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Abstract. In this paper we present recent developments concerning a Cell-Centered
Arbitrary Lagrangian Eulerian (CCALE) strategy using the Moment Of Fluid (MOF)
interface reconstruction for the numerical simulation of multi-material compressible
fluid flows on unstructured grids in cylindrical geometries. Especially, our attention
is focused here on the following points. First, we propose a new formulation of the
scheme used during the Lagrangian phase in the particular case of axisymmetric ge-
ometries. Then, the MOF method is considered for multi-interface reconstruction in
cylindrical geometry. Subsequently, a method devoted to the rezoning of polar meshes
is detailed. Finally, a generalization of the hybrid remapping to cylindrical geometries
is presented. These explorations are validated by mean of several test cases using un-
structured grid that clearly illustrate the robustness and accuracy of the new method.
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1 Introduction

In this work, we consider the simulation of multi-material compressible flows on un-
structured meshes in cylindrical geometry. For this, we adopt an Arbitrary Lagrangian-
Eulerian (ALE) description [19] that has the great advantage to combine the best fea-
tures of both Eulerian and Lagrangian approaches. Indeed, this choice is not only well
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Figure 1: Multi-material CCALE algorithm flowchart.

adapted to naturally track free surfaces and interfaces between different fluids as purely
Lagrangian methods, but also to handle flow distortion as Eulerian methods [3, 6]. Here,
a Cell-Centered Arbitrary Lagrangian Eulerian (CCALE) [15,16] approach is particularly
considered whose main elements are as follow.

As depicted on Fig. 1, the first step of the algorithm relies on an explicit Lagrangian
phase in which the physical variables and grid are updated thanks to a slightly modified
version of the Explicit Unstructured Cell-Centered Lagrangian HYDrodynamics (EUC-
CLHYD) scheme [25–27] in cylindrical coordinates. Recently, new investigations have
been made about cell-centered Lagrangian schemes [4, 12]. The scheme presented in this
paper is a modified version of the area weighted finite volume scheme of [25]. Then,
multi-material flows treatment is done thanks to specific interface capturing method.
This choice allows to track the volume fraction of each material used for the thermo-
dynamical closure relying on the equal strain rates assumption. This approach is quite
simple to implement and remains sufficient in most of the cases [16, 32]. This, leads to
constant evolution of the volume fraction during the Lagrangian phase. Such an ap-
proach allows to reconstruct with accuracy the interface between each material. In this
context, many developments have been done for 2D Cartesian geometries. First, a pre-
vious version of the CCALE algorithm solving two-material compressible flows using a
Volume Of Fluid (VOF) method [36] have been proposed in [10,16]. Then an extension to
Moment Of Fluid (MOF) approach has been considered to enhance multi-material (more
than two components) flows in [13,15]. Subsequently, a rezoning phase is realized. It con-
sists in moving the Lagrangian nodes to improve the geometric quality of the grid [21].
Finally, the physical variables are conservatively interpolated from the Lagrangian grid
onto the new rezoned one during the remapping phase. Here an extension of the hybrid
remapping [7] to cylindrical geometries is introduced. We want to notice that in ALE
framework using cell-centered formulation, this phase is straightforward. In the lines of
these works, the main goal of this paper is to extend the CCALE-MOF algorithm to treat



332 M. Billaud Friess et al. / Commun. Comput. Phys., 15 (2014), pp. 330-364

both Cartesian and cylindrical geometry. To this end, several modifications are given
to the algorithm previously presented. In a first part, we propose a new formulation
of the numerical scheme introduced in [25] for treating axisymmetric geometries during
the Lagrangian phase. To build this scheme, an area-weighted formulation of the La-
grangian system of equations is proposed. Then, this system of equations is discretized
using a cell-centered finite volume (FV) scheme. Contrary to [25] in which fluxes are di-
rectly deduced from the Geometric Conservation Law (GCL) constraint, here a simpler
formulation that gives similar results is retained. These two main choices lead to a ro-
bust first-order scheme conservative for the total energy that has the great advantage to
preserve spherical symmetry for one-dimensional flow on uniform angular polar grids.
The high order extension has been performed using the Generalized Riemann Problem
(GRP) described in [25]. To treat interface flows, a MOF interface reconstruction method
is retained in the sequel. Once again, the difficulty here is to propose a natural and con-
sistent adaptation of this approach able to treat axisymmetric interface flows. To this
end, formulations of the moments needed to track interface are revisited for cylindrical
coordinates as in [2]. This leads to an accurate and second order interface reconstruc-
tion method that allows to treat multi-material (more than two) interfaces in the lines
of [13]. The third part of this study is dedicated to recent enhancement of the rezoning
algorithm to improve the mesh quality during computation especially on polar meshes.
As it is done in [15, 16], mesh rezoning is based on the Condition Number Smoothing
(CNS) [21] algorithm on unstructured meshes. Moreover, when used for polar meshes, it
is well known that CNS algorithm pushes the nodes toward the origin deteriorating the
mesh quality. To avoid this drawback, the main idea developed in this paper is to adapt
CNS algorithm to polar grids. Then, extension to unstructured grids (Cartesian-polar) is
also explored. Finally, a generalization of the remapping procedure to cylindrical geome-
tries is proposed. Here, an efficient method adapted to multi-material flows is presented.
The main idea is to use an hybrid remapping that combine the main advantages of the
swept-face and multi-material cell-intersection remapping as in [7, 15]. Finally, a specific
attention is done to polynomial integration that preserves the method efficiency.

The paper is structured as follows. We detail in the second section a new formulation
of the first-order area weighted Lagrangian scheme used for axisymmetric geometries.
Further extensions to high-order are notably detailed in [25]. Afterwards, the extension
of the MOF axisymmetric interface reconstruction method is presented for treating mul-
timaterial flows. Then, we describe the General Condition Number Smoothing (GCNS)
algorithm for unstructured meshes. Finally, the description of the new hybrid remapping
procedure for cylindrical geometry is done. For a complete description of the CCALE-
MOF method see [15, 16], except new advances presented in this paper. Then presen-
tation of numerical experiments is made in Section 4. They demonstrate not only the
robustness and the accuracy of the present methodology but also its ability to handle
successfully complex two-dimensional multi-material fluid flows notably computed for
axisymmetric geometries on Cartesian, polar and unstructured grid. Finally concluding
remarks and perspectives about future works are given in the last section.
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2 Lagrangian phase in axisymmetric geometry

In this part, an extension of the cell-centered Lagrangian scheme EUCCLHYD [26, 27]
is presented for the numerical simulation of compressible flows in pseudo-Cartesian ge-
ometries for unstructured meshes as in [25]. This choice has the great advantage to treat
both axisymmetric and Cartesian geometries. In this paper, a new and simple formula-
tion of the scheme introduced in [25] for first-order approximation is proposed. To this
end, an area weighted formulation of classical Lagrangian equations is first introduced.
Then these equations are discretized with a node-centered approximate Riemann solver.
High-order extension is not detailed in this paper and interested reader can refer to [25]
for more details.

