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Abstract. In this paper, we present local discontinuous Galerkin methods (LDG) to
simulate an important application of the 2D stationary Schrödinger equation called
quantum transport phenomena on a typical quantum directional coupler, which fre-
quency change mainly reflects in y-direction. We present the minimal dissipation LDG
(MD-LDG) method with polynomial basis functions for the 2D stationary Schrödinger
equation which can describe quantum transport phenomena. We also give the MD-
LDG method with polynomial basis functions in x-direction and exponential basis
functions in y-direction for the 2D stationary Schrödinger equation to reduce the com-
putational cost. The numerical results are shown to demonstrate the accuracy and
capability of these methods.
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Key words: Local discontinuous Galerkin method, 2D stationary Schrödinger equation, quantum
transport phenomena, quantum directional coupler.

1 Introduction

Schrödinger equation is used to describe the quantum mechanical wave function in the
equation of motion proposed by the Austrian physicist Schrödinger in 1926 and is con-
sidered to be the theory which is one of the fundamental theories of quantum mechanics.
Schrödinger equation is widely used in atomic physics, nuclear physics and solid state
physics. Solutions to Schrödinger equation can clearly describe the statistical quantum
behavior of the quantum size particles in quantum systems. So how to solve Schrödinger
equation becomes very important.
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In this paper, we mainly discuss how to simulate numerical solutions of the 2D sta-
tionary Schrödinger equation (1.1) which can describe quantum transport phenomena

−1

2
ε2△ϕ+Vϕ=Eϕ, (x,y)∈Ω, (1.1)

where ε is the re-scaled Plank constant, E is the specified energy, ϕ=ϕ(x,y) is a complex-
valued function denoting the wave function, and V=V(x,y) is the potential. The bound-
ary conditions are given based on the specific issues. Many numerical methods have
been developed to solve this equation. In [10, 11], the finite difference methods have
been developed to simulate Schrödinger equations. Spectral method has been proposed
in [8]. In [18, 19], the WKB scheme and finite element method have been used to com-
pute this equation respectively. In addition, multi-mode approximation for resonant tun-
neling which can be described by the stationary Schrödinger equation is given to solve
the equation in [1]. Also in [21], immersed interface method is used to compute the
Schrödinger equation with discontinuous potential. In this paper, we mainly consider an
important application of the 2D stationary Schrödinger equation called quantum trans-
port phenomena on a typical quantum directional coupler shown in Fig. 1. Also various
kinds of numerical methods can be found to simulate quantum transport phenomena
in [4, 5, 9, 14–17, 20]. Moreover, many local discontinuous Galerkin methods have been
developed to solve time dependent Schrödinger equations in [7, 12, 13, 22] but not simu-
late the stationary Schrödinger equation on the complicated computational domain.

We present local discontinuous Galerkin methods to solve the Schrödinger equation
(1.1). Discontinuous Galerkin (DG) methods are a class of finite element methods using
completely discontinuous basis functions, which are usually chosen as piecewise poly-
nomials. The stability and convergence of LDG methods have been designed for elliptic
equations in [3,6]. DG method based on non-polynomial approximation spaces has been
developed in [23]. The DG method has several advantages as follows. Firstly, it can be
designed as any order of accuracy. Since the order of accuracy can be locally determined
in each cell, it has efficient p adaptivity. Secondly, the allowance of arbitrary triangulation
even with hanging nodes makes efficient h adaptivity come true. Moreover, the method
has embarrassingly high parallel efficiency because the elements only communicate with
immediate neighbors regardless of the order of the accuracy of the scheme.

In this paper, we mainly develop minimal dissipation local discontinuous Galerkin
(MD-LDG) method based on the basis functions of polynomials for the Schrödinger equa-
tion (1.1). In addition, we choose polynomial basis functions in x-direction and the expo-
nential basis functions in y-direction which is typical for the simulation of quantum trans-
port phenomena. This choice is mainly based on the change of frequency of y-direction.
This method not only maintains the advantages of the general LDG methods but also
saves the computational cost.

