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Abstract. In this paper, a remapping-free adaptive GRP method for one dimensional
(1-D) compressible flows is developed. Based on the framework of finite volume
method, the 1-D Euler equations are discretized on moving volumes and the result-
ing numerical fluxes are computed directly by the GRP method. Thus the remapping
process in the earlier adaptive GRP algorithm [17,18] is omitted. By adopting a flexible
moving mesh strategy, this method could be applied for multi-fluid problems. The in-
terface of two fluids will be kept at the node of computational grids and the GRP solver
is extended at the material interfaces of multi-fluid flows accordingly. Some typical nu-
merical tests show competitive performances of the new method, especially for con-
tact discontinuities of one fluid cases and the material interface tracking of multi-fluid
cases.
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1 Introduction

Compressible multi-fluid flows can be found in a variety of scientific and engineering
problems, and they are characterized by the interaction of shock waves and material
interfaces. On account of those complicated fluid phenomena including strong shocks,
contact discontinuities, instabilities of material interfaces, mixing processes and so on,
developing numerically accurate and computationally efficient algorithms is still one of
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the challenging issues for multi-fluid simulations [1–3, 14, 20, 27, 28, 33, 34]. In this pa-
per, we focus on the numerical methods for multi-fluid flows consisting of pure fluids
separated by material interfaces.

The computation of numerical fluxes is always an important issue of numerical meth-
ods for compressible fluid dynamics. The generalized Riemann problem (GRP) method
which was developed as an analytic second order accurate extension of the Godunov
scheme is one of successful numerical methods to solve this problem. The basic idea of
the GRP scheme consists of replacing the exact solution by a piecewise linear function
and analytically solving a generalized Riemann problem at each cell interface to yield
numerical fluxes, to achieve second order accuracy both in space and time. The GRP
scheme was originally developed for compressible flows based on the Lagrangian for-
mulation and the Eulerian version was always derived from the Lagrangian case [4, 7].
Then a direct Eulerian GRP scheme was presented in [8, 9, 23–25], aiming at getting rid
of the auxiliary Lagrangian scheme and solving the 1-D generalized Riemann problem
directly in the Eulerian frame by employing the regularity property of the Riemann in-
variants. Theoretically, a close coupling between the spatial and temporal evolution is
recovered through the analysis of detailed wave interactions in the GRP scheme. The
schemes based on the GRP method have been applied successfully to many engineering
problems [5, 6, 15, 16, 23].

Computational mesh is another vital issue of numerical algorithms. In the physical
and engineering problems, dynamically singular or nearly singular solutions, such as
shock waves, boundary layers, etc., take place in fairly local regions. The numerical in-
vestigation of such problems may require extremely fine grids over such local domains to
resolve large solution variations. Comparing with uniform grids, partly dense grids will
improve the resolution of local regions and decrease the computational costs if the grids
are moved at a selected adaptive speed at each time step. The adaptive mesh method [30]
is one of effective moving mesh methods. A lot of important theoretical and compu-
tational progresses for partial differential equations demonstrate the advantages of the
time-dependent adaptive mesh methods [10–13, 19, 21, 22, 31, 32, 36].

Based on the idea of adaptive mesh methods, the one-dimensional and two-
dimensional adaptive GRP schemes by combining the Eulerian GRP scheme with the
adaptive moving mesh method are developed in [17, 18]. Besides the PDE evolution,
mesh redistribution is introduced in the adaptive GRP method in order to provide
enough grids for specific structure of solutions such as shock waves. Thus the adaptive
GRP method could improve the resolution for numerical solutions and reduce possible
oscillations effectively. The computational mesh at different time steps can be generated
adaptively based on a certain moving mesh method. Then physical variables and their
slopes on new grids need to be updated by conservative interpolations.

On account of the complicated procedure for updating variables, this paper will de-
velop a remapping-free adaptive GRP method. Based on the framework of finite volume
method, the 1-D Euler equations are discretized on moving meshes and the resulting
fluxes are computed directly by the GRP method. The material interfaces are moving
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with the fluid for multi-fluid flows. Then the generalized Riemann problem for two flu-
ids is simplified and the sonic case is avoided. Thus the GRP method can be applied for
material interfaces so that the new method is available for multi-fluid problems.