2.1 Governing equations

During the Lagrangian phase, the rates of change of volume, mass, momentum and total
energy are computed assuming that discretized volumes move following the flow. Thus,
each arbitrary volume V(t) depending on the time t> 0 moves satisfying the following
system of equations

d

dt

∫

V
ρdV=0, (2.1)

d

dt

∫

V
dV−

∫

V
∇·UdV=0, (2.2)

d

dt

∫

V
ρUdV+

∫

V
∇PdV=0, (2.3)

d

dt

∫

V
ρEdV+

∫

V
∇·(PU)dV=0, (2.4)

where d
dt is the Lagrangian derivative and ρ,U,P,E are respectively the density, velocity,

pressure and total energy. In addition, this system is closed thanks to an equation of state
(EOS) as

P=P(ρ,ε), (2.5)

with the internal energy ε defined as ε = E−|U|2/2. At last, we have local kinematic
equation

dX

dt
=U, X(0)=X0, (2.6)

with X the location of a point of the control volume surface S(t), at time t>0 and X0 its
initial value. This equation is equivalent to (2.2) also known as geometric conservation
law (GCL).
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2.2 Area-weighted formulation

For defining the differential operators used in the system of Lagrangian equation (2.1)-
(2.4) a pseudo-Cartesian reference frame {0,X,Y} for the orthonormal basis (eX ,eY) is
used (see Fig. 2). Thus each point is localized by means of its positions X and R(Y)=1−
α+αY the pseudo-radius. When α=0, the Lagrangian equations for Cartesian geometry
are recovered, otherwise for α=1 this corresponds to axisymmetric equations. In this way,
axisymmetric geometry is obtained from Cartesian one through a rotational symmetry
about the X-axis. This implies that the volume V(t) is generated by the rotation of the
area A(t) about the X-axis. In consequence, the element volume dV writes as dV =RdA
with dA=dXdY the element area in the pseudo-Cartesian frame. In the same manner, the
control surface S(t) delimiting V(t) is obtained through the rotation of L(t) the boundary
of A(t) and the surface element is given by dS=RdL. Note that we have omitted the 2π
factor in the evaluation of the element volume.

Figure 2: Notations related to the pseudo-Cartesian grid.

In a such framework, the velocity divergence and the pressure gradient read as fol-
lows

∇·U=
1

R

[
∂(Ru)

∂X
+

∂(Rv)

∂Y

]
, where Ut=(u,v) (2.7)

and

∇P=

(
∂P

∂X
eX+

∂P

∂Y
eY

)
. (2.8)

Using the previous definitions and after some calculations using the Green’s formula,
it is possible to rewrite (2.1)-(2.4) at least in two different ways. The first one, obtained
without any approximation is the control volume formulation. When discretized this for-
mulation leads to a conservative scheme for both equations of energy and momentum,
and satisfies the local semi-discrete entropy inequality. However, as shown in [25] it does
not preserve symmetries. Consequently, an area-weighted formulation is adopted here lead-
ing to a conservative scheme for energy equation that respect spherical geometries. This
formulation is deduced from the control volume one assuming that momentum equation
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(2.3) is written in Cartesian geometry. Like this, the area-weighted formulation for the
Lagrangian equations reads

m
d

dt

〈
1

ρ

〉
−
∫

L
N·RUdL=0, (2.9)

m
d

dt
〈U〉+R

∫

L
PNdL=0, (2.10)

m
d

dt
〈E〉+

∫

L
PN·RUdL=0, (2.11)

where m=
∫

V ρdV represents the mass of the volume V. Each physical variable per unit of

mass (E,U) is noted as φ, and has its mass density mean value defined by 〈φ〉= 1
m

∫
V ρφdV.

The average R corresponds to ratio R= V
A . In such case, as m = ρV, the momentum

equation is solved in Cartesian geometry. For Cartesian case V = A, we recover R= 1.
Further details on the derivation of this system are available in [25].

2.3 Numerical scheme

Thereafter, we present briefly the first order cell-centered Lagrangian scheme. To this
goal, similar notations as [15, 25, 28] are employed in the sequel. Let us consider a set
{Ωc}c∈N of non-overlapping polygonal cells that approximates A(t). Each cell noted Ωc

is assigned a single index c. Each vertex of the cell c is labeled with the index p and
is localized thanks to its coordinates Xp = (Xp,Yp)t in the pseudo-Cartesian frame. In
addition, we introduce P(c) the list of the vertices belonging to the cell Ωc and C(p) the
list of the cells sharing the vertex p. These two sets are counterclockwise ordered. Let
us introduce p− and p+ the previous and the next nodes with respect to p in P(c). We
denote by L−

pc,L
+
pc the half length of the edges [pp− ],[pp+ ]. Similar notations are used

for the normals outward N+
pc and N−

pc. Finally, the corner normal LpcNpc is given by

LpcNpc= L+
pcN

+
pc+L−

pcN
−
pc. All these notations have been displayed in Fig. 3.

The first order spatial approximation of (2.9)-(2.11) is obtained considering local inte-
grals on each cell Ωc rotated about the X-axis. The mass mc of the cell Ωc is mc=

∫
Ωc

ρdV
and each flow variable φ (as total energy, velocity) is averaged over each cell through the
formula

φc=
1

mc

∫

Ωc

ρφdV,

named cell-centered value. Then, we have

mc
d

dt
Uc+Rc ∑

p∈P(c)

Fpc=0, (2.12)

mc
d

dt
Ec+ ∑

p∈P(c)

Fpc ·RpUp=0. (2.13)
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Figure 3: Notations for the axisymmetric cell-centered scheme.

In addition, the mesh is moved through the local kinematic equation given at each node
by

dXp

dt
=Up for t>0 and Xp(0)=X0

p, (2.14)

with Up and X0
p respectively the velocity and the position of a node p at initial time. In

the previous equations, Fpc is the numerical flux at each node p of each cell c defined by

Fpc= LpcPcNpc−Mpc(Up−Uc), (2.15)

with Up the velocity at the point p and Pc the mean value of the pressure in the cell c. The
2×2 matrice Mpc is defined as

Mpc=Zc

(
L−

pcN
−
pc⊗N−

pc+L+
pcN

+
pc⊗N+

pc

)
, (2.16)

where we introduce the “swept mass flux” [14] associated to the isentropic sound speed
ac, that is

Zc=ρcac. (2.17)

This is nothing but the acoustic impedance. As it has been demonstrated in [28] the total
energy and momentum conservation is equivalent to

∑
c∈C(p)

Fpc=0. (2.18)

Finally using (2.15), the nodal velocity Up is deduced from (2.18) by solving the linear
system

MpUp= ∑
c∈C(p)

(LpcPcNpc+MpcUc), (2.19)

where
Mp= ∑

c∈C(p)