This paper is organized as follows. In Subsection 2.1, we give the model problem
which we are concerned about. We give the MD-LDG method and the MD-LDG method
with different basis functions in different directions for the Schrödinger equation in Sub-
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sections 2.2.1 and 2.2.2 respectively. We discuss the connections and differences of these
two methods in Subsection 2.2.3. In Section 3, we give the specific LDG methods for
quantum transport phenomena on a typical directional coupler. Numerical results are
shown in Section 4 and concluding remarks are given in Section 5.

2 The model problem and numerical methods

2.1 The model problem

Consider the 2D stationary Schrödinger equation on the domain Ω⊂R
2

− 1

2
ε2△ϕ+Vϕ=Eϕ, in Ω, (2.1a)

ϕ= f , on ΓD, (2.1b)

∂ϕ

∂nnn
= g, on ΓN, (2.1c)

where ε is the re-scaled Plank constant, E is the specified energy, ϕ= ϕ(x,y) denotes the
wave function, V=V(x,y) is the smooth external potential and nnn is the outward normal
unit vector. ΓN denotes the boundary with the Neumann boundary condition and ΓD

denotes the boundary with the Dirichlet boundary condition.

2.2 Numerical methods for the model problem

2.2.1 The MD-LDG method for the 2D stationary Schrödinger equation

In this section, we present the minimal dissipation local discontinuous Galerkin method
for Eq. (2.1).

In order to define the LDG method, we rewrite Eq. (2.1) into a system of the first order
equations

−∇·σσσ+ 2V

ε2
ϕ− 2E

ε2
ϕ=0, (2.2a)

σσσ−∇ϕ=0, (2.2b)

where σσσ=(σ1,σ2) is a vector function.
Then we introduce the finite element spaces associated to the triangulation Ωh={K}

of Ω. The domain Ω can be decomposed into the set of Ωh. we set

Vh={v∈L2(Ω) : v|K ∈Pk(K), ∀K∈Ωh},

WWWh={www∈ [L2(Ω)]2 : www|K ∈ [Pk(K)]2, ∀K∈Ωh},

where Pk(K) denotes the set of all polynomials of degree at most k on K. For each K∈Ωh,
let hK denote the diameter of K and we set h :=maxK∈Ωh

hK .
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The general formulation of the LDG method for Eq. (2.1) is to find ϕ∈Vh and σσσ∈WWWh

such that for all K∈Ωh and all test functions v∈Vh and www∈WWWh we have

∫

K
σσσ·∇vdx−

∫

∂K
σ̂σσ·nnnkvds+

2

ε2

∫

K
Vϕvdx− 2E

ε2

∫

K
ϕvdx=0, (2.3a)

∫

K
σσσ·wwwdx+

∫

k
ϕ∇·wwwdx−

∫

∂K
ϕ̂nnnK ·wwwds=0, (2.3b)

where nnnK is the outward normal unit vector to the ∂K. The hat terms in the cell boundary
terms in (2.3) for integration by parts for (2.2) are numerical fluxes, which are single
valued functions defined on the edges and should be designed to ensure stability.

Let Γ denote the union of the boundaries of the element K of Ωh. Γ0 denotes the
interior boundaries Γ0 :=Γ\∂Ω. In order to define the fluxes, we define the average {q}
and the jump [[q]] on Γ0 of q which is a scaler. Let e be an interior edge shared by elements
K1 and K2. Let nnn1 and nnn2 be used to denote the unit normal vectors on e pointing exterior
to K1 and K2 respectively. And qi :=q|∂Ki

, we have

{q}= 1

2
(q1+q2), [[q]]=q1nnn1+q2nnn2.

Similarly, for the vector τττ we can also define τττ1 and τττ2 as above and then we have

{τττ}= 1

2
(τττ1+τττ2), [[τττ]]=τττ1 ·nnn1+τττ2 ·nnn2.

