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Abstract. We investigate connections between nonlocal continuum models and molec-
ular dynamics. A continuous upscaling of molecular dynamics models of the form of
the embedded-atom model is presented, providing means for simulating molecular
dynamics systems at greatly reduced cost. Results are presented for structured and
structureless material models, supported by computational experiments. The nonlocal
continuum models are shown to be instances of the state-based peridynamics theory.
Connections relating multibody peridynamic models and upscaled nonlocal contin-
uum models are derived.
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1 Introduction

Multibody potentials were proposed in molecular dynamics (MD) to overcome some of
the limitations of pair potentials [1, Section 4.3]. One such multibody potential is the
embedded-atom model (EAM) [2, 3], commonly used for metallic systems, in which the po-
tential energy of the system is expressed as a combination of volume-dependent and
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pair potential energy terms. Other common multibody potentials include the Stillinger-
Weber potential [4], frequently used for modeling semiconductors, and the Tersoff po-
tential [5], which utilizes two- and three-atom contributions and is based on the idea that
the strength of a bond between two atoms is environment dependent.

MD models are computationally expensive and even intractable at large scales. In
contrast, continuum models can be discretized on coarse meshes, resulting in efficient nu-
merical implementations. Consequently, attempts to replace MD models by continuum
models, capable of preserving important features of MD, have been proposed. One such
approach, based on higher-order gradient continuum models, is given in [6]. A differ-
ent approach, using nonlocal continuum models (NCMs) appears in [7]. These methods
attempt to use continuum models for the continuous upscaling† of MD. By replacing MD
models with their corresponding upscaled continuum models, we can simulate length
scales not tractable by MD alone. In [7], the continuous upscaling of pairwise MD models
is derived within the peridynamics theory of solid mechanics [8,9], recovering character-
istic dispersion relations of discrete models at the continuum level. That work is related
to coarse-graining, but differs from the phase-space average approach presented in [10].
In this paper, we extend the techniques of [7] to multibody potentials of the form of the
MD EAM. We derive upscaled nonlocal continuum models inspired by peridynamics,
and we demonstrate that all of the nonlocal continuum models we derive are instances
of the peridynamics theory.

Alternative approaches for efficient and accurate simulation of systems exhibiting
MD phenomena include concurrent multiscale modeling. These methods appear in the
literature under so-called atomistic-to-continuum coupling methods, attempting to cou-
ple classical continuum models and MD models [11–13].

The organization of this paper is as follows. In Section 2, we review the multibody
MD EAM. The continuous upscaling of MD models to NCMs is shown for a structure-
less EAM in Section 3 and for a structured EAM in Section 4, with supporting computa-
tional examples. Concluding remarks are presented in Section 5. Appendix A includes an
overview of the peridynamics theory and its multibody models, their connections, and
their relations to upscaled NCMs.

2 Embedded-atom models in molecular dynamics

The MD EAM was proposed in [2, 3] based on density functional theory and, in par-
ticular, on the earlier quasiatom [14] and effective medium [15] theories. By utilizing a
volume-dependent energy, this model overcomes existing difficulties of pair potentials
in the description of elastic properties of materials.

In a solid, each atom can be viewed as an impurity embedded in a host composed by
all other atoms. As the energy of an impurity is a functional of the electron density of the

†By continuous upscaling, we refer to the process of deriving a continuum model from a discrete one, so that
the continuum model preserves certain quantities of interest of the discrete model.
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unperturbed host, the cohesive energy of the solid can be calculated from the embedding
energy. In the MD EAM, then, each atom is viewed as embedded in a host lattice consist-
ing of all other atoms, and an electron density is thus used for calculations. The potential
energy of the system, denoted by Epot, is taken as the sum of individual contributions

Epot=∑
i

Fi(ρh,i)+
1

2 ∑
i,j

i 6=j

φij(rij), (2.1)

where φij(rij) is a core-core repulsive pair potential between atoms i and j separated by
the distance rij (a short-range electrostatic potential), and Fi(ρh,i) is the energy to embed
atom i in the host electron density ρh,i. The host electron density ρh,i at atom i is a linear
superposition of the electron densities of constituent atoms [16], written as

ρh,i = ∑
j( 6=i)

f j(rij), (2.2)

with f j the electron density contributed by atom j as a function of the distance from its
center. The equation of motion of atom i in a system described by the MD EAM is

mi
d2yi

dt2
=− ∑

j( 6=i)

[
F′

i (ρh,i) f ′j (rij)+F′
j (ρh,j) f ′i (rij)+φ′

ij(rij)
] yi−yj

rij
+fext

i , (2.3)

where mi is the mass of atom i, yi=yi(t) is the position of atom i at time t, rij :=‖yi−yj‖,
and fext

i = fext
i (t) is the external force acting on atom i at time t. We denote by F′

i the
derivative of Fi with respect to its argument ρh,i, and similarly for f ′i and φ′

ij. In (2.3), we

have omitted the time dependence for brevity. Furthermore, it is assumed that φij=φji.
Analytical expressions for Fi and φij in (2.1) are not provided in the first MD EAMs

proposed [2, 3]. These functions were determined empirically from the physical proper-
ties of the solid, with the pair potential assigned a Coulombic form as φij(r)=Zi(r)Zj(r)/r,
with Zi(r) an effective charge for the atom i. A consistent set of embedding functions and
short-range repulsive pair interactions for the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as
well as the alloy combination of these elements is provided in [17]. These functions were
determined empirically by fitting the predicted results to the sublimation energy, equilib-
rium lattice constant, elastic constants, and vacancy-formation energy of the pure metals
as well as to the heats of solution of binary alloys.

In [18], a simple analytical fcc model was developed, matching the energy functional
of the MD EAM with an expression for the energy previously derived in [19]. Unfor-
tunately, the authors considered only nearest-neighbor interactions, giving only the first-
order effects of the model. That model was extended beyond nearest neighbors in [20] for
fcc and hcp metals, but only for electron densities which deviate less than 10% from equi-
librium. Analytical expressions for the MD EAM, valid for any choice of cutoff distance,
were introduced in [21]. The authors followed a similar approach as in [18], deriving
F(ρ) using the energy expression of [19] while taking a different functional form for the
electron density functions in order to allow for multiple-neighbor interactions.
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3 Continuous upscaling of a structureless embedded-atom model

The high computational cost of MD simulations motivates the development of contin-
uum models capable of preserving dynamics and length scales of MD. These continuum
models can be discretized on coarse meshes, producing substantial computational sav-
ings.

In most MD models the interaction between atoms depends only upon the current
configuration; see, e.g., the dependence upon rij in (2.1) and (2.2). We refer to these
types of material models as structureless. In Section 3.1, we demonstrate how to upscale
a structureless MD EAM to a NCM, following similar derivations for the continuous
upscaling of a Lennard-Jones MD model presented in [7]. In Section 3.2, we present
numerical results for one-dimensional wave propagation showing a speedup of 15× over
MD.

We refer the reader to Section A.3.1, where we demonstrate that our NCM (3.4) is an
instance of a generalized EAM-like peridynamic model.