The new method will bring some important benefits,

1. Since the GRP method provides detailed information of the solution to the general-
ized Riemann problem, it could be applied for moving meshes to derive second or-
der numerical fluxes directly without remapping the variables and primitive slopes
to the new mesh. So the interpolating procedure for conservative variables in [17]
is omitted and the mesh redistribution is simplified, which also makes the whole
method more efficient.

2. By adopting a flexible moving mesh strategy, the interfaces of multi-fluid flows
would be kept at the nodes of spatial meshes all the time. Then the extension of the
GRP solver for multi-fluid flows becomes much easier.

This paper is organized in six sections. Besides the introduction section here, the
governing equations and the related discretization on moving meshes are introduced in
Section 2. Then the moving mesh method is provided in Section 3, and the GRP method
for the fluxes on moving meshes and the extension version for the interface fluxes of
multi-fluid flows are presented in Section 4. Some numerical experiments are shown in
Section 5. Finally, we present a discussion in Section 6.

2 Governing equations and the numerical algorithm

The governing equations considered here are the 1-D compressible Euler equations,

Ut+F(U)x =0, (2.1a)

U=(ρ,ρu,ρE)⊤, (2.1b)

F(U)=(ρu,ρu2+p,u(ρE+p))⊤ , (2.1c)

where ρ, u, p are the density, velocity and pressure of the fluid respectively, and the total
energy is E=u2/2+e with e being the specific internal energy. The above system is closed
by an equation of state (EOS)

p= p(ρ,S). (2.2)

The entropy S is related to other variables through the second law of thermodynamics

de=TdS+
p

ρ2
dρ. (2.3)

Here T is the temperature. The local sound speed c is defined as

c2=
∂p(ρ,S)

∂ρ
. (2.4)
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Figure 1: The control volume Ω
n,n+1
j .

For the rest of the paper, we assume that the multi-fluid flows consist of two fluids. The
EOS depends on the fluid composition, described by the variable φ, which governing
equation has the form

(ρφ)t+(ρuφ)x =0. (2.5)

In order to discretize the governing equations, the spacial computational domain [a,b]
is initially divided into M cells. We define the cells, cell centers and cell sizes at time
t= tn =∑

n
k=1∆tk, respectively, by

In
j =

(

xn
j− 1

2
,xn

j+ 1
2

)

, xn
j =

1

2

(

xn
j− 1

2
+xn

j+ 1
2

)

, ∆xn
j = xn

j+ 1
2
−xn

j− 1
2
, j=1,··· ,M, (2.6)

where ∆tk is the k-th time step. Un
j represents the cell average of U over cell In

j . At each

time step, the spatial mesh is redistributed by

xn+1
j− 1

2

= xn
j− 1

2
+Dn

j− 1
2
(tn+1−tn), (2.7)

where Dn
j−1/2 is mesh moving velocity decided by a moving mesh method. When Dn

j ≡0,

the computational mesh becomes Eulerian grids. When Dn
j ≡un

j , the computational mesh

becomes Lagrangian grids.

The control volume Ω
n,n+1
j (see Fig. 1) considered here is not a rectangle and its

boundary ∂Ω
n,n+1
j is composed of the following four lines:

(a) lj− 1
2
: x= xn

j− 1
2

+Dn
j− 1

2

(t−tn), for t∈ [tn,tn+1).

(b) lj+ 1
2
: x= xn

j+ 1
2

+Dn
j+ 1

2

(t−tn), for t∈ [tn,tn+1).

(c) t= tn, x∈
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,xn
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2

]

.

