1 Convergence Tests for the single-step scheme

In order to find the actual convergence order of the single-step scheme (Algorithm 1) in
time, we choose a very small mesh size and then observe the changes of the errors when
the time step size is halved. Similarly we will do the other way around when we try to
find the actual convergence order of the single-step scheme (Algorithm 1) in space.

Tables 1 and 2 show the L2-norm errors with different mesh sizes when the time step
size is fixed for Examples 4.1 and 4.2 respectively. Clearly we see the second order spatial
convergence of the single-step scheme (Algorithm 1).

Table 1: Convergence results of Algorithm 1 for Example 4.1 with fixed ∆t=1/216.

h ‖u−uh‖ order

1/4 9.18526(+1) -

1/8 1.84780(+1) 2.3135

1/16 4.24054 2.1235

1/32 1.03466 2.0351

1/64 2.54797(-1) 2.0217

1/128 6.36669(-2) 2.0007

Table 2: Convergence results of Algorithm 1 for Example 4.2 with fixed ∆t=1/216.

h ‖u−uh‖ order

1/4 9.76826(-3) -

1/8 2.41756(-3) 2.0145

1/16 6.02478(-4) 2.0046

1/32 1.49729(-4) 2.0086

1/64 3.69132(-5) 2.0201

1/128 8.70186(-6) 1.9687
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Table 3: Convergence results of Algorithm 1 for Example 4.1 with fixed h=1/128.

∆t ‖u−uh‖ order

0.1/25 divergence -

0.1/26 2.02151 -

0.1/27 1.01181 0.9985

Table 4: Convergence results of Algorithm 1 for Example 4.2 with fixed h=1/128.

∆t ‖u−uh‖ order

0.1/26 divergence -

0.1/27 1.71484(-4) -

Now we fix the uniform mesh size at h=1/128, and run the single-step scheme (Al-
gorithm 1) for Examples 4.1 and 4.2 with the following sequence of time step sizes

∆t=0.1/2k , k=−1,0,1,2,··· (4.3)

to find out the stability region of the numerical scheme. The numerical results are listed
in Tables 3 and 4, from which we observe that Algorithm 1 does not converge till k= 6
and 7 respectively for Examples 4.1 and 4.2, corresponding to two rather small time step
sizes of ∆t=1/640 and 1/1280. Such restrictions on time step size are natural, required
by the stability condition for the explicit time marching scheme we have used. As we
shall see in the next subsection, the new multistep scheme can essentially improve the
stability condition.

4.1.2 Stability improvement by the multistep scheme

We can observe from the previous subsection that the single-step scheme (Algorithm 1)
may provide the expected convergence and preserve the accurate convergence orders
when it converges. However, this scheme requires sufficiently small time step size as
shown in Tables 3 and 4, hence may restrict its applications in practice. The multistep
scheme (Algorithm 2) is proposed to improve the stability of the single-step scheme. This
section is to test how the multistep scheme can improve the stability region.

We note that ∆t is the global time step size, which is used for the diffusion correc-
tion. As we are interested mainly in the convection-dominated diffusion problems, the
time step size required for the convection is usually much smaller than the one for the
diffusion.

In our numerical tests, for each fixed ∆t=0.1/2k (k=−1,0,1,2,··· ), we run the multi-
step scheme with index m= 1,21,22,··· until we observe the convergence of the scheme,
and then record the corresponding index m; see Tables 5 and 6 for the recorded index m
corresponding to each fixed ∆t and the resulting relative L2-norm error of the approxi-
mate solution.
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Table 5: Stability of Algorithm 2 for Example 4.1 with index m and fixed h=1/128.

∆t m ‖u−uh‖
‖u‖

0.1/26 1 7.55011(-3)

0.1/25 2 1.54379(-2)

0.1/24 4 3.15569(-2)

0.1/23 8 6.41671(-2)

0.1/22 16 1.30693(-1)

0.1/21 32 2.69788(-1)

0.1 64 5.68483(-1)

0.2 128 1.26837

Table 6: Stability of Algorithm 2 for Example 4.2 with index m and fixed h=1/128.