3.1 An upscaled structureless embedded-atom model

Let’s assume for simplicity a homogeneous system, i.e., a monatomic crystal. The MD
EAM potential energy per atom for such system is (cf. (2.1) and (2.2))

Ei=F(ρh,i)+
1

2 ∑
j( 6=i)

φ(rij) with ρh,i = ∑
j( 6=i)

f (rij). (3.1)

In structureless materials, such as (3.1), it is customary to introduce for efficiency a cut-
off radius. Two atoms are then assumed to interact directly whenever their distance is
smaller than the cutoff radius. For that purpose, we define the cutoff function

g(x)





=1, x≤0,
∈ (0,1), 0< x<1,
=0, x≥1,

(3.2)

where x := (r−rn)/(rc−rn) with r the distance between two atoms, and the cutoff pa-
rameters rc and rn are given. The function g(x) is assumed monotonic and continuously
differentiable.

We now express (3.1) with dimensionless functions (marked with a tilde) and the
cutoff function as follows:

Ei=Ec F̃

(
ρh,i

ρe

)
+

1

2 ∑
j( 6=i)

φeφ̃

(
rij

µ

)
g

(
rij−rn

rc−rn

)
with ρh,i = fe ∑

j( 6=i)

f̃

(
rij

µ

)
g

(
rij−rn

rc−rn

)
,

where Ec and φe are energy scales, µ is a length scale, and fe and ρe are electronic density
constants. For a perfect crystal the atoms can be distributed in shells, allowing us to write
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the potential energy density per atom as

e :=
Ec

va
F̃

(
ρh

ρe

)
+

1

2 ∑
m

sm
φe

va
φ̃

(
rm

µ

)
g

(
rm−rn

rc−rn

)
with ρh = fe∑

m

sm f̃

(
rm

µ

)
g

(
rm−rn

rc−rn

)
,

(3.3)
va the Wigner-Seitz cell of the crystal, rm the distance of the m-th-neighbor shell with
respect to a given atom, and sm the number of atoms in that shell. For a perfect crystal
rm = pmr1, where the constants pm depend on the type of crystal structure. For instance,
pm =

√
m in fcc crystals.

Our goal is to derive an upscaled NCM consistent with the MD EAM (3.1). Matching
models is usually done with respect to certain quantities of interest (QoIs). In our case,
we choose the potential energy density per particle (3.3) as our QoI and derive a contin-
uum model that preserves this QoI under isotropic deformations. Matching energies is a
standard practice in the atomistic-to-continuum coupling literature (see, e.g., [11, p. R39]
and [22]).

Let rn=nr1e, rc=cr1e, and µ=σr1e with n, c, and σ constant. The m-th-nearest-neighbor
distance in equilibrium is rme, m = 1,2,··· . Assume an isotropic deformation, i.e., rm =
χrme =χpmr1e with χ a constant. Then,

e= ecF̃

(
ρh

ρe

)
+

1

2 ∑
m

sm ϕeφ̃
( χpm

σ

)
g

(
χpm−n

c−n

)
with

ρh

ρe
=

fe

ρe
∑
m

sm f̃
( χpm

σ

)
g

(
χpm−n

c−n

)
,

where ec :=Ec/va and ϕe :=φe/va. The QoI remains constant for different “resolutions”
(i.e., different values of r1e) provided that we keep constant the energy density scales ec

and ϕe, the number of interacting shells, the parameters c, n, and σ, the ratio fe/ρe, the
number of atoms per shell sm, and the inter-shell parameters pm.

Remark 3.1. We have derived a set of coarse-grained models of the form of (2.3) that pre-
serve the potential energy density per particle of a reference MD model under isotropic
deformations. The characteristic length scale of a particular coarse-grained system is de-
termined by r1e.

To proceed with the continuous upscaling of (3.1), we divide the equation of motion
(2.3) by the Wigner-Seitz cell and get

ρi
d2yi

dt2
=− ∑

j( 6=i)

{(
F
′
(ρh,i)+F

′
(ρh,j)

)
f ′(rij)+φ

′
(rij)

} yi−yj

rij
+bi,

where

ρi :=
mi

va
, F(ρ) :=

1

va
F(ρ), φ(r) :=

1

va
φ(r), and bi :=

1

va
fext

i .

Assuming continuous expressions for the fields of mass density ρ(x), host electron den-
sity ρh(x,t), current position y(x,t), and body force density b(x,t), we can express the
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equation of motion and host electron density, respectively, for a point x in a crystal as

ρ(x)
∂2y

∂t2
(x,t)=− ∑

n1 ,n2,n3
n 6=0

[(
F
′
(ρh(x,t))+F

′
(ρh(x+niai,t))

)
f ′(‖y(x+niai,t)−y(x,t)‖)

+ φ
′
(‖y(x+niai,t)−y(x,t)‖)

] y(x,t)−y(x+niai,t)

‖y(x,t)−y(x+niai,t)‖
+b(x,t),

ρh(x,t)= ∑
n1 ,n2,n3

n 6=0

f (‖y(x+niai,t)−y(x,t)‖) ,

where {ai}i=1,2,3 are the lattice primitive vectors, the summations over n1,n2,n3 are over
all integers, and the Einstein summation convention for repeated indexes is used. We
now let ai =

(
r1e/r0

1e

)
a0

i , where the superscript 0 denotes a reference MD lattice. Using
the three-dimensional Dirac delta function, we obtain the upscaled EAM

ρ
∂2y

∂t2
=
∫

R3

{

∑
n1,n2,n3

n 6=0

[(
F
′
(ρh)+F

′
(ρ̂h)

)
f ′(‖ŷ−y‖)+ φ

′
(‖ŷ−y‖)

]
δ(3)
(

x̂−
(

x+
ni

σ

a0
i

r0
1e

µ
))}

× ŷ−y

‖ŷ−y‖dVx̂+b, (3.4)

ρh =
∫

R3
∑

n1,n2,n3
n 6=0

f (‖y̌−y‖)δ(3)
(

x̌−
(

x+
ni

σ

a0
i

r0
1e

µ
))

dVx̌ (3.5)

with ρ=ρ(x), y :=y(x,t), ŷ :=y(x̂,t), y̌ :=y(x̌,t), ρh :=ρh(x,t), ρ̂h :=ρh(x̂,t), and b=b(x,t).

3.2 Numerical results

We demonstrate the continuous upscaling through a one-dimensional example. Follow-
ing [21], we assume the MD EAM functions

F(ρ)=−Ec

[
1− α

β
ln

(
ρ

ρe

)](
ρ

ρe

)α
β

+
1

2
φe∑

m

sm

[
1+(pm−1)λ−pm

λ

β
ln

(
ρ

ρe

)]

×exp[−(pm−1)γ]

(
ρ

ρe

)pm
γ
β

g




pm

(
1− 1

β ln
(

ρ
ρe

))
−n

c−n


, (3.6)

φ(r)=−φe

[
1+λ

(
r

µ
−1

)]
exp

[
−γ

(
r

µ
−1

)]
g

(
r−rn

rc−rn

)
, (3.7)

f (r)= fe

k

∑
ℓ=0

cℓ

(µ

r

)ℓ
g

(
r−rn

rc−rn

)
, (3.8)
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g(x)=





1, x≤0,
(1−x)3(1+3x+6x2), 0< x<1,
0, x≥1,

(3.9)

where α= (9KeΩ
a
e /Ec)

1/2 with K the bulk modulus, Ωa the atomic volume, and Ec the
cohesive energy. The subscript e indicates evaluation at equilibrium. Adjustable param-
eters for F(ρ) and φ(r) are ρe, β, φe, λ and γ. The parameter ρe can be eliminated because
only ratios ρ/ρe appear in F(ρ). For details on the fitting procedure and fitted values,
including the parameters fe and {cℓ}ℓ=0,···,k of the electron density function f (r), see [21].