(d) t= tn+1, x∈
[
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2

,xn+1
j+ 1

2

]

.
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Then the Euler equations (2.1a) can be discretized by integrating the equations over

Ω
n,n+1
j as

∫

∂Ω
n,n+1
j

(F,U)·nds=0, (2.8)

where n is the outward normal vector of ∂Ω
n,n+1
j and ds is a directional infinitesimal

element. Eq. (2.8) is often referred to as the arbitrary Lagrangian-Eulerian (ALE) form of
the conservation laws on the moving meshes. The discrete formulation of (2.8) is

∆xn+1
j Un+1

j −∆xn
j Un

j +∆tn(F̂j+ 1
2
−F̂j− 1

2
)=0, (2.9)

where

Un+1
j =

1

∆xn+1
j

∫

In+1
j

U(x,tn+1)dx,

F̂j+ 1
2
=

1

∆tn

√

1+(Dn
j+ 1

2

)2

∫

l
j+ 1

2

F̂(x,t)ds,

and

F̂=
(

ρ(u−Dn
j+ 1

2
),ρu(u−Dn

j+ 1
2
)+p,ρE(u−Dn

j+ 1
2
)+up

)⊤
.

Based on the above formulations, the computation of compressible multi-fluid problems
is considered. By tracking the material interface as a Lagrangian point, the Eq. (2.5) is
satisfied naturally. So the computation of fluxes for multi-fluid flows is simplified into
solving single fluid generalized Riemann problems and one generalized Riemann prob-
lem with two fluids separated by the material interface. The GRP solver is developed
accordingly to solve the resulting generalized Riemann problems with relevant EOS on
moving grids. Our algorithm is described briefly as follows:

Algorithm 2.1.

1. Given the initial mesh {xn
j−1/2} and the piecewise initial data at time t= tn,

Uj(x,tn)=Un
j +(Ux)

n
j (x−xn

j ), x∈
(

xn
j− 1

2
,xn

j+ 1
2

)

,

determine the moving velocity {Dn
j+1/2} of the initial mesh and then derive the new adaptive

mesh {xn+1
j−1/2} at t= tn+1.

2. Evaluate the numerical fluxes {F̂j+1/2} by remapping-free adaptive GRP solver.

3. Compute Un+1
j by (2.9) and derive the derivatives {(Ux)

n+1
j } by {Un+1

j }.
4. Back to Step 1 until time is up.

In the next sections, we will focus on the details of mesh redistribution and flux com-
putation.
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3 Mesh generation

In our mesh redistribution method, computational mesh is divided into different parts
to represent different fluids respectively. Material interfaces are treated as Lagrangian
moving points to avoid mixing cells firstly. Then the mesh for each fluid region is redis-
tributed separately by adaptive mesh methods. The algorithm comprises of the following
two steps.

Step 1. Track material interfaces.

In order to move a material interface in the Lagrangian mode, the key ingredient is
to compute the moving speed of the material interface. Because the material interface
is always fixed at the mesh boundary, the problem is changed into computing the nodal
fluid velocity. Here the nodal moving speeds {Dn

j+1/2|inter f aces} are derived by

Dn
j+ 1

2
=u∗+

1

2
∆t

√

1+(u∗)2
( ∂u

∂n

)n

l∗
j+ 1

2

, (3.1)

where u∗ is approximated by the solution of the associated Riemann problem (4.5) in the
star region described in the next section and (∂u/∂n)n

l∗j+1/2
is derived by the GRP method

with

l∗
j+ 1

2
: x= xn

j+ 1
2
+u∗(t−tn) and n=

1
√

1+(u∗)2
(u∗,1).

Then we get {xn+1
j+1/2|inter f aces} by (2.7), which is second order accurate.

Step 2. Redistribute meshes in each fluid region.

Winslow’s variable diffusion method [37] based on the following 1-D Euler-Lagrange
equation is adopted to implement the redistribution,

(ωxξ)ξ =0, (3.2)

where ξ denotes the reference coordinate. ω is the monitor function to control the mesh
moving. An appropriate choice of the monitor will produce grids with our desired quali-
ties such as smoothness, reflecting fluid properties and so on. Since the choice of the mon-
itor function is not the main task in this paper, so we will just use an effective one [30],

ω=

√

1+α1

( uξ

max|uξ |
)2

+α2

( Sξ

max|Sξ |
)2

, (3.3)

where S is entropy and the parameters αi (i=1,2) are nonnegative constants.