Mpc.
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In [25], the numerical fluxes used in the discretization of (2.9) and (2.11) are chosen for
satisfying the local GCL constraint (2.14). Here, we rather adopt a simpler approach.
Since (2.14) is explicitly solved for moving the mesh in time, there is no need to solve (2.9).
Thus, each cell volume Vc is directly deduced from (2.14). Thereby, it is possible to choose
for the numerical flux in (2.11) a simple form as in (2.13) with Rp=1−α+αYp. Concerning
the momentum equation, the mean value of Rc in cell c is equal to the discrete ratio
Rc=

Vc
Ac

.
Let us note that this new formulation of the area-weighted discretization relies on

a node-centered solver which is exactly the same as the one developed in [26] for two-
dimensional Cartesian geometry. However, the present spatial discretization does not
satisfy rigorously the GCL compatibility requirement for the numerical fluxes as in [25,
26]. Indeed, here we rather adopt a simpler approach that give similar results as shown
by the comparison of those scheme made through Lagrangian computations in Section
6.1, Fig. 15. In what follows, we will assess the discrepancy of our discretization to the
GCL by analyzing the corresponding discrete divergence operator. The discrete diver-
gence operator that corresponds to the present scheme writes as

(∇·U)c=
1

Vc
∑

p∈P(c)

Rp(L−
pcN

−
pc+L+

pcN
+
pc)·Up, (2.20)

where Rp denotes the pseudo-radius of vertex p. It is shown in [25, 28] that the discrete
divergence operator deduced from the GCL reads

(∇·U)GCL
c =

1

Vc
∑

p∈P(c)

1

3
[(2Rp+R−

p )L−
pcN

−
pc+(2Rp+R+

p )L+
pcN

+
pc]·Up. (2.21)

If the time evolution of the position vector, Xp, of vertex p is governed by the trajectory
equation, then one can prove that the time rate of change of the cell volume, Vc, satisfies

1

Vc

dVc

dt
=(∇·U)GCL

c .

Subtracting (2.20) and (2.21) leads to

(∇·U)c−(∇·U)GCL
c =

1

3Vc
∑

p∈P(c)

[(Rp−R−
p )L−

pcN
−
pc+(Rp−R+

p )L+
pcN

+
pc]·Up. (2.22)

Knowing that the summation in the previous equation is cyclic, shifting the index in the
second term of the right hand-side yields

(∇·U)c−(∇·U)GCL
c =

1

3Vc
∑

p∈P(c)

[(R+
p −Rp)L+

pcN
+
pc]·(Up+−Up). (2.23)

In case of a one-dimensional spherical flow on an equi-angular polar grid, the right-hand
side of the previous equation is equal to zero. To prove this result, let us consider a
quadrangular cell of an equi-angular polar grid. The proof proceeds in the following two
steps:
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• Either p and p+ are located on the same angular sector and thus the nodal velocity
Up and Up+ are collinear to the direction of the angular sector which is orthogonal
to the unit outward normal N

+
pc. Hence, (Up+−Up)·N+

pc=0.

• Or p and p+ are located on the same circle of radius R, then the Cartesian compo-
nents of their nodal velocities read as

Up=U(R)

(
cosθ
sinθ

)
, Up+ =U(R)

(
cos(θ+∆θ)
sin(θ+∆θ)

)
.

Here, θ denotes the angle of the angular sector, U(r) is the module of the one-
dimensional velocity field, and ∆θ is size of the angular sector. A straightforward
computation shows that

Up+−Up=2U(R)sin(
∆θ

2
)

(
−sin(θ+ ∆θ

2 )
cos(θ+ ∆θ

2 )

)
.

Knowing that the unit outward normal is given by

N
+
pc=

(
cos(θ+ ∆θ

2 )
sin(θ+ ∆θ

2 )

)
,

we obtain that (Up+−Up)·N+
pc=0.

This ends the proof. This result shows that our new area-weighted discretization satisfies
rigorously the GCL compatibility requirement for one-dimensional spherical flows on
equi-angular polar grids.

3 MOF multi-material interface reconstruction phase in

axisymmetric geometry

The method used in this work to reconstruct interfaces, is the MOF approach well adapted
for treating multi-materials interface problems [1, 13]. Indeed, such a method enables to
capture more accurately interfaces than the classical VOF strategy and allows the treat-
ment of general multi-material flows (more than two materials) [15,23]. This method has
been recently extended to cylindrical geometries, for a single interface problem [2]. Here,
extension to multi-material interface reconstruction phase to cylindrical coordinates is
considered.

3.1 Moment of fluid method

The main idea of MOF is to track each fluid in a cell using the zeroth and first mo-
ments [13]. Given these two moments, interface is linearly reconstructed insuring volume
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conservation. To this end, interface update is done minimizing the discrepancy between
the given moments and the reconstructed moments of the polygon behind the interface.
One should note that no information from neighboring cells is required. This method
is exact for linear interfaces and is second order accurate for smoothly curved ones. In
the context of multi-material configurations, one has to face to material ordering when
reconstructing interface. The method presented here, allows to automatically determine
the order of materials by constructing all the possible combination and choosing the se-
quence that leads to the configuration where the reconstructed moments are the closest
to the given ones. The main difference between cylindrical and planar geometry relies in
the definition of the different moments. Since the interface reconstruction is done under
volume conservative assumption, the zeroth moment M0

k,c of the k-th fluid in each cell c
is obviously given by

M0
k,c=

∫

Ωk,c

RdA, (3.1)

from this moment we can deduce the volume fraction

αk,c=
M0

k,c

Vc
, (3.2)

with the cell volume Vc=
∫

Ωc
RdA.

Contrary to the zeroth moment, the first moment can be defined without any specific
requirement. Thus, it is possible to compute them in the two following different manners.
In the one hand we can use the natural extension to axisymmetric geometries

M1
k,c=

∫

Ωk,c

RXdA, (3.3)

and from this moment we deduce the pseudo-centroid

Xk,c=
M1

k,c

Vk,c
, with Vk,c=Vcαk,c. (3.4)

This pseudo-centroid for a matter of simplicity will be called here the axisymmetric cen-
troid.

On the other hand it can also be done with a planar definition as follows

M
1,pl
k,c =

∫

Ωk,c

XdA, (3.5)

and thus planar centroid will be obtain from

X
pl
k,c=

M
1,pl
k,c

Ak,c
, (3.6)

where Ak,c is the area of the k-th fluid in the cell c.
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Since this interface reconstruction method is coupled to our Lagrangian hydrody-
namics scheme it requires to update the volume fractions and material centroids. Using
the equal strain assumption, the volume fractions do not evolve during the Lagrangian
step (see [16] for more details). However, the centroid locations are given from the La-
grangian step using a barycentric combination of the new positions of the mesh nodes as
done in [15].