Remark 3.2. In contrast to [21, Eqs. (13) and (16)], we have explicitly included the cutoff
function g(x), for φ(r) and f (r), in (3.7) and (3.8), respectively. As a consequence, we
modify accordingly the analytical expression of F(ρ) in (3.6). This is done following the
same derivations leading to Equation (17) in [21].

We present one-dimensional wave propagation results for the upscaled EAM (3.4)
with the functions (3.6)-(3.9). Following similar examples in [6], we choose a domain B=
[0,1000]. The initial configuration is defined as y(x,0)=x+p(x) for all x∈B, where p(x) is
a smooth 21-st order piecewise polynomial such that p≡0 on [0,300]∪[700,1000], p(500)=
7, and p′(x)= p′′(x)= ···= p(10)(x)=0 for x=300,500,700. The initial displacement, i.e.,
u(x,0)= p(x), is illustrated in Fig. 2(a). Similar simulations for the continuous upscaling
of nonlocal linear springs and Lennard-Jones MD models were presented in [7]. The
reference atomistic system is chosen to have 1,001 atoms interacting through the MD
EAM (2.3) with the functions (3.6)-(3.9). We assume no external forces, i.e., fext

i = 0 and
b=0 in (2.3) and (3.4), respectively. We run a “fine-grid” NCM simulation with Nx=1001
particles to compare to MD, as well as “coarse-grid” NCM simulations with Nx=501 and
Nx =251.

In the simulations, we use the choices of parameters described in Table 1 with a the
lattice constant in the MD system. The final simulation time is denoted by T and the time
step by ∆t. In the NCM simulations, we denote the mesh size by h and take, accordingly,
rn =3.5h, rc =3.9h, and ∆t=0.2h. We choose σ=2, so that µ=2h.

Table 1: Parameters for the structureless EAM defined by (3.6)-(3.9); data for Cu [18,21].

c0 c1 c2 c3 c4 c5

0.14095 −1.93222 9.60043 −21.23718 20.18581 −5.81656

α β γ λ rn rc

5.082 5.85 6.82054 12.06 3.5a 3.9a

ρ Ec φe ∆t T fe/ρe

63.546 3.54 0.1217 0.2a 120 1/12.0

The numerical experiments are shown in Fig. 1. We compare the results of an MD
simulation for 1,001 atoms (a,b) with a NCM simulation with the same resolution (c)
and coarsened NCM simulations with 501 particles (d) and 251 particles (e). Fig. 1(a)
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Molecular dynamics

(a) MD (b) MD

Nonlocal continuum model

(c) Fine-grid NCM: h= a (d) Coarse-grid NCM: h=2a (e) Coarse-grid NCM: h=4a

Figure 1: Mass density evolution for one-dimensional wave propagation. We compare (a,b) the molecular
dynamics (MD) embedded-atom model (2.3) and (c,d,e) the upscaled nonlocal continuum model (NCM) (3.4).
The MD model and NCM use the functions (3.6)-(3.9). Time is represented in the vertical axis (increasing from
top to bottom) and the horizontal axis represents the atom/particle position in the reference configuration. The
lattice constant in the MD simulation is denoted by a, and the mesh size in the NCM simulations is denoted by
h. Each point in the plot corresponds to a given atom/particle at a specific time level. The color assigned to a

point is an approximation of (dy/dx)−1, which is proportional to the mass density. In (a), we observe the MD
simulation in the complete space-time domain. Plots (b) and (c,d,e) are a zoom-in of the bottom-right corner
of the entire space-time domain plots, like (a), and show the dispersion patterns produced. We omit the entire
space-time domain NCM plots because they are qualitatively similar to the MD plot.

shows the MD simulation in the complete space-time domain. The remaining plots show
a zoom-in of the bottom-right corner of the entire space-time domain plots, like Fig. 1(a),
to better illustrate the solution. We omit the entire space-time domain NCM plots be-
cause they are qualitatively similar to the MD plot. The x-axis represents the reference
position of the atoms/particles and the y-axis represents time (increasing from top to bot-

tom). The color assigned to a point represents the quantity (dy/dx)−1, approximated as
(xj+1−xj−1)/(yj+1−yj−1) for atom/particle j, which is proportional to the mass density,
allowing us to track the wave as it moves (cf. [6]). We conclude that the NCM recovers
the same results as the MD model for the same resolution. For the coarse simulations, the
general behavior of the MD solution is qualitatively preserved, although the oscillations
that characterize the mass density of the system depend upon the resolution provided by
the chosen discretization. Similar conclusions for the continuous upscaling of a Lennard-
Jones MD model appear in [7].
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Table 2: Comparison between the computational cost of the molecular dynamics (MD) and nonlocal continuum
model (NCM) simulations. The lattice constant in the MD simulation is denoted by a, and the mesh size in the
NCM simulations is denoted by h. The coarse-grid NCM simulations reduce the number of particles and time
steps.

MD NCM (h=2a) NCM (h=4a)
Number of atoms/particles 1001 501 251
Number of time steps 600 300 150
Total time (seconds) 153.33 38.78 9.89
Speedup 1.00 3.95 15.50

In Table 2, we compare the computational costs between coarse NCM and MD sim-
ulations. We observe that the NCM simulation with h= 4a achieves a speedup‡ of 15×
over MD.

Further comparisons between the MD and coarse NCM simulations are presented in
Fig. 2. In (b), we compare the displacement profiles at the final time T, i.e., u(x,T) =
y(x,T)−x, showing that the profile of the MD simulation is reproduced by the NCM
simulations. In (c), we present the evolution of the kinetic energy (black lines), the po-
tential/strain energy (blue lines), and the total energy (red lines) for the MD and coarse
NCM simulations, showing the conservation of total energy in time on each simulation.
As expected, fluctuations in the potential/strain energy have complementary fluctua-
tions in the kinetic energy. Moreover, the kinetic, potential/strain, and total energy are
preserved through the continuous upscaling process as shown in Fig. 2(c).
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(c) Energy evolution

Figure 2: (a) Displacement profile assigned to the molecular dynamics (MD) embedded-atom model (2.3) and
the upscaled nonlocal continuum model (NCM) (3.4) simulations, in the initial configuration. (b,c) Comparison
between the MD and the coarse NCM simulations. The lattice constant in the MD simulation is denoted by a,
and the mesh size in the NCM simulations is denoted by h. In (b), we compare the displacement profiles at the
final time between the MD simulation and the coarse NCM simulations with mesh sizes of h=2a and h=4a. A
comparison of the energy evolution between the MD and the coarse NCM simulations is presented in (c). We
plot the kinetic energy (black lines), the total energy (red lines), and the net change in potential/strain energy
(blue lines) for each of the simulations. We shifted the net change in potential/strain energy by 280 for easier
comparison to the change in kinetic energy.

‡The speedup is defined as the ratio of the total time of the MD simulation to the total time of the given
simulation.
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4 Continuous upscaling of a structured embedded-atom model

In Section 3, we showed the continuous upscaling of structureless MD EAMs. Here, we
extend this technique to structured material models in higher dimensions.