In practice, we usually use Gauss-Seidel iteration to solve Eq. (3.2) and yield the de-
sired mesh {xn+1

j+1/2|non−inter f aces}.This method is easily coded and effective in many ap-

plications [30].
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In the above procedures, the only task is to rezone the mesh at current time step.
The conservative properties of physical variables are preserved by the ALE formulations
without conservative interpolations between the two sets of meshes that were done in
the earlier adaptive GRP [17,18]. So the earlier mesh redistribution step is simplified and
more flexible and effective mesh generation methods could be used.

4 Numerical fluxes for multi-fluid flows: based on the GRP

solver

The evolution of physical variables depends on the flux evaluation on a reference of the
moving frame with grid velocities chosen by the last section. In this paper, we shall use
the GRP method for the flux evaluation. The main reason is that GRP solver is second-
order accurate in any time-space directions. Moreover, the GRP method could be ex-
tended for the material interfaces of multi-fluid flows.

In order to obtain the numerical flux F̂j+1/2 with the temporal accuracy of second
order, the middle point value is used to approximate the flux

∫

l
j+ 1

2

(F(U(x,t)),U(x,t))·n⊥ds=
∫

l
j+ 1

2

F(U(x,t))−Dn
j+ 1

2

U(x,t)
√

1+(Dn
j+ 1

2

)2
ds, (4.1)

where

lj+ 1
2

: x= xj+ 1
2
(t)= xn

j+ 1
2
+Dn

j+ 1
2
(t−tn), t∈ [tn ,tn+1),

and

n⊥=
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√
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2

)2
(1,−Dn
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2
)⊤

is the outer normal vector of Ω
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j along lj+1/2. Thus the numerical flux F̂j+1/2 is derived

by

F̂j+ 1
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(

U
n+ 1

2
l
j+ 1

2

)

−Dn
j+ 1

2
U

n+ 1
2

l
j+1

2

, (4.2a)
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where

n=
1

√

1+(Dn
j+ 1

2

)2
(Dn

j+ 1
2
,1)⊤,

and Un
lj+1/2

, (Ut)n
lj+1/2

, (Ux)n
lj+1/2

and (∂U/∂n)n
lj+1/2

are the instantaneous value of U and

its time, spatial and directional derivatives when t is close to tn+ along lj+1/2 which are
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solved by the generalized Riemann problem

U(x,tn)=







Un
j +(Ux)n

j (x−xn
j ), x∈

(

xn
j− 1

2

,xn
j+ 1

2

)

,

Un
j+1+(Ux)n

j+1(x−xn
j+1), x∈

(

xn
j+ 1

2

,xn
j+ 3

2

)

.
(4.3)

Now the main issue here is how to calculate this generalized Riemann problem using as
much information of the Euler equations (2.1a)-(2.1c) as possible.

In order to simplify notations, the point (x,t) = (xj+1/2,tn) in the above generalized
Riemann problem is moved to (x,t)=(0,0). Then we only need to discuss next two cases
of generalized Riemann problems. They have the same initial conditions for U,

U(x,0)=

{

Ul+xU
′
l, x≤0,

Ur+xU
′
r, x>0,

(4.4)

but with different EOS separately

(1) (One-fluid) p= p(ρ,S) for all x.

(2) (Two-fluid) p= p1(ρ,S) for x≤0 and p= p2(ρ,S) for x>0.

Denote

n=
1√

1+D2
(D,1) and

DU

Dn
=Ut+DUx.

By recalling (4.2b), we only need to derive the instantaneous values U∗ and (DU/Dn)∗
instead of the directional derivative (∂U/∂n)∗ when t is close to 0+ along l̂ : x=Dt.

4.1 The Riemann problem for multi-fluid flows

First of all, we need to solve the associated Riemann problem

U(x,0)=

{

Ul, x≤0,

Ur, x>0,
(4.5)

for (2.1a)-(2.1c) with proper EOS to obtain the self-similar solution U(x,t) = U(x/t) =
RA(x/t;Ul ,Ur). Then we could derive the instantaneous value of U

U∗=RA(D;Ul,Ur).