3.2 Numerical validation

The main goal of this section is to compare the results given by both axisymmetric and
planar formulations of the centroids on several static test cases in one cell. As in [13], we
consider three different mixed-cell layouts that are filament (without junction), T-junction
and Y-junction. The first two configurations correspond to C2-serial partitions whereas
the third is not. In the considered test cases, the parameter χ corresponds to the radius
of the circles defining the interfaces. Two values are considered with χ=1 and χ=64. In
addition, the computation domain is reduce to the cell [0;1]×[0;1] (see Figs. 4 and 5).
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Figure 4: MOF interface reconstruction test for three materials. From the top to the bottom: the true partitions
for χ=1 and their MOF reconstructions obtained with planar and axisymmetric centroids. From the left to the
right: filament, T-junction and Y-junction configurations.
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Figure 5: MOF interface reconstruction test for three materials. From the top to the bottom: the true partitions
for χ= 64 and their MOF reconstructions obtained with planar and axisymmetric centroids. From the left to
the right: filament, T-junction and Y-junction configurations.

In the first case, with χ= 1, we notice small differences for the filament case, no no-
table difference on the T-Junction but the Y-junction results for axisymmetric and planar
formulations present distinct interface positions due to a different ordering of the materi-
als. For a large radius χ=64, the curves are reduced to piecewise linear interfaces. Then,
the result using both formulations are very close to each other. For the two first cases
filament and T-junction, the results are exact. Regarding the Y-junction, it remains a good
approximation. To compare the two formulations we can also compute the cumulative
defect of the first moment as in [13]

∆M1=

{ K

∑
k=1

‖M1
k−M1

k,re f ‖
2

}1/2

, (3.7)

where M1
k and M1

k,re f are respectively the computed moment and reference moment using

planar or axisymmetric formulation.
These results illustrate the capability of both planar and axisymmetric centroid for-

mulation for MOF to treat accurately multi-material problem. Nevertheless, as shown in
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Table 1: Cumulative defect of first moment for the planar and the axisymmetric formulation.

χ=1 Filament T-junction Y-junction

∆M1 planar 3.09 10−3 9.82 10−3 2.96 10−2

∆M1 axisymmetric 2.82 10−3 6.42 10−3 2.25 10−2

χ=64 Filament T-junction Y-junction

∆M1 planar 1.69 10−6 1.57 10−4 2.34 10−2

∆M1 axisymmetric 1.32 10−6 9.4 10−5 2.11 10−2

Table 1 the cumulative defect for the axisymmetric centroids are in all test cases lower
than the planar centroids. The axisymmetric formulation for the centroids is retained in
the sequel.

4 Rezoning phase improvement for polar meshes

The rezoning phase consists in moving the Lagrangian grid to improve its geometric
quality [35]. The objective of this part is to extend the approach introduced in [15, 16]
to polar meshes. To this end, the proposed procedure relies on two main steps. The
first phase is dedicated to compute the smoothed grid from the Lagrangian one through
CNS method. Then the final mesh is deduced from the smoothed one by a relaxation
procedure to keep the rezoned grid as close as possible to the Lagrangian grid in order
to insure computation accuracy and avoid unphysical mesh rezoning. In the sequel one
should note that rezoning is formulated only for planar geometry in the frame {0,X,Y}.

For the sake of readability, in the rest of the paper the quantities without any accent a
are associated to Lagrangian mesh. After the rezoning step we use arez, and finally after
relaxation the quantities related to the rezoned mesh are noted with the tilde accent ã.

4.1 General condition number smoothing (GCNS)

As it is pointed out in the introduction, CNS approach is well adapted to rezone Carte-
sian meshes but it still suffers from drawbacks for polar ones. Indeed, in this case the
mesh seems to collapse (like an implosion) to the origin. To circumvent this difficulty, it
has been proposed to modify the CNS algorithm using specific weight associated to the
mesh geometry [33] that controls mesh rezoning with regards to the radius for example.
Nevertheless, this approach is not completely satisfactory. First, it strongly depends on
the choice of the weight, that may affect the quality of the mesh which can be shifted
in the opposite direction to the origin for example. Furthermore, there is still a resid-
ual compression near the origin due to singularity at this point. In conclusion, it does
not preserve a uniform polar mesh. For this reason, a different strategy is presented here.
The main idea developed here is to apply the CNS rezoning algorithm in (r,θ)-coordinate
system to polar block. In fact, a polar block mesh initially expressed using a Cartesian
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coordinates (X,Y) leads to a structured Cartesian mesh in (r,θ)-coordinates. Here, a gen-
eral presentation of the algorithm is made for a classical type of unstructured meshes that
are made of different blocks which can be either Cartesian or polar.

Assuming that the resulting mesh from the Lagrangian phase is unfolded (otherwise
untangling procedure is used to correct invalid cells [34]). Thus, the proposed algorithm
consists for polar meshes in three different steps as depicted on Fig. 6. For the sake
of simplicity, we consider in the sequel only the case of Cartesian and polar structured
meshes.

Figure 6: Rule representation for GCNS algorithm for a polar mesh.

The first step, is dedicated to the mapping between Cartesian and polar coordinates.
To this end, consider c a given cell of the Lagrangian grid for (X,Y)-coordinates, p∈P(c)
a node of this cell. Notation used in the sequel are depicted on Fig. 7. The mapping
between a point p∈ c of Cartesian coordinates Xp =(X,Y)t to X̂p =(rp,θp)t in polar ones

is done using the definition θp = arctan
( Yp

Xp

)
and rp =

√
X2

p+Y2
p . When mapping (X,Y)

to (r,θ), the origin node has to be specifically treated. Indeed the transformation is not
defined for this point. Then as it is needed in the rezoning algorithm in the (r,θ) frame,
the origin node is defined by a mapping of the first row on r= 0 axis (see Fig. 7). Note
that these nodes are not used for the final backward mapping.

Figure 7: Notations and mapping between Cartesian and polar coordinates.

The second step is the GCNS algorithm. It is based on a minimization problem of
a local functional that controls the quality of the mesh. As done in [15, 16], one has to
distinguish boundary nodes and internal node for which the smoothing procedure is
different.
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For internal nodes, let us introduce as in [21] the condition number for (r,θ)-coordinates
that writes

κ(Ĵcp)=
||X̂pp+ ||

2+||X̂pp− ||
2

Âcp

, (4.1)

where X̂pp±=X̂p−X̂p± , and Âcp=det(Ĵcp) is the area of the triangle delimited by {p,p+ ,p−}

in the rezoned grid and Ĵcp = [X̂pp+ ,−X̂pp−] the 2×2 Jacobian matrix associated to each
corner at vertex p of cell c. Thanks to this condition number we define the local function
associated to the node p

Fp(X̂p)= ∑
c∈C(p)

κ(Ĵcp). (4.2)

Finally, the new position X̂rez
p is obtained by the minimization of the local function Fp

using the first step of a Newton algorithm. This leads to the formula

X̂rez
p = X̂p−H

−1
cp (X̂p)∇Fp(X̂p), (4.3)

where H
−1
cp and ∇Fp are respectively the Cartesian 2×2 Hessian matrix and gradient re-

lated to the local functional Fp.