In Section 4.1, we present an example of a structured MD model of the form of the
EAM and derive its continuous upscaling to a NCM in Section 4.2. Numerical examples
in Section 4.3 demonstrate that the upscaled continuum model reproduces the dynamics
of the original MD model at greatly reduced cost.

In Section A.3.2, we show that our NCM (4.11) is an instance of a linear peridynamic
solid model.

4.1 A structured embedded-atom model

Given a lattice L, we define a monatomic crystal with atoms at positions xi ∈L∩B, i=
1,··· ,N, with B a bounded body. We assume a homogeneous system§ with potential
energy

Epot=∑
i

F(ρh,i)+
1

2 ∑
i, j

(i 6=j)

φij(rij). (4.1)

The dependence of the embedding function on the host electron density is assumed of
the form

F(ρ)=
1

2
c

(
ρ

ρ0
−1

)2

, (4.2)

where c is a constant and ρ0 is the host electron density in the reference configuration.
The host electron density evaluated at the location of the i-th atom is taken as

ρh,i = ∑
j( 6=i)

fij(rij) with fij(r)=χε
ij f0

va

(r0
ij)

p−1
r, (4.3)

where r0
ij :=‖xj−xi‖ and rij :=‖yj−yi‖ are the distances between the i-th and j-th atoms

in the reference and current configurations, respectively. The position of the i-th atom at
time t is yi = yi(t), xi is the reference position of the i-th atom, f0 is a constant, va is the
Wigner-Seitz cell of the crystal, p is a model parameter, and χε

ij is defined as

χε
ij :=

{
1, r0

ij ≤ ε,

0, otherwise,

§The homogeneity of the system is expressed by introducing a single embedding function F for the entire
system. In the standard EAM, the pair potential φij may depend on the atom type i and atom type j. In
contrast, the model (4.1) assumes a monatomic crystal. However, given atom i, the pair potential φij may
vary based on whether j is a nearest neighbor of atom i, a second nearest neighbor of atom i, etc. (see (4.5)).
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where the parameter ε>0 represents a horizon (cf. Section A.1.1). Note that in the refer-
ence configuration rij = r0

ij, thus for an atom in the bulk of a homogeneous system

ρ0= ∑
j∈Fi

f0
va

(r0
ij)

p−2
(4.4)

with the family of the i-th atom defined as

Fi :=
{

j : xj ∈B ; r0
ij ≤ ε

}
.

The pair potential is assumed to have the functional form

φij(r)=
1

2
χε

ij

k

(r0
ij)

p

(
r−r0

ij

)2
, (4.5)

where k is a constant. The equation of motion for the i-th atom with mass mi is (cf. (2.3))

mi
d2yi

dt2
= ∑

j∈Fi

{[
F′(ρh,i)+F′(ρh,j

)]
f ′ij(rij)+φ′

ij(rij)
} yj−yi

‖yj−yi‖
+fext

i . (4.6)

4.2 An upscaled structured embedded-atom model

In order to upscale (4.6), we take the potential energy density per particle (cf. (4.1))

ei :=
1

va
F(ρh,i)+

1

va

1

2 ∑
j∈Fi

φij(rij) (4.7)

as our QoI. As in Section 3.1, our goal is to derive an upscaled MD EAM which preserves
this QoI under isotropic deformations, i.e., rij=χr0

ij,∀i, j with χ a constant. We first derive

the discrete coarse-grained model (4.9) below and then upscale it to a NCM. Starting with
the first term on the right-hand side of (4.7) we have

1

va
F(ρh,i)=

1

2

c

va

(
ρh,i

ρ0
−1

)2

with
ρh,i

ρ0
=

∑
j∈Fi

f0
va

(r0
ij)

p−1
rij

∑
j∈Fi

f0
va

(r0
ij)

p−2

=

f0va ∑
j∈Fi

1

(r0
ij)

p−2
χ

f0va ∑
j∈Fi

1

(r0
ij)

p−2

=χ. (4.8)

Under isotropic deformations, this term is preserved as long as c̄ :=c/va is kept constant.
We thus express the embedding energy function as

F(ρ)=
1

2
c̄va

(
ρ

ρ0
−1

)2

.



190 P. Seleson, M. L. Parks and M. Gunzburger / Commun. Comput. Phys., 15 (2014), pp. 179-205

The second term on the right-hand side of (4.7) can be written, for an isotropic deforma-
tion, as

1

va

1

2 ∑
j∈Fi

φij(rij)=
1

va

1

2 ∑
j∈Fi

1

2

k

(r0
ij)

p

(
rij−r0

ij

)2
=

1

4

k

va
∑

j∈Fi

1

(r0
ij)

p−2
(χ−1)2=

1

4
k̄(χ−1)2

with k̄ := kρ0 / f0v2
a . This term is preserved under an isotropic deformation, provided that

k̄ is kept constant. The pairwise potential is then expressed as

φij(r)=
1

2
χε

ij

k̄ f0

ρ0

v2
a

(r0
ij)

p

(
r−r0

ij

)2
.

Observing that

F′(ρ)=
c̄

ρ0
va

(
ρ

ρ0
−1

)
, f ′ij(r)=χε

ij f0
va

(r0
ij)

p−1
, and φ′

ij(r)=χε
ij

k̄ f0

ρ0

v2
a

(r0
ij)

p

(
r−r0

ij

)
,

the equation of motion (4.6) can be written as

mi
d2yi

dt2
= ∑

j∈Fi

{[
c̄

ρ0

(
ρh,i

ρ0
−1

)
+

c̄

ρ0

(
ρh,j

ρ0
−1

)]
f0v2

a

(r0
ij)

p−1
+

k̄ f0

ρ0

v2
a

(r0
ij)

p

(
rij−r0

ij

)}

× yj−yi

‖yj−yi‖
+fext

i , (4.9)

which represents a coarse-grained model with two length scales: ε and (va)1/3. The for-
mer is preserved in the upscaled NCM (4.11) below, whereas the latter represents a mesh
size in the discretization of (4.11).

To proceed with the continuous upscaling of (4.9), let ρi := mi/va and bi := fext
i /va.

Then, divide (4.9) by va to get

ρi
d2yi

dt2
= ∑

j∈Fi

{[
c̄ f0

ρ0

(
ρh,i

ρ0
−1

)
+

c̄ f0

ρ0

(
ρh,j

ρ0
−1

)]
1

(r0
ij)

p−1
+

k̄ f0

ρ0

1

(r0
ij)

p

(
rij−r0

ij

)}

× yj−yi

‖yj−yi‖
va+bi. (4.10)

Taking the summation in (4.10) as a quadrature of an integral, we obtain the upscaled
EAM

ρ
∂2y

∂t2
=
∫

H(x,ε)

{[
c̄ f0

ρ0

(
ρh

ρ0
−1

)
+

c̄ f0

ρ0

(
ρ̂h

ρ0
−1

)]
1

‖x̂−x‖p−1
+

k̄ f0

ρ0

1

‖x̂−x‖p (‖ŷ−y‖−‖x̂−x‖)
}

× ŷ−y

‖ŷ−y‖ dVx̂+b, (4.11)
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with ρ=ρ(x), y :=y(x,t), ŷ :=y(x̂,t), ρh :=ρh(x,t), ρ̂h :=ρh(x̂,t), b=b(x,t), and where

ρh,i= ∑
j∈Fi

f0va

(r0
ij)

p−1
rij ≈ f0

∫

H(x,ε)

1

‖x̌−x‖p−1
‖y̌−y‖dVx̌ =: ρh(x,t) (4.12)

with y̌ :=y(x̌,t). The integrations are over the neighborhood of x (cf. (A.2)).