The fluxes are chosen as follows:

ϕ̂= ϕ−βββ·[[ϕ]], on Γ0,

ϕ̂= f , on ΓD,

ϕ̂= ϕ, on ΓN ,

and

σ̂σσ=σσσ+βββ[[σσσ]], on Γ0,

σ̂σσ=σσσ, on ΓD∩Γ−,

σ̂σσ=σσσ+α(u− f )nnn, on ΓD∩Γ+,

σ̂σσ= gnnn, onΓN ,

where βββ·nnnK(e) =
1
2 sign(ρρρ·nnnK(e)), ρρρ is any nonzero piecewise constant vector, Γ− = {e ∈

Γ : ρρρ·nnne < 0} and Γ+ = Γ\Γ−, α is chosen as O(1/h). The idea for the fluxes choice is
following the reference [6].
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2.2.2 The MD-LDG method based on non-polynomial basis functions for the 2D

stationary Schrödinger equation

In this section, we are mainly interested in the frequency change which mainly reflects in
y-direction for quantum transport phenomena, so here we choose the exponential basis
functions in y-direction and polynomial basis functions in x-direction. For the rectangu-
lar domain, we denote the mesh by Iij =[xi− 1

2
,xi+ 1

2
]×[yj− 1

2
,yj+ 1

2
]. The center of the cell is

xi=(xi− 1
2
+xi+ 1

2
)/2, yj=(yj− 1

2
+yj+ 1

2
)/2 and ∆xi=xi− 1

2
+xi+ 1

2
, ∆yj=yj− 1

2
+yj+ 1

2
. We make

the tensor product between

V△x=
{

1,
x−xi

∆x
,
( x−xi

∆x

)2
, i=1,··· ,nx

}

,

and

E(α)=
{

1,eiαj(y−yj),e−iαj(y−yj), j=1,··· ,ny
}

,

where αj is the frequency of the phenomena. The approximation space E(α) is actually
an exponential space. In [23], the authors have proved the L2 stability and error estimate
of the DG method based on non-polynomial approximation spaces including exponen-
tial spaces for time-dependent PDEs. In [19], E(α) is a third order approximation space
for stationary one-dimensional Schrödinger equation. And we also know V△x has third
order accuracy for PDEs. Therefore, those two basis functions by tensor product would
have third order accuracy for two-dimensional PDEs.

2.2.3 Differences of the two schemes based on the different basis functions

Since these two MD-LDG methods based on polynomial basis functions and non-
polynomial basis functions respectively have the same idea, we have similar scheme (2.3)
and choice of the numerical fluxes for the MD-LDG scheme based on non-polynomial ba-
sis functions.

The differences between these two schemes mainly reflect in the choice of the basis
functions. In the general MD-LDG method we choose polynomial basis functions while
in another method we choose the exponential basis functions in y-direction and polyno-
mial basis functions in x-direction.

Generally speaking, we choose the LDG method based on polynomial basis func-
tions to simulate general numerical solutions. However, depending on the properties
of the solution space the MD-LDG method based on non-polynomial basis functions are
more efficient than the general LDG method. In this paper, we study quantum transport
phenomena whose frequency change mainly reflects in y-direction. So here we not only
give the general MD-LDG method based on polynomial basis functions, but also give the
method with the non-polynomial basis functions that is exponential basis functions in
y-direction to improve the computational efficiency.
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3 Quantum transport phenomena on a typical quantum

directional coupler

In this section, we give quantum transport phenomena on a typical quantum directional
coupler which can be described by the 2D stationary Schrödinger equation.

3.1 The 2D stationary Schrödinger equation for the quantum transport
phenomena

The 2D stationary Schrödinger equation can describe the quantum transport phenomena
as follows. The domain of the 2D stationary Schrödinger equation is shown on a typical
quantum directional coupler in Fig. 1. The equation is

−1

2
ε2△ϕ+Vϕ=Eϕ. (3.1)
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Figure 1: The computational domain.

The boundary conditions are given as follows:

• On ΓD =
⋃8

p=1Γ
p
D, the confined boundary conditions are used as

ϕ(x,y)|(x,y)∈ΓD
=0,

which prevent electrons from leaving out of the computational domain.

• On ΓN =
⋃4

p=1Γ
p
N, the transparent boundary conditions are used, which allow elec-

trons move in and out of the computational domain. The transparent boundary
conditions can be found in Appendix A for ΓN .