∆t m
‖u−uh‖
‖u‖

0.1/27 1 1.65924(-4)

0.1/26 2 7.46950(-4)

0.1/25 4 1.96066(-3)

0.1/24 8 4.39337(-3)

0.1/23 16 9.28328(-3)

0.1/22 32 1.96240(-2)

0.1/21 64 4.11452(-2)

0.1 128 8.41251(-2)

0.2 256 1.70957(-1)

As we see from Table 5, when we take ∆t=0.1, which is too large for the stability of the
explicit scheme involved in the convection step, but we can still achieve the convergence
of the multistep scheme with index m≥64. Tables 5 and 6 have demonstrated that though
the single-step scheme does not converge for a fixed ∆t, the multistep scheme always
converges when the index m is appropriately large. So we can conclude that if we take
an appropriately large index m, say m = 30, the multistep scheme can be viewed as an
unconditionally stable scheme.

Furthermore, we have also computed the convergence orders of the multistep scheme
in terms of the global time step size for Examples 4.1 and 4.2 with a fixed index m and
mesh size h. The results are shown in Tables 7 and 8. Combining these results with
the ones for the single-step scheme (cf. Table 3), we can clearly observe the first order
temporal convergence for both examples.

Next, we carry out some numerical tests to check how the multistep scheme can im-
prove the stability region quantitatively. For each fixed mesh size h, we increase the index
m gradually and record the largest global time step size ∆t that can ensure the conver-
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Table 7: Convergence order of Algorithm 2 for Example 4.1 with fixed index m=64 and h=1/128.

∆t ‖u−uh‖ order

0.1 1.52209(+2) -

0.1/21 7.23099(+1) 1.0738

0.1/22 3.51127(+1) 1.0422

0.1/23 1.73718(+1) 1.0152

0.1/24 8.66679 1.0032

0.1/25 4.34772 0.9952

0.1/26 2.18766 0.9909

Table 8: Convergence order of Algorithm 2 for Example 4.2 with fixed index m=128 and h=1/128.

∆t ‖u−uh‖ order

0.1 8.69440(-2) -

0.1/21 4.27948(-2) 1.0227

0.1/22 2.07747(-2) 1.0426

0.1/23 1.00067(-2) 1.0538

0.1/24 5.01775(-3) 0.9959

0.1/25 2.54242(-3) 0.9808

0.1/26 1.31725(-3) 0.9487

Table 9: Critical global time step size ∆tcrit of Algorithm 2 for Example 4.1 in terms of index m.

m 1 2 10 20 40 80

h=1/64

∆tcrit 0.0049 0.0093 0.046 0.093 0.18 0.37

h=1/128

∆tcrit 0.0024 0.0045 0.022 0.045 0.091 0.18

Table 10: Critical global time step size ∆tcrit of Algorithm 2 for Example 4.2 in terms of index m.

m 1 2 10 20 40 80

h=1/64

∆tcrit 0.0032 0.0060 0.029 0.058 0.11 0.23

h=1/128

∆tcrit 0.0015 0.0030 0.014 0.028 0.057 0.11

gence of the entire algorithm. And the largest time step size will be written as the critical
time step size ∆tcrit for the stability of the algorithm. The results are shown in Tables 9
and 10, from which we can see that the stability region is nearly doubled when the index
m of the multistep scheme is doubled. So the multistep scheme can indeed clearly and
essentially enlarge the stability of the entire algorithm.
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We remark that we have done many more numerical experiments for Examples 4.1
and 4.2, but with the diffusion coefficients ε varying in a wide range, from 10−3 to 10−15,
and many different convective vectors b, and observed similar convergence and stability
behaviors for the single-step and multistep schemes as we have shown above.