For boundary nodes, the rezoned position X̂rez
p of p is computed in consistent way

with the GCNS algorithm. To this end, X̂rez
p is given thanks to a second-order interpola-

tion Bézier curve [16] leading to

X̂rez
p = X̂p(s

rez)=(1−(srez)2)X̂p−+2(1−srez)srezX̂i+(srez)2X̂p+ , (4.4)

where srez ∈ [0,1] and X̂i such that X̂p(1/2)= X̂p. Furthermore, the parameter srez is com-

puted to minimize Fp(X̂p(s)) (for more details on this procedure see [16]).

Finally, the third step consists in backward mapping between X̂rez
p and Xrez

p using Xp=
rpcos(θp) and Yp= rpsin(θp).

4.2 Relaxation algorithm

The relaxation algorithm consists in making a convex combination between rezoned grid
obtained from GCNS step and its location after Lagrangian step. This reads for each mesh
node p by:

X̃p=Xp+ωp(X
rez
p −Xp), with ωp∈ [0,1],

where X̃p is the new mesh node position after the complete rezoning phase. The coeffi-
cient ωp is computed as a function of the right Cauchy-Green tensor [8] associated to the
Lagrange grid deformation over a time step (for details see [16, 24]).

4.3 Numerical validation

In this section, we compare results obtained by the GCNS algorithm to those obtained for
classical CNS for the rezoning of uniform polar and unstructured meshes.
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Uniform mesh First, we consider an uniform polar mesh made of 20×10 elements see
Fig. 8-(a). Results obtained after 100 iterations for the classical and general smoothing
are presented on Fig. 8. For each method the relaxation coefficient ωp is taken equal
to 1. As already mentioned, the classical smoothing does not converge on polar mesh
and implies the collapse of cell layers to the origins (see Fig. 8-(b)). However, for the
GCNS, the result obtained (see Fig. 8-(c)) is converged. The mesh initially uniform, is not
modified at the end of the computation. This clearly illustrates the good behavior of our
smoothing algorithm.
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Figure 8: Smoothing of a static polar grid 16×10: (a) initial grid; Smoothed grids after 100 iterations: (b)
CNS, (c) GCNS.

Unstructured mesh Now, rezoning for an unstructured mesh is studied. Let us con-
sider a mesh made of 175 quadrangular cells as depicted on Fig. 9-(a). When applying
the full Cartesian rezoning to the mesh, similar observations as previously can be made.
It suffers from an implosion of central cells to the origin and does not converge (see Fig. 9-
(b)). For the full GCNS algorithm, one can see after convergence, the formation of mesh
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Figure 9: Smoothing of a static unstructured grid: (a) initial grid; Smoothed grids after 100 iterations: (b)
CNS, (c) GCNS.
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Figure 10: Smoothing of a static unstructured grid: (a) initial grid with Cartesian (blue) and polar (red) rezoning
regions; Smoothed grids after 100 iterations (b) GCNS with interfacial polar rezoning, (c) GCNS with interfacial
Cartesian rezoning.

distortion on the square region and a polar mesh far from the center (see Fig. 9-(c)). Nev-
ertheless, it is possible to improve this rezoning. Thus, the main idea developed in the
sequel is to apply the GCNS rezoning algorithm differently for a node belonging initially
to a Cartesian or polar region of the mesh. These regions are represented thanks to red
and blue color (see Fig. 10-(a)) for the considered mesh. Nodes localized at the frontier
between the polar and Cartesian meshes (black nodes on Fig. 10-(a)) can be considered
either polar, or Cartesian. As represented on Fig. 10-(b,c), both possibilities are tested.
The obtained results illustrate that the Cartesian choice remains better contrary to the
polar one that introduce mesh distortion.

5 Hybrid remapping in axisymmetric geometry

During the remapping phase, the physical unknowns (density, velocity, total energy)
computed thanks to the Lagrangian step are conservatively remapped from the Lagrangian
mesh to the rezoned one. To this end, an extension of the Hybrid Remapping Algorithm for
multi-material flows [7, 15, 22] to cylindrical geometry is proposed here. This strategy
consists in the following two steps. First a swept-faced remapping is used to treat cells
and nodes localized far from the interface. Then, a cell-intersection-based method [16] is
applied to the cells and nodes in the neighborhood of the interface. In this way, this ap-
proach combines the ability of the cell-intersection method to remap the interface and the
efficiency of the swept flux approach for the other cells that significantly reduce the global
computing cost of the method. As done previously, in the perspective of general use of
the method, a global formulation including both Cartesian and axisymmetric framework
is presented.

We assume in the sequel, that there is no topology change of the mesh, the cells of the
Lagrangian and rezoned grids are respectively designed by Ωc and Ω̃c.
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5.1 Multi-material cell-intersection-based (MCIB) remapping

The main goal of remapping is as follows. Given the piecewise constant representation
of the physical variables per unit of volume (ρ,ρU,ρE) noted ψc = ρcφc in each cell of the
Lagrangian grid, we want to compute its equivalent ψ̃c in each cell of the rezoned grid
given as

ψ̃c=
1

Ṽc

∫

Ω̃c

ρ̃φRdA, (5.1)

with Ṽc the volume of the cell Ω̃c. Contrary to single fluid approach, here the rezoned
values ψ̃c can not be computed directly in each cell c. In fact, one has to take into account
multi-material aspects.

First of all, let us introduce some notations. Each material of the flow noted k oc-
cupies the polygon Ωk,c ⊂Ωc, within the MOF framework, such that Ωc =

⋃
k Ωk,c and is

characterized by its partial mass, density, pressure, internal energy and variables per unit
of volume (total energy, momentum) whose averaged values in each sub-cell are respec-
tively mk,c,ρk,c,Pk,c,εk,c and ψk,c=ρk,cφk,c with φk,c the partial velocity or energy per unit of
mass.

Thus, for multi-material flow, the main idea of remapping is not to directly compute
the global rezoned quantities ψ̃c but the partial rezoned ones noted ψ̃k,c. This is partic-
ularly true for the MCIB method that is dedicated to treat cell in the interface neighbor-
hood. To this end, we first propose a second order reconstruction Ψk,c(X) of ψk,c over each
Lagrangian cell c through the piecewise linear function

Ψk,c(X)=ψk,c+(∇Ψk)c(X−Xk,c), (5.2)

where (∇Ψk)c denotes the constant gradient of Ψk,c within cell c computed thanks to
a least-squares approach. A Barth-Jespersen limiter is used to ensure monotonicity [5].