3.2 The LDG method for quantum transport phenomena

In this section, we consider the rectangular meshes. The details of the LDG method for
this problem are the same way as in Section 2.
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First we rewrite Eq. (3.1) into a system of the first order equations

−(px+qy)+
2V

ε2
ϕ− 2E

ε2
ϕ=0, (3.2a)

p−ϕx =0, (3.2b)

q−ϕy=0. (3.2c)

We denote by ϕ+
i+1/2,j and ϕ−

i+1/2,j the value of ϕ at xi+1/2 from the right cell, Ii+1,j, and

from the left cell, Ii,j, respectively. Similarly, We denote by ϕ+
i,j+1/2 and ϕ−

i,j+1/2 the value of

ϕ at yj+1/2 from the upper cell, Ii,j+1, and from the lower cell, Ii,j, respectively. We define
the complex piecewise-polynomial space V∆x,∆y as the space of polynomials of degree at
most k in each cell Iij, i.e.

V∆x,∆y={v : v|Iij
∈Pk(Iij), i=1,··· ,nx; j=1,··· ,ny},

where Pk(Iij) be denoted to be the set of all polynomials of degree at most k in the interval
Iij. The finite element space Vh can be chosen as Vh=V∆x,∆y or Vh=V∆x⊗E(α).

The formulation of the LDG method for Eq. (3.1) is to find ϕ,p,q ∈ Vh such that for
i=1,··· ,nx, j=1,··· ,ny and for all test functions v,w,h∈Vh, we have

∫

Iij

pvxdxdy−
∫

Ij

[( p̂v−)i+ 1
2
−( p̂v+)i− 1

2
]dy+

∫

Iij

qvydxdy−
∫

Ii

[(q̂v−)j+ 1
2
−(q̂v+)j− 1

2
]dx

+
2

ε2

∫

Iij

Vϕvdxdy− 2E

ε2

∫

Iij

ϕvdxdy=0, (3.3a)

∫

Iij

pwdxdy+
∫

Iij

ϕwxdxdy−
∫

Ij

[(ϕ̂w−)i+ 1
2
−(ϕ̂w+)i− 1

2
]dy=0, (3.3b)

∫

Iij

qhdxdy+
∫

Iij

ϕhydxdy−
∫

Ii

[(ϕ̂h−)j+ 1
2
−(ϕ̂h+)j− 1

2
]dx=0. (3.3c)

The hat terms in the cell boundary terms in (3.3) for integration by parts for (3.2) are
numerical fluxes. The fluxes of quantum transport phenomena for the scheme (3.3) are
chosen as follows:

• On the interior, the fluxes are

ϕ̂= ϕ+, p̂= p−, q̂=q−.

• On Γ1
D, the fluxes are

ϕ̂=0, q̂=q+−αy(ϕ(x,0)−ϕ+).

• On Γ3
D and Γ5

D, the fluxes are

ϕ̂=0, q̂=q−.
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• On Γ4
D and Γ6

D, the fluxes are

ϕ̂=0, q̂=q+−αy(ϕ(x,h1+h2)−ϕ+).

• On Γ2
D, the fluxes are

ϕ̂=0, q̂=q−.

• On Γ7
D, the fluxes are

ϕ̂=0, p̂= p+−αx(ϕ(l1,y)−ϕ+).

• On Γ8
D, the fluxes are

ϕ̂=0, p̂= p−.

• On Γ1
N and Γ2

N , the fluxes are

ϕ̂= ϕ+, p̂= ϕx(0,y).

• On Γ3
N and Γ4

N , the fluxes are

ϕ̂= ϕ−, p̂= ϕx(2l1+l2,y).

Here we choose αy =O(1/∆y) and αx =O(1/∆x). And the choice of the fluxes does not
depend on the selection of the finite element spaces.

4 Numerical results

In this section, we present several numerical examples to illustrate the accuracy and the
efficiency of the numerical schemes developed in the previous section for Eq. (2.1).

Example 4.1. We consider the 2D stationary Schrödinger equation on the domain
Ω = [0,1]×[0,1] and the boundary consists of ΓD = {(x,0)

⋃

(x,1)|0 ≤ x ≤ 1} and ΓN =
{(0,y)

⋃

(1,y)|0≤y≤1}. The equation is

− 1

2
ε2∆ϕ=Eϕ, (4.1a)

ϕ(x,0)= ϕ(x,1)=0, (4.1b)

ϕx(0,y)= i

√

2(E−E9)

ε2
χ9(y), (4.1c)

ϕx(1,y)= i

√

2(E−E9)

ε2
e
i
√

2(E−E9)

ε2 χ9(y), (4.1d)
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with the exact solution

ϕ(x,y)= e
i
√

2(E−E9)

ε2 x
χ9(y), (4.2)

where E=0.2, ε=1/64, Em= 1
2 m2π2ε2, χm(y)=

√
2sinmπy, m=1,2,··· .