4.2 Tests for the Navier-Stokes equations

Now we will apply our new single-step and multistep schemes (Algorithms 3 and 4) to
two examples of Navier-Stokes equations with analytical solutions to check the actual
convergence orders of the schemes and how the multistep scheme improves the stability
region of the single-step scheme. Then we will apply these schemes to the benchmark
problem of the lid-driven cavity flow to verify their validity.

Example 4.3. Consider the Navier-Stokes equations (1.3) with the following parameters:

Ω=[0,1]2, T=1, Re=5000 and 10000,

with the exact solution (u,p)=(u1,u2,p) given by p=(x2−y2)cos(t) and

u1=10x2(x−1)2y(y−1)(2y−1)cos(t), u2=−10x(x−1)(2x−1)y2(y−1)2 cos(t).

Example 4.4. Consider the Navier-Stokes equation (1.3) with the same parameters as in
Example 4.3, but the exact solution (u,p)=(u1,u2,p) given by

u1= t3y2, u2= t2x, p= tx+y−(t+1)/2.

This is an example where only a discretization error in time occurs [28].

4.2.1 Convergence tests for the single-step scheme

We first verify the convergence orders of the single-step scheme (Algorithm 3) in both
space and time for Example 4.3. Tables 11-12 present the convergence results in time for
the Reynolds numbers Re = 5000 and 10000 respectively, with a fixed uniform mesh of
size h= 1/128, and Tables 13-14 give the convergence results in space for the Reynolds
numbers Re=5000 and 10000 respectively, with a fixed ∆t=10−6. From these tables we
can clearly see the optimal first order convergence of the single-step scheme in time and
the optimal third and second order convergence in space respectively for the velocity and
pressure.

For Example 4.4, we have tested the single-step scheme (Algorithm 3) with the
Reynolds numbers Re= 5000 and 10000, and two uniform meshes of size h= 1/48 and
1/64, and the sequence of time step sizes as listed in (4.3). The results have shown that the
scheme converges only when the time step size ∆t=0.1/2k is sufficiently small, namely
when k takes at least 4 (∆t = 1/160) and 5 (∆t = 1/320) respectively for h = 1/48 and
1/64. This test indicates that the single-step scheme may require sufficiently small time
step size to ensure its convergence. In Section 4.2.2 we will show the multistep scheme
(Algorithm 4) can essentially improve the stability of the single-step scheme.
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Table 11: Convergence of Algorithm 3 for Example 4.3 with h=1/128 and Re=5000.

∆t ‖u−uh‖ order ‖p−ph‖ order

0.2 3.28203(-3) - 1.00222(-4) -

0.1 1.65607(-3) 0.9868 4.79084(-5) 1.0648

0.1/21 8.31889(-4) 0.9933 2.35900(-5) 1.0221

0.1/22 4.16919(-4) 0.9966 1.20411(-5) 0.9702

Table 12: Convergence of Algorithm 3 for Example 4.3 with h=1/128 and Re=10000.

∆t ‖u−uh‖ order ‖p−ph‖ order

0.2 3.29348(−3) - 9.98106(-5) -

0.1 1.66141(−3) 0.9872 4.77006(-5) 1.0652

0.1/21 8.34455(−4) 0.9935 2.34866(-5) 1.0222

0.1/22 4.18176(−4) 0.9967 1.19910(-5) 0.9699

Table 13: Convergence of Algorithm 3 for Example 4.3 with ∆t=10−6, Re=5000 and T=0.2.

h ‖u−uh‖ order ‖p−ph‖ order

1/4 1.31468(-3) - 6.45683(-3) -

1/8 1.81020(-4) 2.8607 1.61419(-3) 2.000016

1/16 2.38018(-5) 2.9270 4.03547(-4) 2.000002

1/32 3.00134(-6) 2.9874 1.00887(-4) 1.999996

1/48 8.71038(-7) 3.0511 4.48386(-5) 2.000004

Table 14: Convergence of Algorithm 3 for Example 4.3 with ∆t=10−6, Re=10000 and T=0.2.