Figure 11: Notations for MCIB method.
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Finally Xk,c is the centroid related to the k-th fluid in the cell c given by

Xk,c=
1

Vk,c

∫

Ωk,c

RXdA. (5.3)

Thanks to these notations, the remapped value for MCIB is given by

ψ̃k,c=
1

Ṽk,c
∑

d∈C(c)

∫

Ωk,d∩Ω̃c

RΨk,c(X)dA, (5.4)

where the intersection polygons Ωk,d∩Ω̃c are computed thanks to a specific triangulation
of the mesh. The procedure is detailed in [16]. The set C(c) contains the cells including
c that share at least one node with the cell c. At last, the partial volume defined on the
rezoned cell is Ṽk,c=∑d∈C(c)

∫
Ωk,d∩Ω̃c

RdA.

In the context of MOF reconstruction, one has to define additional quantities as the
partial remapped mass corresponding to material k. It is computed as m̃k,c = ρ̃k,cα̃k,cṼk,c

with the volume fraction

α̃k,c=
1

Ṽc
∑

d∈C(c)

∫

Ωk,d∩Ω̃c

RdA, (5.5)

thus the partial volume can be also expressed as Ṽk,c = Ṽcα̃k,c. In addition, each material
centroid position is defined thanks to

X̃k,c=
1

Ṽk,c
∑

d∈C(c)

∫

Ωk,d∩Ω̃c

RXdA. (5.6)

5.2 Pure cell swept-face (PCSF) remapping

As explained before, the PCSF remapping is used only to treat single fluid cells. In this
context, one should remark that Ωc=Ωk,c, thus the mean value ψ̃c,k is given through

ψ̃k,c=ψk,c+ ∑
f∈F (c)

∫

A f

RΨk, f dA, (5.7)

with A f the quadrangular signed area swept by the face f of a cell c between the La-
grangian grid and the rezoned grid delimited by the ordered nodes {Xp,X p̃,X p̃+ ,Xp+}
(refer to Fig. 12). We note F(c) the set of the faces f of a cell c. In addition, Ψk, f is the
upwind value given by

Ψk, f =

{
Ψk,c+(X), if A f >0,
Ψk,c(X), otherwise.

(5.8)

with c+ the neighbor cell of c through the face f . During this step the volume fractions
α̃k,c=αk,c do not change as we consider single fluid cells and the material centroid can be

updated directly from the geometry X̃k,c= X̃c where X̃c is the centroid of the cell Ω̃c.
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Figure 12: Notations for swept face-based method.

5.3 Integration strategy

For both PCSF and MCIB remapping, one has to compute several surface integrals, on
polygons where the integrand is a polynomial function of (X,Y). This can be done using
a triangulation of these areas. Nevertheless, this is expensive. Here, we rather adopt
a more efficient method as in [29]. In this context, integrals are simplified using Taylor
decomposition of the polynomial integrand and Green’s formula [30] leading to com-
pute circular integrals over the edges of the polygons defining the integration areas. For
further details on integral computations see [29].

5.4 Hybrid remapping algorithm

In this part, we detail the hybrid remapping algorithm that is summarized on Fig. 13.
To this end, let us introduce N P and N M the sets of nodes and in the same manner CP

and CM the sets of cells respectively used for PCSF and MCIB remapping. Here N M

collects mixed nodes belonging to cells that contain the interface or are on this interface
(white nodes on Fig. 13) despite N P contains the pure ones (black nodes on Fig. 13). In
addition, CM is the set of mixed cell that include cells intersected by the interfaces and
their neighbors by nodes. Finally, CP contains the cells that have at least one node in N P.

The hybrid remapping procedure consists in performing the following steps.

1. PCSF step. In this step we first move the pure nodes included in N P and we remap

the quantities in cell c belonging to CP. Thus, we have ψ̃k,c=(ρ̃k,c,ρ̃Ek,c,ρ̃Uk,c) using

relation (5.7) and m̃k,c,α̃k,c,X̃k,c for each cell c∈C p.

2. MCIB step. Now, the mixed nodes in N M are moved and the ψ̃k,c=(ρ̃k,c,ρ̃Ek,c,ρ̃Uk,c)

are remapped thanks to (5.4) and m̃k,c,α̃k,c,X̃k,c are computed for cells c∈CM.

Since CM∩CP 6={∅}, one should note that cells included in this intersection are remapped
at each step of the algorithm.
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Figure 13: Hybrid remapping principle in one-dimension case.

At the end of remapping, only the partial values of the physical variables per unit
of volume are known. At this step, a first point is to compute the physical variables

per unit of mass. The remapped partial total energy is given using Ẽk,c = (̃ρE)k,c/ρ̃k,c.

However, this is different for the remapped partial velocity Ũk,c. Indeed, as explained
in the second part of this paper, the Lagrangian computation of the velocity is done in

Cartesian geometry. For this reason, the remapped velocity is deduced from the (̃ρU)k,c

through

Ũk,c=(̃ρU)
pl

k,c/ρ̃
pl
k,c

using the planar remapped density and momentum given through (5.4) and (5.7) with
R=1. The second point is dedicated to the reconstruction of the global values required
for the next Lagrangian step. To this end, a classical procedure is to use specific averages

φ̃c=
1

m̃c
∑

k

m̃k,cφ̃k,c, (5.9)

with the global mass and density deduced from

m̃c=∑
k

m̃k,cα̃k,c and ρ̃c =∑
k

ρ̃k,cα̃k,c. (5.10)

At last, thermodynamical variables as pressure P and internal energy ε are obtained
thanks to specific thermodynamical closures as done in [16].
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6 Numerical results

We present in this section several numerical test cases performed using the CCALE-MOF
computing procedure detailed in [15,16] including the various development proposed in
this paper. In the sequel, all the materials are governed by perfect gas equation of state
p=ρε(γ−1), where ε stands for the internal energy and γ for the polytropic index of gas.

6.1 Sedov problem

We present in this first section a Sedov problem for a point blast in a uniform medium
with spherical symmetry [20, 31]. We use this test case to compare our new formulation
presented in Section 2.3 with the original EUCCLHYD scheme introduced in [25]. Here,
pure Lagrangian and full CCALE-MOF procedures are considered for comparison. Both
formulation are based on the high-order extension of the Lagrangian scheme as it is pre-
sented in [25]. The initial conditions are given by (ρ0,P0,U0)= (1,10−6,0) in a spherical
domain of radius 1.2 except in the cell at the origin (0,0) where an initial delta-function
energy source is set through the pressure

Por =(γ−1)ρor
E0

Vor
,

with Vor the volume of the origin cell and E0 = 0.851072 is the total amount of released
energy. The fluid has its polytropic index γ equal to 7

5 . Contrary to the original sin-
gle material test case, we add here three artificial interfaces, to test our multi-material
CCALE-MOF algorithm. These interfaces are initially located for a radius equals to 0.1,
0.2 and 0.3 (see Fig. 14).