The fluxes are chosen as follows:

• On the interior, the fluxes are

ϕ̂= ϕ+, p̂= p−, q̂=q−.

• On ΓD, the fluxes are

ϕ̂=0, q̂i, 1
2
=q+

i, 1
2

−αy(ϕ(x,0)−ϕ+
i, 1

2

).

• On ΓN , the fluxes are

ϕ̂ 1
2 ,j= ϕ̂+

1
2 ,j

, p̂= ϕx(0,y),

ϕ̂nx+ 1
2 ,j= ϕ̂−

nx+ 1
2 ,j

, p̂= ϕx(1,y).

Here we choose αy=O(1/∆y) and αx =O(1/∆x).
In Table 1, we compare the CPU time by the general MD-LDG method and the MD-

LDG method based on non-polynomial basis functions. We can find that the efficiency
of the MD-LDG method based on non-polynomial basis functions is much higher than
the general MD-LDG method to reach the same error level. Since we make full use of the
properties of the solution to choose the non-polynomial basis functions we can obtain the
result in Table 1. More technical details can be found in [19].

Table 1: Example 4.1, the CPU time by using different methods.

polynomials non-polynomials

L2 error CPU time L2 error CPU time

9.43E-01 6.2s 6.64E-01 0.01s

1.01E-01 393s 5.45E-01 0.07s

5.84E-02 784s 2.00E-02 0.41s

6.82E-03 5003s 2.15E-03 21s

In Table 2, we give the L2 and L∞ error estimates and the numerical orders of accuracy
for Eq. (4.1) with the exact solution (4.2) by using the general MD-LDG. We also demon-
strate the L2 and L∞ error estimates and the numerical orders of accuracy by using the
MD-LDG method based on non-polynomial basis functions with α= 9π in Table 3. By
comparing with two tables we can obtain that the MD-LDG method with Pk elements
gives (k+1)-th order of accuracy and the MD-LDG method based on non-polynomial
basis functions has third order accuracy. In particularly, we can see that the MD-LDG
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Table 2: Example 4.1, error estimates and accuracy test for Eq. (4.1) with the exact solution (4.2) with the
uniform meshes by using general LDG method.

Real part Imaginary part

Nx*Ny L2 error order L∞ error order L2 error order L∞ error order

p2 16*16 9.43E-01 – 2.01 – 7.79E-01 – 1.88 –

32*32 1.01E-01 3.22 3.48E-01 2.53 2.19E-02 3.91 2.03E-01 3.21

64*64 5.33E-03 4.25 2.03E-02 4.10 2.71E-03 4.26 1.23E-02 4.04

128*128 2.76E-04 4.27 1.20E-03 4.08 1.83E-04 3.89 7.36E-04 4.06

p3 16*16 1.37 – 3.00 – 1.12 – 2.97 –

32*32 3.86E-03 8.47 1.03E-02 8.19 6.29E-03 7.48 1.83E-02 7.34

64*64 9.39E-05 5.36 2.88E-04 5.16 2.03E-04 4.96 6.52E-04 4.81

Table 3: Example 4.1, error estimates and accuracy test for the Eq. (4.1) with the exact solution (4.2) with
the uniform meshes and less meshes in y-direction by using MD-LDG method based on non-polynomial basis
functions with α=9π.

Real part Imaginary part

Nx*Ny L2 error order L∞ error order L2 error order L∞ error order

α=9π 16*4 2.00E-02 – 4.69E-02 – 8.29E-03 – 3.23E-02 –

32*8 2.15E-03 3.21 4.35E-03 3.43 1.87E-03 2.15 3.88E-03 3.06

64*16 2.70E-04 3.00 5.44E-04 3.00 2.68E-04 2.81 5.35E-04 2.86

scheme based on non-polynomial basis functions need less grids than the general MD-
LDG method to obtain efficient results. The table also demonstrates that the MD-LDG
method based on non-polynomial basis functions saves computational cost.