h ‖u−uh‖ order ‖p−ph‖ order

1/4 1.31577(-3) - 6.45683(-3) -

1/8 1.81589(-4) 2.8572 1.61419(-3) 2.000016

1/16 2.42194(-5) 2.9064 4.03547(-4) 2.000002

1/32 3.20061(-6) 2.9197 1.00887(-4) 1.999996

1/48 9.28064(-7) 3.0533 4.48386(-5) 2.000004

4.2.2 Stability improvement by the multistep scheme

As shown in the previous subsection, the convergence of the single-step scheme (Algo-
rithm 3) for Example 4.4 requires a sufficiently small global time step size for a fixed mesh
size h.

In order to improve this severe restriction on time step size by the single-step scheme,
we now show how we can achieve the convergence for large global time step size by
the multistep scheme. For each fixed ∆t=0.1/2k (k=−1,0,1,2,··· ), we run the multistep
scheme with index m= 1,21,22,··· until we observe the convergence of the scheme, and
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Table 15: Stability of Algorithm 4 for Example 4.4 with index m and fixed h=1/48, Re=5000.

∆t m ‖u−uh‖ ‖p−ph‖

0.1/24 1 1.61352(-3) 9.22561(-3)

0.1/23 4 3.15065(-3) 1.82083(-2)

0.1/22 8 6.32378(-3) 3.52747(-2)

0.1/21 16 1.34098(-2) 6.64021(-2)

0.1 32 2.70632(-2) 1.18921(-1)

0.2 64 5.60465(-2) 1.97385(-1)

Table 16: Stability of Algorithm 4 for Example 4.4 with index m and fixed h=1/64, Re=10000.

∆t m ‖u−uh‖ ‖p−ph‖

0.1/25 1 8.13177(-4) 4.65014(-3)

0.1/24 2 1.61134(-3) 9.24510(-3)

0.1/23 4 3.46105(-3) 1.82018(-2)

0.1/22 16 6.37609(-3) 3.52913(-2)

0.1/21 32 1.29496(-2) 6.64033(-2)

0.1 64 2.67569(-2) 1.18926(-1)

0.2 128 5.67472(-2) 1.97454(-1)

then record the corresponding index m; see Tables 15 and 16 for the recorded index m cor-
responding to each fixed ∆t and the resulting relative L2-norm errors of the approximate
solutions for the velocity and pressure.

As we see from Table 15, when we take ∆t=0.1, which is too large for the stability of
the explicit scheme involved in the convection step, but we can still achieve the conver-
gence of the multistep scheme with index m≥ 32. Tables 15 and 16 have demonstrated
that though the single-step scheme does not converge for a fixed ∆t, the multistep scheme
always converges when the index m is appropriately large. So we can conclude that if we
take an appropriately large index m, say m=30, the multistep scheme can be viewed as
an unconditionally stable scheme.

Next we have tested the actual convergence orders of the multistep scheme when
the index m is fixed at m = 64. Tables 17-18 have shown the computational results for
Re= 5000 and 10000 with fixed h= 1/48 and 1/64 respectively. We can observe clearly
the optimal first order convergence for both velocity and pressure in terms of the global
time step size.

The last test we have carried out is to check how the multistep scheme can improve
the stability region quantitatively. For each fixed mesh size h, we increase the index m
gradually and record the largest global time step size ∆t (the critical time step size ∆tcrit

as we called earlier) that can ensure the convergence of the entire algorithm. The results
are shown in Table 19, from which we can see that the stability region is nearly doubled
when the index m of the multistep scheme is doubled. So the multistep scheme can
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Table 17: Convergence order of Algorithm 4 for Example 4.4 with fixed h= 1/48, Re= 5000 and fixed index
m=64.