4.3 Numerical results

Let B=(−0.5,0.5)×(−0.5,0.5) represent a two-dimensional plate and assume atoms are
distributed on a square lattice with lattice constant a. We assume atoms interact through
the EAM (4.6) with functions (4.2)-(4.5). A radially-symmetric initial configuration is
chosen as follows: let p(r) be a smooth 21-st order piecewise polynomial such that p≡0
for r≥0.2, p(0)=1e−4, and p′(r)= p′′(r)= ···= p(10)(r)=0 for r=0, 0.2. Given an atom
with lattice position x, its initial position is given by y=x+p(r)r̂ with r its position vector
relative to the center of the plate, r :=‖r‖, and r̂ :=r/r; see Fig. 3. The system is evolved in
time using the velocity-Verlet algorithm with timestep ∆t0 and final time T. We compare
the results of the MD simulation to NCM simulations using (4.11). We discretize the
NCM using square lattices with mesh sizes of h= a, 2a, 4a in PDLAMMPS [23–25]. The
initial configuration in the NCM simulations is the same as in the MD simulation, and
the time step in the discretized NCMs is adapted with the spatial discretization so that
∆t=∆t0h/a. We assume no external forces, i.e., fext

i ≡ 0 in (4.6) and b≡ 0 in (4.11). The
parameters used for the simulations are described in Table 3.

Figure 3: Radial displacement profile assigned to the initial configuration for the two-dimensional simulations
in Fig. 4. Each point is displaced relative to its reference position an amount of ur = p(r) radially with respect
to the center of the plate with p(r) a smooth 21-st order piecewise polynomial.
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Table 3: Parameters for the structured MD EAM and upscaled NCM simulations (cf. (4.10)).

ρ k̄ c̄ f0/ρ0 a ε ∆t0 T p

8,960 1.44e12 5.4e11 1 1.25e−3 12a 1.25e−9 2.5e−5 1

In Fig. 4, we compare the MD potential energy (a) and NCM strain energy (b,c,d),
for different mesh sizes, at the final time T. In Fig. 5(a), we compare the radial displace-
ments with respect to the center of the plate, at the final time T, for atoms/particles with
reference position along the x-axis. We observe that the dynamics of the MD system are
preserved, up to discretization errors, by the coarse NCM simulations with mesh sizes
of h = 2a, 4a, at greatly reduced cost, as shown in the computational cost comparison
between the MD and the coarse NCM simulations in Table 4. The NCM simulation with
h=4a achieves a speedup of about 1,000 and a reduction of memory usage per processor

Molecular dynamics

(a) MD

Nonlocal continuum model

(b) Fine-grid NCM: h= a (c) Coarse-grid NCM: h=2a (d) Coarse-grid NCM: h=4a

Figure 4: Molecular dynamics (MD) potential energy (a) and nonlocal continuum model (NCM) strain energy
(b,c,d) profile for two-dimensional wave propagation on a plate. We compare (a) an MD simulation for the
EAM (4.6) with functions (4.2)-(4.5) on a square lattice with lattice constant a and (b,c,d) NCM simulations
using (4.11) discretized using square lattices with mesh sizes of (b) h = a, (c) h = 2a, and (d) h = 4a. The
radial displacement profile assigned to the reference positions in the initial configuration is presented in Fig. 3.
The figures show the potential energy (MD)/strain energy (NCM) profile at the final time. The simulation
parameters are presented in Table 3. The largest energy value is indicated by red and the smallest one by blue.
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Table 4: Comparison between the computational cost of the molecular dynamics (MD) simulation and the coarse
nonlocal continuum model (NCM) simulations presented in Fig. 4. The lattice constant in the MD simulation
is denoted by a, and the mesh size in the NCM simulations is denoted by h. A significant reduction in degrees
of freedom (number of particles and bonds) as well as in memory usage and simulation time is shown.

MD NCM (h=2a) NCM (h=4a)
Number of atoms/particles 640,000 160,000 40,000
Number of bonds 296,960,000 17,920,000 1,120,000
Memory usage per processor (Mbytes) 151.63 19.92 7.33
Total time (seconds) 14,564.30 446.45 14.48
Speedup 1 32.62 1,005.82

of about 95%. All computations were run on 64 cores of Sandia’s Red Sky supercomputer.
In Fig. 5(b), a comparison of the kinetic energy (black lines), the potential/strain energy
(blue lines), and the total energy (red lines) between the MD and coarse NCM simula-
tions is presented, showing the conservation of total energy in time for each simulation.
As expected, fluctuations in the potential/strain energy have complementary fluctua-
tions in the kinetic energy. Moreover, we observe that the kinetic, potential/strain, and
total energy are preserved through the continuous upscaling process.
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(b) Energy evolution

Figure 5: (a) Radial displacements, with respect to the center of the plate, in the simulations presented in
Fig. 4 at the final time, for atoms/particles with reference positions along the x-axis. We compare the results
of a molecular dynamics (MD) simulation with lattice constant a and coarse nonlocal continuum model (NCM)
simulations with mesh sizes of h= 2a, 4a. (b) Comparison of the energy evolution between the MD and the
coarse NCM simulations. We plot the kinetic energy (black lines), the potential/strain energy (blue lines), and
the total energy (red lines) for each of the simulations.

The simulations presented in Fig. 4 show that significant savings in simulation time
and memory usage can be obtained through continuous upscaling. Of particular inter-
est are scenarios where fine-scale simulations are unfeasible, requiring the use of mod-
els with a reduced number of degrees of freedom. To demonstrate this situation, we
perform a three-dimensional simulation on a cubic domain B=(−0.5,0.5)×(−0.5,0.5)×
(−0.5,0.5). We simulate a radial wave propagation in a system described by the NCM
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(4.11) with k̄= 2.28e12, c̄= 4.8e11, uniform mass density ρ= 8908 (values corresponding
to Ni), f0/ρ0=1, and p=1. The system is discretized using a cubic lattice with mesh size
h=5e−3 in PDLAMMPS with a total of 8,040,000 particles. We choose a horizon of ε=3h.
A spherically-symmetric initial configuration is chosen, in complete analogy to the initial
configuration in the two-dimensional simulations in Fig. 4. The system is evolved in time
using the velocity-Verlet algorithm with timestep ∆t=5e−9 and final time T=5e−5, with
4,096 cores on Sandia’s Red Sky supercomputer. We assume no external forces, i.e., b≡0.
The strain energy at the final time T is presented in Fig. 6 on an octant of the entire cube
to illustrate the wave propagation along the three dimensions.

Although we have performed fine-scale simulations for the 1D and 2D models pre-
sented thus far, a fine-scale simulation for this 3D model vastly exceeds our computa-
tional resources. This serves to demonstrate the value of continuous upscaling, espe-
cially for 3D models. A fine-scale 3D atomistic simulation, with a lattice constant of
a= h/4, where h is the grid size used for the upscaled calculation of Fig. 6, would have
about 512,000,000 atoms. Assuming ε= 12a and a timestep of ∆t0 =∆t/4, an equivalent
fine-scale simulation would roughly incur a simulation time 16,000 times larger than the
coarse NCM simulation; i.e., a simulation in NCM taking about an hour would corre-
spond to a two-year fine-scale simulation. Furthermore, the amount of memory required
just to store the information for the bonds in the fine-scale simulation is estimated about
10 TB.