Example 4.2. We consider the 2D stationary Schrödinger equation (3.1) for the quantum
transport phenomena on the domain shown in Fig. 1 with the following parameters

l1=h1=0.2, l2=h2 =0.6, E=0.6, ε=0.05,

V(x,y)=0, (x,y)∈Ω,

ar
n =

{

1, n= r=1,

0, else,

Er
n =

{

25
2 n2π2ε2, r=1,2,3,4,

1
2 n2π2ε2, r=5.

In Table 4, we give L1 and L∞ error estimates for Example 4.2 where the reference solu-
tions are obtained by using finite difference method with a uniform mesh ∆x=∆y= 1

3200
to show the capability and validity of the LDG method.

We give some simulation results for Example 4.2.
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Table 4: Example 4.2, the L1 and L∞ errors of wave functions for different numerical methods with p2 polyno-

mials and the uniform mesh ∆x=∆y= 1
50 in different domains.

Domain L1 error L∞ error

Domain Ω1
s 9.07E-05 6.52E-03

Domain Ω2
s 5.09E-05 5.23E-03

Domain Ω3
s 5.83E-05 4.26E-03

Domain Ω4
s 8.23E-05 7.75E-03

• In Fig. 2, we give the numerical solutions for Eq. (3.1) with the different degree of
polynomials with ∆x=∆y= 1

50 by using general MD-LDG method.

• In Fig. 3, we give the numerical solutions for Eq. (3.1) with the different degree of
polynomials with ∆x=∆y= 1

100 by using general MD-LDG method.

From Figs. 2 and 3 which are obtained by using general MD-LDG method for Exam-
ple 4.2, we can find that the numerical solutions for Eq. (3.1) tend to physical solutions
with the degree of the polynomials increasing. Also, we can see that as the meshes in-
creasing the simulations of Eq. (3.1) become close to the physical results. In particular,
Fig. 2 shows that the numerical solution with fourth order accuracy can approximate the
physical solution better by using LDG method with only 50×50 meshes. So the high
order accuracy scheme can reduce the cost by decreasing the meshes.

Example 4.3. We consider the 2D stationary Schrödinger equation (3.1) for the quantum
transport phenomena on the domain shown in Fig. 1 with the following parameters

l1=h1 =0.2, l2=h2 =0.6, E=1.4, ε=0.05,

V(x,y)=0, (x,y)∈Ω,

with different coefficients of incoming waves ar
n as follows:

• Case I

ar
n =

{

1, n=2, r=1,

0, else.

• Case II

ar
n =

{

1, n=2, r=1, and n=1, r=2,

0, else.

In order to save the space, we only show the contour figures when ∆x=∆y= 1
100 by

using the MD-LDG method based on polynomial basis functions for Example 4.3 with
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Figure 2: Example 4.2, the contour of the wave amplitude |ϕ(x,y)| with the different degree of polynomials

and the uniform mesh ∆x=∆y= 1
50 by using general MD-LDG method.
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Figure 3: Example 4.2, the contour of the wave amplitude |ϕ(x,y)| with the different degree of polynomials

and the uniform mesh ∆x=∆y= 1
100 by using general MD-LDG method.
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Figure 4: Example 4.3 with incoming waves Case I, the contour of the wave amplitude |ϕ(x,y)| with the different

degree of polynomials and the uniform mesh ∆x=∆y= 1
100 by using general MD-LDG method.

the incoming waves in Case I. From Fig. 4, we obtain that the numerical simulations can
approximate the physical solutions.

In Fig. 5, we give the contour figures of the wave amplitude |ϕ(x,y)| with two dif-
ferent coefficients of incoming waves. From the figure, we can see different interference
phenomena.
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Figure 5: Example 4.3, the contour of the wave amplitude |ϕ(x,y)| with the different coefficients of the incoming

wave ar
n and the uniform mesh ∆x=∆y= 1

200 by using general MD-LDG method.
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50 .
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Figure 6: Example 4.2, the contour of the wave amplitude |ϕ(x,y)| with different meshes by using MD-LDG
method based on non-polynomial basis functions.