∆t ‖u−uh‖ order ‖p−ph‖ order

0.2 5.60465(-2) - 1.97385(-1) -

0.1 2.64298(-2) 1.0845 1.18888(-1) 0.7314

0.1/21 1.28200(-2) 1.0438 6.63946(-2) 0.8405

0.1/22 6.33073(-3) 1.0180 3.52954(-2) 0.9116

0.1/23 3.17694(-3) 0.9947 1.82354(-2) 0.9527

0.1/24 1.60997(-3) 0.9806 9.27332(-3) 0.9756

0.1/25 8.20838(-4) 0.9719 4.67745(-3) 0.9874

Table 18: Convergence order of Algorithm 4 for Example 4.4 with fixed h= 1/64, Re= 10000 and fixed index
m=64.

∆t ‖u−uh‖ order ‖p−ph‖ order

0.1 2.67569(-2) - 1.18926(-1) -

0.1/21 1.29252(-2) 1.0497 6.64054(-2) 0.8407

0.1/22 6.35955(-3) 1.0232 3.52978(-2) 0.9117

0.1/23 3.17773(-3) 1.0009 1.82330(-2) 0.9530

0.1/24 1.60477(-3) 0.9856 9.27095(-3) 0.9758

0.1/25 8.16528(-4) 0.9748 4.67451(-3) 0.9879

Table 19: Critical global time step size ∆tcrit of Algorithm 4 for Example 4.4 in terms of index m.

m 1 5 10 20 40 80

Re=10000, h=1/64

∆tcrit 0.0039 0.018 0.024 0.048 0.089 0.18

indeed clearly and essentially enlarge the stability of the entire algorithm.
We end this subsection with some concluding remarks on convergence and stability

behaviors of the single-step and multistep schemes, based on our observations from the
numerical tests in this and previous subsections.

• The single-step scheme (Algorithm 3) is generally conditionally stable, and requires
sufficiently small time step size to ensure its convergence with a fixed mesh and
larger Reynolds number.

• The multistep scheme (Algorithm 4) can essentially relax the restriction of the time
step size (see Tables 15, 16 and 19).

• Comparing the results in Tables 15-16 with the ones in Tables 17-18, we can clearly
see the stability and robustness of the multistep schemes (Algorithm 4). For exam-
ple, for the global time step size ∆t = 0.1/24, the multistep schemes with a small
index like m= 2 and a large index like m= 64 provide about the same accuracies;
see Tables 16 and 18.
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4.2.3 The lid-driven cavity flow

As our final numerical example we test a popular benchmark problem, i.e., the lid-driven
cavity flow problem, where the fluid is enclosed in a unit square box, with an imposed
velocity of unity in the horizontal direction on the top boundary, and a no-slip condition
on the remaining walls. We shall compare our results with three benchmark results: Ghia
et al. [29] with h = 1/128 for Reynolds numbers Re = 100,400,1000 and 3200; Erturk et
al. [30] with h=1/128 for Reynolds number Re=1000; Botella et al. [31] for the Reynolds
number Re=1000.

In all our computations for this example, we use the uniform mesh of size h=1/128
and the Taylor-Hood element (4.2), and have tested the cases with Reynolds numbers
Re=100,400,1000 and 3200, and the global time step size ∆t=0.005. The stoping condition
for time advancing, which is considered as the criterion of capturing the steady state
solution, is chosen as

‖un+1
h −un

h‖

‖un+1
h ‖

≤10−5,

where un
h is the finite element solution at time t= tn. We have observed from our numer-

ical results that the single-step scheme (Algorithm 3) works when the Reynolds number
is relatively small, e.g., Re= 100,400 and 1000, but it is unstable when Re is large, e.g.,
Re ≥ 3200. But the multistep scheme may still work for larger Reynolds number, e.g.,
Re=3200.

Tables 20-21 present the streamfunction values and the locations of the primary and
secondary vortices for various Reynolds numbers. Figs. 1, 2 and 3 show the computed
velocity components and vorticity profiles along the horizonal and vertical lines com-
pared with the results of Ghia et al. [29] and Botella et al. [31]. As one can see that the
results by the new schemes confirm very well the ones by the benchmark schemes.

Table 20: Streamfunction values Ψmin, Ψmax and locations of the primary and secondary vortices.