Here we consider both Lagrangian and ALE computations for an initial unstructured
mesh depicted on Fig. 14. This grid is obtained after one rezoning step, with ωp = 1 of
an unstructured mesh initially paved with 500 quadrangular cells. Numerical results are
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Figure 14: Initial grid and material positions for the Sedov problem.
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Figure 15: Sedov problem. From the top to the bottom: Interface positions, density maps, density profiles
defined as a function of the cell center radius compared to the analytical solution at final time step for the pure
Lagrangian computation using new scheme (left) and the original EUCCLHYD scheme (right).

depicted on Figs. 15 and 16 for a final time of tend = 1 and compared to the analytical
solution computed using self-similar arguments as done in [16]. It consists of a diverging
shock wave whose front is exactly localized at radius R=1. As it is illustrated on Fig. 15,
the pure Lagrangian solutions are in good agreement with the analytical one for both
approaches. We can notice that the new formulation is less dissipative on this test case as
we reach a higher density level in the shock region. Indeed for the Lagrangian method
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New CCALE-MOF EUCCLHYD CCALE-MOF
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Figure 16: Sedov problem. From the top to the bottom: Interface positions, density maps, density profiles
defined as a function of the cell center radius compared to the analytical solution at final time step for the new
CCALE-MOF procedure (left) and the EUCCLHYD CCALE-MOF procedure (right).

as for the CCALE-MOF one the shock location is well resolved without any spurious
oscillation (Fig. 16). In addition, this simple problem underlines the robustness (better
mesh quality near the origin) and accuracy (shock location) of the axisymmetric CCALE-
MOF approach especially when considering multi-material flows whose interfaces are
well captured thanks to the MOF reconstruction (see Fig. 16).
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We point out that during the Lagrangian computation, non-convex cells appeared.
This may lead to interface reconstruction failure when considering multi-material flows.
As illustrated by the previous numerical results, the proposed CCALE-MOF algorithm
remains adapted to treat such configuration without any difficulty demonstrating once
again its robustness.

6.2 Axisymmetric triple point problem

We consider in this part a three-material problem that corresponds to a three-state Rie-
mann problem in an axisymmetric geometry. This problem has been widely studied in
Cartesian geometry [11,16,23] and here we propose new results for cylindrical geometry.
The computational domain is rectangular and composed of three regions (blue, green,
red) whose dimensions are depicted on Fig. 17. The top, left and right boundaries are
closed thanks to walls. A symmetry condition is applied to the bottom boundary corre-
sponding to the X-axis axi-symmetry. Initially, the blue region contains a fluid with high
pressure and density taken equal to (ρ1,p1)=(1,1). The green region contains a low den-
sity and pressure fluid whose initial state is (ρ2,p2)=(0.125,0.1). The third fluid in the red
region, initially has a low pressure and an high density equal to (ρ3,p3)=(1,0.1). At the
beginning of the computation, all fluids are supposed to be at rest then U1=U2=U3=0.
The blue and green material have the same polytropic index γ1=γ2=1.5, despite the red
one has γ3=1.4.

Figure 17: Axi-symmetric triple point problem : geometry and initial data.

The computation using the presented axisymmetric extension of the CCALE-MOF
algorithm is made on a grid initially paved with 140×60 square cells until a final time
t f = 5. For this simulation, comparison with a full Lagrangian computation can not be
performed since its suffers from important mesh tangling as shown in [24]. However
comparison to full Eulerian simulations is done. In this case, nodes are moved to their
initial positions during the rezoning step. As shown by Figs. 18-19, one can observe
that the global behaviour of the Eulerian and ALE solutions are very similar. However,
when comparing to 2D-planar computation [15], the axisymmetric geometry particularly
affects the vortex shape in this case.
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Figure 18: Axi-symmetric triple point problem. Mesh and material positions at t=5 for Eulerian computation.
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Figure 19: Axisymmetric triple point problem. Mesh and material positions at t=5 for ALE computation.

6.3 Spherical Air-Helium shock/bubble interaction test

We deal in this part with the numerical simulation of the experiment presented in [17].
We study here, the interaction of a Mach 1.25 shock travelling through the air with a
spherical bubble of Helium. To this goal, let us consider a rectangular domain of dimen-
sions [0,0.65]×[0,0.0445] initially full of Air characterized by (ρ1,P1,γ1)=(0.182,105,1.4).
This domain contains a spherical bubble of Helium (ρ2,P2,γ2)= (1,105,1.648) in an half
disc centered in (0,0.32) of radius 0.0225 as depicted on Fig. 20. Here, spherical geometry
of the bubble is obtained thanks to axisymmetric geometry. Wall boundary and symme-

Figure 20: Air-Helium shock/bubble interaction. Initial geometry and data.
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try conditions are respectively chosen for the left and top boundaries. Despite, a piston-
like condition is imposed to the right one for an incoming velocity equal to U∗=(u∗,0).
Here, the horizontal velocity u∗ is computed thanks to Rankine-Hugoniot conditions and
is given by u∗ =−140.312 corresponding to an incident shock moving at the velocity
Dc=−467.707.

The domain is initially paved with a structured Cartesian grid composed of 520×72
cells. Here, the bubble is directly initialized through the volume fraction on this mesh.
Computations are done for the multi-material axisymmetric CCALE-MOF for a final time
chosen equal to t f =ti+600×10−6 where ti=657.463×10−6 corresponds to the time of the
shock/bubble interaction. Here once again, simulations can not be achieved using pure
Lagrangian framework due to the apparition of important mesh distortion. Numerical
results associated to the Schlieren density profiles [18] are depicted on Fig. 21.

Let us note that each pictures are obtained thanks to an axial symmetry with respect to
the X-axis. Comparisons between the Schlieren density profiles and the shadow-graphs
of the experiment show a good agreement, especially when observing the bubble shape
deformations. Moreover, waves generated by the initial shock are well localized and
illustrate multiple reflections and refractions especially on the bubble and the domain
boundaries. These main points clearly demonstrate the accuracy and the robustness
of the method and validate the axisymmetric CCALE-MOF approach when computing
spherical test-cases coming from experiment.

6.4 Spherical implosion

The last test-case of this paper deals with the numerical computation of a spherical im-
plosion as initially treated in [37]. The interest of this simulation is twofold. First, this
is a realistic problem quite close to those encountered in Ignition Confinement Fusion
(ICF) simulation. Then, it allows to test the capability of the multi-material CCALE-MOF
algorithm with hybrid rezoning.

Here we focus on the treatment of perturbed interfaces where compressible Rayleigh-
Taylor instabilities occur.

Let us consider a spherical ball of light fluid (r∈ [0,10]) initially surrounded by a shell
of heavy fluid (R ∈ [10,12]) as depicted on Fig. 22. For both fluid the polytropic index
is the same γl = γh =

5
3 . The initial pressures and densities are (ρl ,pl) = (0.05,0.1) and

(ρh,ph)=(1,0.1). The implosion is driven by imposing the following pressure law on the
dense shell boundary

p∗(t)=

{
10, if t∈ [0,0.5],
12−4t, if t∈ [0.5,3].