The basic configurations of the Riemann problem include two rarefaction waves, two
shocks and shock-rarefaction waves besides the contact discontinuity (Fig. 2(b)). For each
configuration we can obtain a nonlinear system for the constant velocity u∗ and pressure
p∗ in the star region,

{

u∗−ul+(p∗−pl)/gl =0,

u∗−ur−(p∗−pr)/gr =0,
(4.6)
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Figure 2: Typical wave configurations of the generalized Riemann problem (a) and the associated Riemann
problem (b).

where gi, i= l,r, are

gi =











√

ρ∗ρi(p∗−pi)/(ρ∗−ρi), p> pi,

(p∗−pi)
(

∫ p∗

pi

1/(ρc)dp
)−1

, p< pi.
(4.7)

Then the pressure p∗ in the star region is derived by solving a single algebraic equation

F(p∗) := fl(p∗)+ fr(p∗)−ul+ur =0, (4.8)

where fi = (p∗−pi)/gi. Since for the polytropic gases, the pressure function F(p) has
particularly simple behavior (concave) and the analytical expressions for the deriva-
tives of F(p) are available, we use a Newton-Raphson [26] iteration to find the root of
F(p)= 0 [35]. For more general cases, the algebraic equation F(p)= 0 may not have the
same simple behavior. Some techniques could be applied for solving this equation more
conveniently [28]. Furthermore, the velocity u∗ and density ρ∗l and ρ∗r in the star region
are obtained based on (4.6) and the EOS. Then the instantaneous value U∗ is derived by
the location of l̂ : x=Dt in the whole wave configuration.

It should be noticed that the choice of precise EOS for (4.7) is very important. For
the one-fluid case, only one EOS p= p(ρ,S) is applied to (4.7). For the multi-fluid case,
we know that the contact discontinuity is just the interface between two fluids based on
moving mesh strategy in Section 3. Thus in (4.7), gl will be computed by using the EOS
p= p1(ρ,S) and the formulation of gr will use the EOS p= p2(ρ,S). Moreover, since the
contact discontinuity of this Riemann solution coincides with l̂ : x=Dt, the instantaneous
values u∗ and p∗ are picked by u∗ and p∗ respectively, and ρ∗ is computed by the detailed
wave configuration. Thus the instantaneous value U∗ is derived on the material interface.

4.2 The GPR method for multi-fluid flows

With the above Riemann solution, it is clear that only (DU/Dn)∗ (or (Ut)∗ and (Ux)∗) is
left to be defined for the second order numerical fluxes. The GRP method we used here
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is from [9] where a direct and simple derivation of the Eulerian generalized Riemann
problem for compressible fluid flows is provided on fixed meshes. In this section, we
will extend it onto one dimensional moving meshes and then apply it for multi-fluid
flows at the material interfaces.

In the GRP approach, if l̂:x=Dt locates in the star region (Fig. 2(a)), since the flow vari-
ables u and p are regular across the contact discontinuity in the star region, we can first
calculate (Du/Dn)∗ and (Dp/Dn)∗, and then derive (Dρ/Dn)∗. The main feature of the
GRP scheme is the resolution of centered rarefaction waves. For the associated Riemann
problem, the Riemann variants are constant throughout an isentropic rarefaction waves.
That means they are still regular inside the nonisentropic rarefaction waves in the gen-
eralized Riemann problems. Thus the Riemann variants and characteristic coordinates
are used to resolve the rarefaction waves at the singularity points. Then a linear relation
between (Du/Dn)∗ and (Dp/Dn)∗ is derived. In addition, in the sonic case, one of the
characteristic curves inside the rarefaction wave is tangential to l̂ : x=Dt. Then there is
enough information available from the rarefaction wave to calculate the time derivatives
of all flow variables. For shock waves, the Rankine-Hugoniot relations are used to ob-
tain another linear relation between (Du/Dn)∗ and (Dp/Dn)∗. Finally, (Du/Dn)∗ and
(Dp/Dn)∗ are solved by a linear algebraic systems containing two equations.

Similar to the last section, we can derive (Du/Dn)∗ and (Dp/Dn)∗ for one dimen-
sional moving meshes, and the interface fluxes for multi-fluids are summarized together
in the following proposition for non-sonic cases.