Figure 6: An octant of a three-dimensional wave propagation simulation on a cubic domain with the NCM
(4.11), having a spherically-symmetric initial condition. The NCM strain energy at the final time is shown,
where the largest value is indicated by red and the smallest one by blue.

5 Concluding remarks

We presented a model reduction technique for multibody molecular dynamics (MD) po-
tentials of the form of the embedded-atom model (EAM), using a continuous upscaling
to nonlocal continuum models (NCMs). This technique provides a means to upscale
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MD EAM simulations at greatly reduced cost. We demonstrated the continuous upscal-
ing analytically and numerically with examples of structured and structureless material
models.

In Appendix A, we demonstrate that the NCMs used for upscaling MD EAMs are
instances of the state-based peridynamics (PD) theory of solid mechanics. This theory
provides a general framework for nonlocal continuum models. By establishing relation-
ships between multibody or volume-dependent interaction PD models and theories, we
obtain the taxonomy presented in Fig. 7. This taxonomy shows that multibody potentials
of the form of the MD EAM can be represented within the state-based PD theory, through
the EAM-like PD model.

The EAM-like PD model was originally proposed as an extension of the bond-based
PD theory. This represented a first attempt to derive multibody potentials in PD capa-
ble of modeling materials with a general Poisson’s ratio, as the original bond-based PD
theory was only capable of modeling materials with a Poisson’s ratio of ν=1/4 (in 3D).
The state-based PD theory was introduced later as a general theory also capable of rep-
resenting materials with a general Poisson’s ratio. Since then, the original EAM-like PD
model has largely been forgotten by the PD community. We show that this model is more
fundamental than more recently developed and commonly used state-based constitutive
models, and is also essential in the upscaling of MD models of the form of the EAM. This
suggests that the original EAM-like PD model is worth revisiting.
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Appendix A: Peridynamics for upscaled nonlocal continuum

models

The peridynamics (PD) theory of solid mechanics is a nonlocal continuum theory with
deep natural connections to molecular dynamics (MD). Although it is a continuum theory,
it possesses some properties inherent to discrete MD models. In particular, as in MD,
PD constitutive models include both pairwise and multibody potentials. Likewise, pair
potentials in PD exhibit certain limitations which are removed by the introduction of
multibody potentials. Due to similarities in the way internal forces are calculated in both
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models, PD has been called a “continuum” formulation of MD [8]. Particularly, a certain
discretization of PD has the same computational structure as MD, which allows for the
implementation of PD models in MD software [24].

In contrast to classical continuum mechanics, PD possesses a length scale that may be
chosen to match the dominant length scale of the system of interest, making it suitable
for multiscale modeling [26]. See [27] for a multiscale PD model of fiber-reinforced com-
posites. PD has also been applied to concurrent multiscale modeling at the discrete level
in [28, 29] and at the continuum level in [30–32].

We survey PD theories and relevant models in Section A.1 and establish a partial
taxonomy in Section A.2, illustrated in Fig. 7. In Section A.3, we demonstrate that all
the nonlocal continuum models (NCMs) derived in this paper are PD models, showing a
deep connection between the MD embedded-atom model (EAM) and PD. This provides
support for the claim that PD is a mathematical theory that unifies the mechanics of
particles and continua.

A.1 Peridynamic theories and models

PD was proposed in [8] as a nonlocal extension of classical continuum solid mechanics.
PD is a nonlocal theory, based upon an integro-differential formulation that eliminates
the spatial differentiability requirement for displacement fields usually assumed in clas-
sical continuum mechanics. This makes the PD theory suitable for modeling fracture [33].
A consequence of this integro-differential formulation is that material points separated
by a finite distance interact directly with each other. Earlier NCMs in mechanics can be
found in [34–38].

A.1.1 Peridynamic theories: state-based and bond-based

We discuss two formulations of PD, the state-based theory and the bond-based theory. En-
ergy conserving state-based models are associated with multibody potentials, whereas en-
ergy conserving bond-based models are associated with pair potentials. The bond-based
PD theory is a special case of the state-based theory, as explained below.

In the most general formulation of PD, the state-based PD theory [9], the equation of
motion for a point x within a bounded body B at time t>0 is

ρ(x)
∂2u

∂t2
(x,t)=

∫

B
{T[x,t]〈ξ〉−T[x̂,t]〈−ξ〉}dVx̂+b(x,t), (A.1)

where ρ denotes the mass density, u the displacement field, b an external body force
density, and the operator T the force vector state. In the standard PD notation, given
two material points x̂ and x, we denote their relative position in the reference config-
uration and their relative displacement in the current configuration by ξ := x̂−x and
η :=u(x̂,t)−u(x,t), respectively. Notice that ξ+η is their relative position in the current
configuration. A state is an operator, denoted by an underscored symbol, that operates
on vectors defined by the bonds ξ that define an interaction between each pair of points
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x̂ and x in B. A vector state operator is a generalization of a second-order tensor and
maps each bond to a vector. A scalar state operator maps each bond to a scalar. A state
can be defined at a particular point in space and time. This is specified by arguments in
square brackets, i.e., [x,t]. For further details regarding states, see [9]. The first term on
the right-hand side of (A.1) is analogous to the divergence of a stress tensor as in classical
continuum mechanics [39,40]. In PD, a point x interacts directly only with points x̂ within
its neighborhood H(x,ε) defined as

H(x,ε) :={x̂∈B : ‖x̂−x‖≤ ε}, (A.2)

so that T[x,t]〈ξ〉= 0 for ‖ξ‖> ε, where ‖·‖ denotes the Euclidean norm. The parameter
ε>0 is called the horizon and is analogous to a cutoff radius in MD.

A particular class of force vector states known as ordinary materials is written as

T[x,t]〈ξ〉= t[x,t]〈ξ〉 ξ+η

‖ξ+η‖ , (A.3)

for ‖ξ+η‖ 6= 0 and 0 otherwise, with t a force scalar state. For this class of force vector
states, balance of linear and angular momenta are satisfied for any bounded body B [9,
Propositions 7.1 and 8.2]. Conditions for which more general force vector states satisfy
balance of linear and angular momenta are given in [9].

For the case where the nonlocal interactions derive from pair potentials, the force
scalar state can be expressed as

t[x,t]〈ξ〉= 1

2
κ(η,ξ) (A.4)

with κ the pairwise force scalar function satisfying κ(η,ξ) = κ(−η,−ξ) [9]. Then, (A.1) re-
duces to

ρ(x)
∂2u

∂t2
(x,t)=

∫

B
κ(η,ξ)

ξ+η

‖ξ+η‖dVx̂+b(x,t), (A.5)

the equation of motion for the bond-based PD theory presented in [8].

Remark A.1. The particular choice of force scalar state (A.4), leading to the equation of
motion (A.5), demonstrates that the bond-based PD theory is a special case of the state-
based PD theory, as explained in [9].

A.1.2 State-based peridynamic models

We review some state-based PD models here and present their connections in Section A.2.