Finally, we show the figure of Example 4.2 by using MD-LDG method based on non-
polynomial basis functions in Fig. 6 with different meshes.

From all the above figures, we can find that the simulation results of quantum trans-
port phenomena are the same as in [20]. The LDG method is much easier to be extended
to general potential function and more complicated computational domain.

5 Conclusion

In this paper, we have developed the minimal dissipation local discontinuous Galerkin
(MD-LDG) method with piece-wise polynomial basis functions and MD-LDG method
based on non-polynomial basis functions to simulate the 2D stationary Schrödinger equa-
tion. We also give the simulations of quantum transport phenomena which can be de-
scribed by the 2D stationary Schrödinger equation. Numerical examples are shown to
illustrate the efficiency and capability of these methods.

Acknowledgments

We thank Dr. Hao Wu from Tsinghua University for providing the related refer-
ences and information to this work. Research of Y. Xu is supported by NSFC grant
No. 11031007, FANEDD No. 200916, NCET No. 09-0922, Fok Ying Tung Education Foun-
dation No. 131003.

Appendix A: The transparent boundary conditions

In this appendix, we give the transparent boundary conditions for ΓN .



1026 L. Guo and Y. Xu / Commun. Comput. Phys., 15 (2014), pp. 1012-1028

Firstly, we introduce the method of domain decomposition approach and here we
consider the domain Ω = [0,1]×[0,1] for convenience. The main idea of the subband
decomposition method is to expand the wave function into series of multi-mode bases
χb(x,y)

ϕ(x,y)=
B

∑
b=1

φb(x)χb(x,y), ∀(x,y)∈Ω,

with

φb(x)= 〈ϕ(x,·),χb(x,·)〉=
∫ 1

0
ϕ(x,y)χb(x,y)dy.

Let (Eb(x),χb(x,y)) be the solutions of the eigenvalue problem

−1

2
ε2∂yyχb(x,y)+V(x,y)χb(x,y)=Eb(x)χb(x,y),

with

〈χb(x,·),χb′(x,·)〉=δb,b′ ,

and the boundary conditions are determined by the boundary conditions of the wave
function on y−direction. Then we have the coupled Schrödinger system for φb(x)

−1

2
ε2∂xxφb−ε2

B

∑
b′=1

c1
bb′∂xφb′−

1

2
ε2

B

∑
b′=1

c2
bb′φb′ =(E−Eb)φb, (A.1)

where

c1
bb′(x)=

∫ 1

0
χb(x,y)∂xχb′(x,y)dy,

c2
bb′(x)=

∫ 1

0
χb(x,y)∂xxχb′(x,y)dy.

It is easy to check that

c1
bb(x)= c2

bb(x)=0.

Eq. (A.1) can be discretized in the central difference form

− ε2

2h2

(

φn+1
b −2φn

b +φn−1
b

)

− ε2

2h ∑
b′

c1n
bb′

(

φn+1
b′ −φn−1

b′

)

− ε2

2 ∑
b′

c2n
bb′φ

n
b′ =(E−En

b )φn
b , (A.2)

with φn
b =φb(xn), En

b =Eb(xn) and cin
bb′ = ci

bb′(xn) (i=1,2).
Secondly, we give the transparent condition for (3.1). The detailed derivations can be

found in [2, 20].
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• For r=1,2, the boundary condition on Γr
N is

ε∂x ϕ(0,y)= ∑
E>Er

n

i
√

2(E−Er
n)(2ar

n−φr
n(0))χ

r
n(0,y)

+ ∑
E≤Er

n

√

2(Er
n−E)φ

p
n(0)χ

r
n(0,y), ∀(0,y)∈Γr

N .

• For r=3,4, the boundary condition on Γr
N is

ε∂x ϕ(2l1+l2,y)= ∑
E>Er

n

i
√

2(E−Er
n)(φ

r
n(2l1+l2)−2ar

n)χ
r
n(2l1+l2,y)

− ∑
E≤Er

n

√

2(Er
n−E)φr

n(2l1+l2)χ
r
n(2l1+l2,y), ∀(2l1+l2,y)∈Γr

N .

Here ar
n are the coefficients of the incoming waves.
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