Proposition 4.1. (see [9]). Let U∗ and (DU/Dn)∗ be the instantaneous values of U and
DU/Dn as t is close to 0+ along l̂ :x=Dt. Then (Du/Dn)∗ and (Dp/Dn)∗ are determined
by solving a pair of linear equations,

al

(Du

Dn

)

∗
+bl

(Dp

Dn

)

∗
=dl , (4.9a)

ar

(Du

Dn

)

∗
+br

( Dp

Dn

)

∗
=dr, (4.9b)

where the coefficients al , bl and dl depend on U∗, Ul, U′
l and D; and ar, br and dr depend

on U∗, Ur, U′
r and D. All coefficients which are related to the EOS can be found in [9].

Particularly for the multi-fluid cases, the coefficients al , bl and dl are related with p= p1

(ρ,S) and ar , br and dr are related with p= p2(ρ,S). Then (Dρ/Dn)∗ is given by the EOS
p= p(ρ,S),

dp= c2dρ+
∂p

∂S
dS. (4.10)

Remark 4.1. 1. If D<ul−cl (the case D>ur+cr is dealt similarly), then l̂ :x=Dt locates
in the left region in which U is continuous. Then the time and spatial derivatives of
U along l̂ : x=Dt as t→0 are

(Ux)∗=U′
l, (Ut)∗=− ∂F

∂U
(Ul)U

′
l .
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Thus (DU/Dn)∗ equals to
(DU

Dn

)

∗
=(Ut)∗+D(Ux)∗.

2. For the multi-fluids case, the interface is just the contact discontinuity of the re-
lated generalized Riemann problem. So (Du/Dt)∗ and (Dp/Dt)∗ are obtained
from (4.9a)-(4.9b) with different EOS. Here Du/Dt=ut+uux and Dp/Dt=pt+upx.

The proof of this proposition and the details of the coefficients can be found in [9].
Next we will provide a proposition for the sonic case which is slightly different with [9]
when any direction D/Dn is used. It should be noticed that the sonic case will only occur
in one fluid based on Remark 4.1.

Proposition 4.2. (sonic case). If l̂ : x=Dt is located inside the rarefaction wave associated
with the u−c characteristic family. Then we have

(Du

Dn

)

∗
=dl(D),

(Dp

Dn

)

∗
=ρ∗(u∗−D)dl(D), (4.11)

where dl =dl(β) is defined in [9], β∈ (ul−cl ,u
∗−c∗l ).

5 Numerical results

In this section, we will provide some numerical examples to validate the new scheme. In
all cases, the time step is determined by

∆t=ν∗min
j

∆xj/max
j

(|uj|+cj), (5.1)

where ν is the CFL number picked as 0.5 and ∆xj is the length of cell Ij =[xj−1/2,xj+1/2].
Here and after, we suppress the superscript n for simplicity. The EOS for all numerical
cases are the one for polytropic gases

p=(γ−1)ρe. (5.2)

In this paper, the reconstruction is applied to the primitive flow variables and the limiter
used is the minmod limiter

(Ux)j =minmod
{

θ · 2(Uj+1−Uj)

∆xj+∆xj+1
,
Uj+ 1

2
−Uj+ 1

2

∆xj
,θ · 2(Uj−Uj−1)

∆xj+∆xj−1

}

, (5.3)

where Uj+1/2 is computed by the GRP solver and θ∈ [1,2). Here θ is chosen by 1.9. After
reconstruction, the flow variable U is distributed linearly in cell Ij,

Uj(x)=Uj+(Ux)j(x−xj).

In this section, the remapping-free adaptive GRP method is denoted by the RA-GRP
method for short and RA-Godunov method denotes the corresponding first order
scheme.
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Example 5.1. (The contact discontinuity problem). This test is a Riemann problem with
initial data

ρ=1.0, u=1.0, p=1.0, γ=1.4, 0< x<0.5, (5.4a)

ρ=0.125, u=1.0, p=1.0, γ=1.4, 0.5< x<1, (5.4b)

which only contains one contact discontinuity. The RA-GRP method is compared with
the GRP method and the exact solution in Fig. 3 at t = 0.15. The result shows that the
RA-GRP can capture the contact discontinuity exactly without any dissipation.
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Figure 3: The contact discontinuity problem with 100 cells.