Linear peridynamic solid model. A commonly used state-based constitutive model is
the linear peridynamic solid (LPS) model [9], a nonlocal analogue to a linear isotropic elastic
material. It is an ordinary material with force scalar state

t=
3Kθ

m
ωx+αωed, (A.6)
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where ω denotes an influence function [9, Definition 3.2]. Influence functions are nonneg-
ative scalar states defined on H(x,ε). A spherical influence function depends only upon
‖ξ‖, i.e., ω〈ξ〉= ω̃〈‖ξ‖〉. Let x be the reference relative distance scalar state, i.e., x〈ξ〉 :=‖ξ‖,
and m be the weighted volume, defined as

m :=
∫

B
ω〈ξ〉x〈ξ〉x〈ξ〉dVx̂. (A.7)

We define the dilatation

θ[x,t] :=
3

m

∫

B
ω〈ξ〉x〈ξ〉e[x,t]〈ξ〉dVx̂,

where e is the extension scalar state

e[x,t]〈ξ〉 :=‖ξ+η‖−‖ξ‖. (A.8)

The isotropic and deviatoric parts of the extension scalar state are defined, respectively, as

ei :=
θx

3
and ed := e−ei.

For a spherical influence function, the LPS model is isotropic [9, Proposition 15.1]. In this
model, K is the bulk modulus and α=15G/m, with G the shear modulus.

EAM-like PD model. A generalization of the bond-based PD theory was proposed in
[8], before the state-based PD theory was formulated. It represented a first attempt to
derive multibody interaction models in PD that allow for general Poisson’s ratios, as
opposed to bond-based PD models which are restricted to a Poisson’s ratio of ν=1/4 (in
3D). The basic idea was to modify the macroelastic energy density W of the bond-based
PD theory to include a volumetric term. The modified macroelastic energy density takes
the form

Ŵ(x,t)=E(ϑ(x,t))+W(x,t).

Here, W is a bond-based macroelastic energy density based on pair potentials, and is
given by

W(x,t) :=
1

2

∫

B
w(η,ξ)dVx̂ (A.9)

with w a pairwise potential function. E is a volume-dependent strain energy term. The
function

ϑ(x,t) :=
∫

B
j(‖ξ‖)‖ξ+η‖dVx̂ (A.10)

is a weighted average in the current configuration of the lengths of all the bonds belong-
ing to the point x, with j a scalar-valued spherical weighting function. Because of the
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similarities between this model and the MD EAM (cf. Section 2), we refer to this model
as the EAM-like PD model.¶

By Hamilton’s principle, the equation of motion for the EAM-like PD model is ob-
tained (cf. [8]), giving for x∈B and t>0,

ρ(x)
∂2u

∂t2
(x,t)=

∫

B

{
−(P(x,t)+P(x̂,t)) j(‖ξ‖)+κ(η,ξ)

} ξ+η

‖ξ+η‖dVx̂+b(x,t), (A.11)

where

P(x,t) :=−E′(ϑ(x,t)) and
∂w

∂η
(η,ξ)=κ(η,ξ)

ξ+η

‖ξ+η‖ . (A.12)

We denote by E′ the derivative of E with respect to its argument ϑ. By comparing (A.11)
with (A.5), we observe that the interaction between PD material points was generalized
to include a volume-dependent term. Unlike the bond-based PD theory, bonds here are
not independent.

A.2 Relationships between models and theories in state-based peridynamics

As discussed in Section A.1, the state-based PD theory is the most general PD framework.
However, the EAM-like PD model was proposed well before the state-based PD theory.
Here, we study the connections between the EAM-like PD model and the state-based PD
theory, investigating specifically the relation between the EAM-like PD model and the
LPS constitutive model.

A.2.1 State-based formulation for the EAM-like PD model

We show that the EAM-like PD model (A.11) is an instance of the state-based PD theory
(A.1). For that purpose, we choose an ordinary material with force scalar state

t[x,t]〈ξ〉=−P(x,t)j(‖ξ‖)+ 1

2
κ(η,ξ), (A.13)

for which the equation of motion (A.1) gives (A.11). Inspection of the form of (A.13)
reveals that it cannot be further reduced to the form (A.4), and thus it is not a bond-based
PD material.

Remark A.2. The EAM-like PD model represents an ordinary state-based PD material
with force scalar state (A.13).

¶We observe that the EAM-like PD model is not, strictly speaking, a constitutive model. The reason is that
the functional form of the pairwise potential function w and the volume-dependent strain energy E (which
depends on the deformation) need to be specified. However, due to the fact that it represents a particular
class of multibody potentials (of similar structure to the MD EAM), we do not refer to it as a theory per se.
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A.2.2 Peridynamic constitutive models based upon the EAM-like PD model

We now demonstrate that the LPS model (A.6) is an instance of the EAM-like PD model
by choosing a particular P, j, and κ in (A.13). Assume the pairwise force scalar function

κ(η,ξ)=
30G

m̂
j(‖ξ‖)s(η,ξ) (A.14)

with G the shear modulus. The pairwise stretch function s and the scalar m̂ are defined
as

s(η,ξ) :=
‖ξ+η‖−‖ξ‖

‖ξ‖ , m̂ :=
∫

B
j(‖ξ‖)‖ξ‖dVx̂.

Let the scalar-valued spherical weighting function j be given by

j(‖ξ‖)=ω〈ξ〉‖ξ‖, (A.15)

with ω〈ξ〉 a spherical influence function. Then, m̂=m, the weighted volume (A.7) of the
state-based PD theory. Let ϑ0 denote the evaluation of ϑ(x,t) (cf. (A.10)) in the reference
configuration, i.e, η≡0. Then, m̂=ϑ0. We can thus refer to ϑ(x,t) as the weighted deformed
volume corresponding to the point x in the deformed configuration at time t. We can now
write the pairwise force scalar function κ in (A.14) as

κ(η,ξ)=
30G

m
ω〈ξ〉e[x,t]〈ξ〉,

with e the extension scalar state (cf. (A.8)). Further, assume a volume-dependent strain
energy

E(ϑ)=
3K−5G

m

(
3

m

ϑ2

2
−3ϑ+C

)
(A.16)

with C an arbitrary constant independent of ϑ. Then, by (A.12), we have

P(x,t)=−3K−5G

m

(
3

m
ϑ(x,t)−3

)
.

We observe that

3

m
ϑ(x,t)−3= θ[x,t], (A.17)

so that

P(x,t)=−3K−5G

m
θ[x,t].

The force scalar state (A.13) can thus be written as

t[x,t]〈ξ〉= 3Kθ[x,t]

m
ω〈ξ〉x〈ξ〉+αω〈ξ〉ed[x,t]〈ξ〉,

the LPS force scalar state (A.6). The derivations are straightforward and left to the reader.
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Remark A.3. We have shown that the LPS model presented in Section A.1.2 is an instance
of the EAM-like PD model, which is itself a state-based PD model (cf. Section A.2.1). The
LPS model can be derived from the EAM-like PD model by assuming (A.14)-(A.16).