Finally, the interface between the light and the heavy fluids is initially perturbed accord-
ing to the law

r
per
p = rp(1+a0D(rp)Pl(cos(θp))
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t= ti+20×10−6

t= ti+145×10−6

t= ti+223×10−6

t= ti+350×10−6

t= ti+600×10−6

Figure 21: Spherical Air-Helium shock/bubble interaction. Schlieren diagram of density. Axisymmetric CCALE-
MOF results (on the left) compared to experimental results (on the right) [17] after the shock hits the bubble

at time ti =657.463×10−6.

with the damping factor

D(rp)=





1−
rp−ri

re−ri
, if rp ∈ [ri,re],

1−
ri−rp

ri
, if rp ∈ [0,ri],
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Figure 22: Multi-mode implosion in spherical geometry. Initial geometry and data.

where r
per
i denotes the perturbed radius and a0 is the amplitude of the perturbation. Fi-

nally, Pl is the lth Legendre polynomial. In the sequel l = 10 and several values of a0 are
considered from the non-perturbed case a0 = 0, to weakly and strongly perturbed one
with respectively a0=2×10−4 and a0=1×10−3.

Computations are made for two different meshes until the final time t f =3. The first
one is a polar grid displayed on Fig. 23-(left) composed of 90×40 cells. Size of cells in
the radial direction have been chosen respecting a mass radial spacing deduced from
the equivalent one-dimensional test case. The other grid, is obtained after an hybrid
regularization for ωp=1 of an unstructured mesh initially paved with 3200 quadrangular
cells respecting the mass radial spacing (see Fig. 23-(right)).
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Figure 23: Spherical implosion. Initial polar (left) and unstructured (right) grids.
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Non-perturbed case with a0 =0. As a first study, we test the behavior of our algorithm
in axisymmetric geometries in pure Lagrange computation for both meshes. One advan-
tage of the unstructured mesh is to not impose a drastic time step for computation due to
triangular cells with high aspect ratio in the polar mesh as shown in Fig. 24-(right).

Figure 24: Spherical implosion without deformation. t−R diagram constructed using polar grid (left). Time
step history using two-dimensional grids (right).

The t−R diagram is plotted in Fig. 24-(left) and represents the radius of each point on
the symmetry axis Y=0 of the polar grid as function of time. The red thick curves outline
the inner and outer radii. This diagram allows to follow the waves that propagate in
the shell. After time t= 1.5, the shock waves bounce between the center and the inner
interface of the shell and decelerate the implosion of the shell. This phase is called the
stagnation phase and finish when the inner interface radius reaches its minimum value.
After this phase the light fluid present in the center of the shell is pushing the heavy fluid
that surround it. For an interface initially perturbated (i.e. a0 6= 0), the flow gives rise to
Rayleigh-Taylor instability leading to a phase wherein perturbation at the inner interface
grows exponentially as a function of time.

Since a0 = 0, we expect here to have a stable interface during the computation. To
illustrate this point, let study the symmetry preservation of the non-perturbed case. To
that end we define the following norms

L∞(t)= max
i=1,···,Np

| ri(t)− r̄(t) |

r̄(t)
,

L1(t)=
1

Np

Np

∑
i=1

| ri(t)− r̄(t) |

r̄(t)
,

L2(t)=

√
1

Np
∑

Np

i=1[ri(t)− r̄(t)]2

r̄(t)
.
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Figure 25: Spherical implosion without deformation. L1, L2 and L∞ norms for symmetry preservation on polar
grid (left) and unstructured grid (right).

Where ri(t) is the radius of a vertex at the inner interface and r̄(t) is the mean radius
computed as

r̄(t)=
1

Np

Np

∑
i=1

ri(t),

with Np=41. Those norms are displayed for both grids in Fig. 25. The polar grid leads to
the best symmetry preservation as the maximum deviation is around 3×10−7 whereas the
unstructured grid deviation reaches 4.5×10−3. This is due to the triple point present in
the unstructured grid at the intersection of the different blocks of mesh. The unstructured
grid seems to be less stable than the polar mesh. This difference points out the presence
of numerical instabilities for the unstructured mesh. Nevertheless, those numerical per-
turbations remain negligible since there is no visible Rayleigh-Taylor instability growing
at the interface as shown on Fig. 26.
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Figure 26: Spherical implosion without deformation. Mesh and density for polar (left) and unstructured (right)
grids at final time t f =3.
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Figure 27: Spherical implosion with small deformation. Mesh and density for Lagrangian (top) and ALE
(bottom) computations at final time t f =3 for both polar (left) and unstructured (right) grids.

Weakly perturbed case with a0 = 2×10−4. Now, we investigate the capability of our
CCALE-MOF algorithm to treat perturbed interfaces on both non-structured and po-
lar meshes. To this end, comparisons with pure Lagrangian results are first achieved
for weakly perturbed interfaces imposing a0 = 2×10−4. Here for both polar and hybrid
meshes, the GCNS is used. As demonstrated on Fig. 27, for the polar mesh as well as for
the non-structured mesh, ALE results, especially concerning the interface deformation,
are in very good agreement to those obtained thanks to pure Lagrangian computations.
Furthermore, one should note that for the ALE computation on polar grid the quality
of the mesh is improved near the origin. Indeed, the central cells are not systematically
shifted to the origin contrary to computations achieved using CNS rezoning.

Strongly perturbed case with a0 = 1×10−3. Finally, we perform a computation of this
implosion for a more perturbated interface choosing a0 five times greater than previously
with a0 =1×10−3. Due to mesh tangling, this is not possible to purchase such a test case
using only Lagrangian method whose computation fails for t > t f ail = 2.6. Here, only
results obtained thanks to our axisymmetric multi-material CCALE-MOF are presented.
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Figure 28: Spherical implosion with important deformation. Mesh and density for ALE computation for both
polar (left) and unstructured (right) grids at final time t f =3.

Contrary, to Lagrangian computations, the multi-material ALE simulations run without
any difficulties thanks to specific rezoning. For both grids, final results (see Fig. 28) are
very close. In particular we note the Rayleigh-Taylor instability has grown in a same way
leading to similar interface shape deformation at final time.

7 Conclusion and future work

In this paper, we have presented several extensions concerning a Cell-Centered Arbitrary
Lagrangian-Eulerian (CCALE) strategy using the Moment Of Fluid (MOF) interface re-
construction devoted to the numerical simulation of multi-material compressible flows
especially in axisymmetric geometry on polar, Cartesian and unstructured meshes. To
this end, we have introduced a simple and unified formulation of the Lagrangian scheme
relying on an area-weighted formulation, a multi-material MOF interface reconstruction,
a new formulation of rezoning for polar, Cartesian and unstructured grids and finally
a general hybrid remap procedure for both axisymmetric and Cartesian geometry. As
demonstrated on several academical as well as ICF-like test cases, the proposed method
remains accurate and robust.

As future work, we plan to incorporate the proposed method in the multi-physics
code CHIC dedicated to the simulation of ICF experiment. The main goal is to treat
eventually more general configurations notably coupling realistic EOS, laser energy de-
position, with multi-material hydrodynamics in the lines of [9].
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