Example 5.2. (The Sod problem). This test is the Sod problem. The initial conditions in
the present computation are the following:

ρ=1.0, u=0.0, p=1.0, γ=1.4, 0< x<0.5, (5.5a)

ρ=0.125, u=0.0, p=0.1, γ=1.4, 0.5< x<1. (5.5b)

Fig. 4 shows the results computed by the RA-GRP method, the GRP method and the
exact solution at t=0.15. 60 cells are used here. We could observe that RA-GRP method
can provide competitive numerical results compared with the adaptive GRP method [17]
(see Fig. 5.1 in page 1456), and especially capture the contact discontinuity with less cells.

Example 5.3. (The Woodward and Colella problem). This test is the Woodward and
Colella problem. The initial conditions in the present computation are the following:

ρ=1.0, u=0.0, p=1000.0, γ=1.4, 0< x<0.1, (5.6a)

ρ=1.0, u=0.0, p=0.01, γ=1.4, 0.1< x<0.9, (5.6b)

ρ=1.0, u=0.0, p=100.0, γ=1.4, 0.9< x<1. (5.6c)
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Figure 4: The Sod problem with 60 cells.
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Figure 5: The Woodward and Colella problem with 400 cells (a) and 800 cells (b). The exact solution is
approximated by the same scheme with 4000 cells.

Fig. 5 shows the results computed by the RA-GRP method and the exact solution
at t = 0.038 by 400 cells (Fig. 5(a)) and 800 cells (Fig. 5(b)). We could observe that RA-
GRP method can provide competitive numerical results compared with the remapping-
free ALE-type kinetic method in [29] (see Fig. 4 in page 3163) and especially capture the
contact discontinuity more sharply.

Example 5.4. (The material interface problem). This case is the material interface prob-
lem, whose solution represents a single contact discontinuity in gas dynamics. The initial
conditions in the present computation are the following:

ρ=1.0, u=1.0, p=1.0, γ=1.4, 0< x<0.5, (5.7a)

ρ=0.125, u=1.0, p=1.0, γ=1.2, 0.5< x<1. (5.7b)

Fig. 6(a) shows that both the RA-Godunov method and the RA-GRP method can cap-
ture the material interface precisely at time t=0.2.
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Figure 6: (a) The material interface problem with 100 cells; (b) The shocktube problem with different adiabatic
indexes with 100 cells.

Example 5.5. (The shocktube problem with different adiabatic indexes). The Sod shock-
tube problem, now with two different polytropic gases, is considered here. The initial
conditions in the present computation are the following:

ρ=1.0, u=0.0, p=1.0, γ=1.667, 0< x<0.5, (5.8a)

ρ=0.125, u=0.0, p=0.1, γ=1.2, 0.5< x<1. (5.8b)

Fig. 6(b) compares the RA-Godunov method and the RA-GRP method with the exact
solution at t= 0.2. From the numerical results around the rarefaction wave, contact dis-
continuity and shock, we can observe that RA-GRP method improves the resolution of
the whole wave configuration.

6 Conclusions

In this paper, a remapping-free GRP method is developed for both one-fluid and multi-
fluid problems. Based on the ALE conservative discretization, the revolution between
two different sets of computational meshes could be implemented directly by extended
GRP solver without conservative remapping. Moreover, by synchronizing the movement
of computational mesh with that of the multi-flows at material interfaces, the interface
of two fluids will be kept at the node of computational grids. So the GRP solver is also
developed to the resulting multi-fluid general Riemann problems accordingly. Numerical
results show the new method’s accuracy and efficiency for solving problems with shocks
and contact discontinuities.

This is the first paper of our serial work. The two dimensional remapping-free GRP
method is under investigation. Two-dimensional adaptive mesh moving method and
two-dimensional GRP solver for multi-fluids are two of those crucial problems.
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