In [41], it was shown that by assuming a Poisson’s ratio ν = 1/4 and the particular
influence function ω〈ξ〉=‖ξ‖−1, i.e., j(‖ξ‖)≡1 in (A.15), the prototype microelastic brittle
(PMB) model [33] can be derived from the LPS model (A.6), demonstrating that influence
functions may be used to connect various PD constitutive models. For more on the role
of the influence function in PD, see [41]. These relations establish a partial taxonomy of
PD constitutive model classes, represented in Fig. 7. A connection between the EAM-like
PD model and the MD EAM is derived in Section A.3 and is also indicated in Fig. 7.
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Figure 7: Relationships between theories and models in peridynamics (PD). In Silling et al. [9], it was shown
that the bond-based PD theory is a special case of the state-based PD theory. A generalization of the bond-
based PD theory with similar structure to the molecular dynamics (MD) embedded-atom model (EAM) was
proposed in [8]; we therefore call it EAM-like PD model. In Section A.2.1, it is shown that the EAM-like PD
model is an instance of the state-based PD theory. Common PD constitutive models are shown to be special
cases of the EAM-like PD model as follows. In Section A.2.2, the state-based linear peridynamic solid (LPS)
model [9] is derived from the EAM-like PD model. Furthermore, in Seleson & Parks [41], the bond-based
prototype microelastic brittle (PMB) model presented in Silling & Askari [33] is derived from the LPS model.
This establishes a partial taxonomy of PD models and theories. The EAM-like PD model (A.11) gives the
bond-based PD theory for P(x,t)≡0. An example is described in Remark A.5 for a Poisson’s ratio of ν=1/4
using (A.16). In addition, in Section A.3 it is shown that the EAM-like PD model can be connected to the MD
EAM.

Remark A.4. The derivations connecting the LPS model (A.6) and the EAM-like PD
model (A.13) establish a useful relationship between two characteristic volume-dependent
variables: the dilatation θ and the weighted deformed volume ϑ (cf. (A.17)), i.e.,

θ[x,t]=3

(
ϑ(x,t)

ϑ0
−1

)
. (A.18)
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Remark A.5. Let an EAM-like PD model be defined by the volume-dependent strain
energy E(ϑ) given in (A.16) (i.e., the one related to the LPS model) and assume an arbi-
trary pairwise force scalar function κ(η,ξ). We assume a Poisson’s ratio of ν = 1/4, for
which case the relation 5G=3K holds and thus P(x,t)=0. As a consequence, the volume-
dependent term vanishes in (A.11) and we recover the bond-based PD theory (A.5).

A.3 Continuous upscaling to peridynamic models

In this section we show that the NCMs (3.4) and (4.11) are instances of PD models.

A.3.1 Structureless MD EAM

We demonstrate the connection between (3.4) and an EAM-like PD model. For that pur-
pose, we generalize (A.11) to allow the description of structureless materials. Let a gen-
eralized weighted deformed volume (cf. (A.10)) be‖

ϑ(x,t) :=
∫

B
j(η,ξ)dVx̂ (A.19)

with j a scalar-valued function and ξ, η defined in Section A.1.1. Assuming the conditions

∂w

∂η
(−η,−ξ)=−∂w

∂η
(η,ξ) and

∂j

∂η
(−η,−ξ)=− ∂j

∂η
(η,ξ) (A.20)

are satisfied, the equation of motion corresponding to the generalized EAM-like PD
model with (A.19) can be written as (cf. (A.11))

ρ(x)
∂2u

∂t2
(x,t)=

∫

B

[
−(P(x,t)+P(x̂,t))

∂j

∂η
(η,ξ)+

∂w

∂η
(η,ξ)

]
dVx̂+b(x,t). (A.21)

Remark A.6. We observe that (A.19) generalizes (A.10) in that the explicit dependence
upon ‖ξ‖ has been removed.

We now make particular choices for the components in (A.21)∗∗:

j(η,ξ)= ∑
n1,n2,n3

n 6=0

f (‖ξ+η‖)δ(3)

(
ξ− ni

σ

a0
i

r0
1e

µ

)
, (A.22)

w(η,ξ)= ∑
n1,n2,n3

n 6=0

φ(‖ξ+η‖)δ(3)

(
ξ− ni

σ

a0
i

r0
1e

µ

)
, (A.23)

E(ρ)=F(ρ),

‖To avoid further notation, we use the same symbol ϑ in (A.19) and in (A.10). However, j(η,ξ) in (A.19)
represents a different and more general function than j(‖ξ‖) in (A.10).
∗∗It can be shown that due to the symmetry of the summation ranges in (A.22) and (A.23), and the properties
of the Dirac delta function, the choices of w and j satisfy (A.20).
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for which (A.19) recovers (3.5), i.e., ϑ(x,t)=ρh(x,t), and P(x,t)=−F
′
(ρh(x,t)) (cf. (A.12)).

For the sake of the present comparison, we assume B=R
3. Under these choices, (A.21) re-

covers (3.4). This indeed demonstrates that the structureless MD EAM (3.1) in Section 3.1
can be upscaled to the generalized EAM-like PD model (A.21).

A.3.2 Structured MD EAM

We demonstrate that (4.11) is an EAM-like PD model. Specifically, we show that it repre-
sents an LPS model (cf. (A.6)). Let j(‖ξ‖)=1/‖ξ‖p−1χε(‖ξ‖) with

χε(‖ξ‖) :=

{
1, ‖ξ‖≤ ε,
0, otherwise,

a characteristic function. Then, by (4.12), (4.4), and (A.10),

ρh(x,t)= f0ϑ(x,t) and
ρ0

f0
≈ϑ0.

We can now write (4.11) as

ρ(x)
∂2u

∂t2
(x,t)=

∫

H(x,ε)

{[
c̄

ϑ0

(
ϑ(x,t)

ϑ0
−1

)
+

c̄

ϑ0

(
ϑ(x̂,t)

ϑ0
−1

)]
j(‖ξ‖)

+
k̄

ϑ0

1

‖ξ‖p (‖ξ+η‖−‖ξ‖)
}

ξ+η

‖ξ+η‖dVx̂+b(x,t) (A.24)

with ξ and η defined in Section A.1.1. Equation (A.24) is an EAM-like PD model (cf.
(A.11)) with

P(x,t)=
c̄

ϑ0

(
1− ϑ(x,t)

ϑ0

)
,

κ(η,ξ)=χε(‖ξ‖) k̄

ϑ0

1

‖ξ‖p
(‖ξ+η‖−‖ξ‖) .

Let ω〈ξ〉= j(‖ξ‖)‖ξ‖−1 be an influence function. Then, by (A.10) and (A.7), ϑ0=m is
the weighted volume. Using relation (A.18), we can write (A.24) as

ρ(x)
∂2u

∂t2
(x,t)=

∫

H(x,ε)

{
c̄

3m
[θ[x,t]+θ[x̂,t]]ω〈ξ〉x〈ξ〉+ k̄

m
ω〈ξ〉e[x,t]〈ξ〉

}
ξ+η

‖ξ+η‖dVx̂+b(x,t),

with e the extension scalar state (A.8) and x the reference relative distance scalar state
(cf. Section A.1.2). This represents an LPS model, i.e.,

ρ(x)
∂2u

∂t2
(x,t)=

∫

H(x,ε)

{(
3K−5G

m

)
[θ[x,t]+θ[x̂,t]]ω〈ξ〉x〈ξ〉+ 30G

m
ω〈ξ〉e[x,t]〈ξ〉

}

× ξ+η

‖ξ+η‖dVx̂+b(x,t), (A.25)
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with elastic moduli

G=
k̄

30
and K=

1

9

(
c̄+

1

2
k̄

)
. (A.26)

Remark A.7. The two- and three-dimensional computations in Section 4.3 were per-
formed with the LPS implementation in PDLAMMPS, using relations (A.26) to determine
the corresponding elastic moduli in the LPS model.
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