Vortex Property Re=1000 Re=1000 Re=1000

Single-step scheme Ghia et al. [29] Erturk et al. [30]

Primary Ψmin -0.114722 -0.117929 -0.118781

Location (x, y) (0.5313, 0.5625) (0.5313, 0.5625) (0.5300, 0.5650)

First BL Ψmax 2.12504E-4 2.31129E-4 2.3261E-4

Location (x, y) (0.0781, 0.0781) (0.0859, 0.0781) (0.0833, 0.0783)

First BR Ψmax 1.67313E-3 1.75102E-3 1.7281E-3

Location (x, y) (0.8672, 0.1094) (0.8594,0.1094) (0.8633, 0.1117)

Second BR Ψmin -4.815059E-8 -9.31929E-8 5.4962E-8

Location (x, y) (0.9922, 0.0078) (0.9922, 0.0078) (0.9917, 0.0067)
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(a) Re=1000 (b) Re=3200

Figure 1: Velocity (ux) profiles along the vertical line passing through the geometric center of the cavity. Black
solid lines: (a) single-step scheme, (b) multistep scheme with index m=2; Blue circle lines: Ghia et al. [29].
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Figure 2: Velocity (uy) profiles along the horizontal line passing through the geometric center of the cavity.
Black solid lines: (a) single-step scheme, (b) multistep scheme with index m = 2; Blue circle lines: Ghia et
al. [29].
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Figure 3: Vorticity values along the horizontal line y= 0.5 (left) and the vertical line x = 0.5 (right) passing
through the geometric center of the cavity with Re= 1000. Black solid lines: single-step scheme; Blue circle
lines: Botella et al. [31].
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Table 21: Streamfunction values Ψmin, Ψmax and locations of the primary and secondary vortices.

Number Property Re=3200 Re=3200

Multistep scheme with index m=2 Ghia et al. [29]

Primary Ψmin -0.109962 -0.120377

Location, x, y (0.5156,0.5391) (0.5165,0.5469)

First T Ψmax 5.759079E-4 7.27682E-4

Location (x, y) (0.0469,0.8984) (0.0547,0.8984)

First BL Ψmax 1.09512E-3 9.7823E-4

Location (x, y) (0.0781,0.1250) (0.0859,0.1094)

First BR Ψmax 2.70425E-3 3.13955E-3

Location (x, y) (0.8281,0.0859) (0.8125,0.0859)

Second BL Ψmin -1.04040E-8 -6.33001E-8

Location (x, y) (0.0078,0.0078) (0.0078,0.0078)

Second BR Ψmin -1.36461E-7 -2.51648E-7

Location (x, y) (0.9844,0.0078) (0.9844,0.0078)

5 Concluding remarks

We have proposed a new splitting method for solving the general time-dependent
convection-dominated diffusion problem and the Navier-Stokes equations. A pure con-
vection problem and a pure diffusion problem are solved successively at each iteration
of the method. Explicit schemes are proposed for the time discretization of the con-
vective problem. The explicitness of the scheme may cause a severe restriction on the
time step sizes, which can be essentially improved by an explicit multistep scheme with
smaller time step sizes so that the resulting method behaves like an unconditionally sta-
ble method. The diffusion problem involved at each iteration is always self-adjoint and
coercive so that it can be solved efficiently using many existing optimal preconditioned
iterative solvers. The optimal convergence orders have been confirmed by several nu-
merical examples with smooth solutions. The schemes are then extended for the Navier-
Stokes equations, where the nonlinearity is resolved by a linear explicit multistep scheme
at the convection step, while only a generalized Stokes problem is needed to solve at the
diffusion step and the major stiffness matrix stays invariant in the time marching pro-
cess. Numerical simulations are presented to demonstrate the stability, convergence and
performance of the single-step and multistep variants of the new schemes. The effective-
ness and robustness of the new schemes are finally well demonstrated by the benchmark
lid-driven cavity flow problem.
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