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Abstract. The paper is concerned with the unconditional stability and error estimates
of fully discrete Galerkin-Galerkin FEMs for the equations of incompressible miscible
flows in porous media. We prove that the optimal L2 error estimates hold without any
time-step (convergence) conditions, while all previous works require certain time-step
restrictions. Theoretical analysis is based on a splitting of the error into two parts: the
error from the time discretization of the PDEs and the error from the finite element
discretization of the corresponding time-discrete PDEs, which was proposed in our
previous work [26, 27]. Numerical results for both two and three-dimensional flow
models are presented to confirm our theoretical analysis.
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1 Introduction

We consider incompressible miscible flow in porous media, which is governed by the
following system of equations:

Φ
∂c

∂t
−∇·(D(u)∇c)+u·∇c= ĉqI−cqP, (1.1)

∇·u=qI−qP, (1.2)

u=−
k(x)

µ(c)
∇p, (1.3)
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where p is the pressure of the fluid mixture, u is the velocity and c is the concentration;
k(x) is the permeability of the medium, µ(c) is the concentration-dependent viscosity, Φ

is the porosity of the medium, qI and qP are the given injection and production sources,
ĉ is the concentration in the injection source, and D(u) = [Dij(u)]d×d is the diffusion-
dispersion tensor which may be given in different forms (see [5,6] for details). We assume
that the system is defined in a bounded smooth domain Ω in R

d (d= 2,3), for t∈ [0,T],
coupled with the initial and boundary conditions:

u·n=0, D(u)∇c·n=0 for x∈∂Ω, t∈ [0,T], (1.4a)

c(x,0)= c0(x) for x∈Ω. (1.4b)

The system (1.1)-(1.4) has been studied extensively in the last several decades, see
[11, 35] and the references therein. Existence of weak solutions of the system was ob-
tained by Feng [20] for the 2D model and by Chen and Ewing [9] for the 3D problem.
Existence of semi-classical/classical solutions is unknown. Numerical simulations have
been done with various applications [4, 7, 13, 17, 40, 41]. Optimal error estimates of a
Galerkin-Galerkin method for the system in two-dimensional space was given first by
Ewing and Wheeler [18] roughly under the time-step condition τ = o(h), in which a
linearized semi-implicit Euler scheme was used in the time direction and a standard
Galerkin FE approximation was used for both the concentration and the pressure. Later,
a Galerkin-mixed finite element method was proposed by Douglas et al. [12] for this sys-
tem, where a Galerkin approximation was applied for the concentration equation and a
mixed approximation in the Raviart-Thomas finite element space [38] was used for the
pressure equation. A linearized semi-implicit Euler scheme, the same as one used in [18],
was applied for the time discretization. Optimal error estimates were obtained under
a similar time-step condition τ = o(h). There are many other numerical methods in the
literature for solving the equations of incompressible miscible flows in porous media,
such as see [46] for an ELLAM in two-dimensional space, [47] for an MMOC-MFEM ap-
proximation for the 2D problem, [14, 43] for a characteristic-mixed method in two and
three dimensional spaces, respectively, and [30, 31] for a collocation-mixed method and
a characteristic-collocation method, respectively. In all those works, error estimates were
established under certain time-step conditions. Moreover, it has been noted that lin-
earized semi-implicit schemes have been analyzed for many other nonlinear parabolic-
type systems, such as the Navier-Stokes equations [2, 19, 21, 24, 28], nonlinear thermis-
tor problems [15, 51], viscoelastic fluid flow [8, 16, 48], KdV equations [33, 50], nonlin-
ear Schrödinger equation [3, 39, 45], Ginzburg-Landau equations [10, 29] and some other
equations [22, 42]. A time-step condition was always imposed to get suitable error esti-
mates. A key issue in analysis of FEMs is the boundedness of the numerical solution in
L∞ norm or a stronger norm, which in a routine way can be estimated by mathematical
induction with an inverse inequality, such as,

‖un
h−Rhu(·,tn)‖L∞ ≤Ch−d/2‖un

h−Rhu(·,tn)‖L2 ≤Ch−d/2(τm+hr+1), (1.5)
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where un
h is the finite element solution, u is the exact solution, and Rh is certain pro-

jection operator. A time-step restriction arises immediately from the above inequality.
Such a time-step restriction may result in the use of an unnecessary small time step and
extremely time-consuming in practical computations. Clearly the time-step condition
arises mainly due to the limitation of the technical tools used in analysis. A new the-
oretical analysis was presented in our recent works [26, 27], also see [25]. A nonlinear
Joule heating model was studied in [26] with a linearized backward Euler Galerkin FEM
and the incompressible miscible flow model was investigated in [27] with a linearized
backward Euler Galerkin-mixed FEM. Optimal error estimates were obtained uncondi-
tionally. The basic concept in [26, 27] is the error splitting

‖un
h−u(·,tn)‖≤‖Un−u(·,tn)‖+‖un

h−Un‖, (1.6)

where Un is the solution of a corresponding time-discrete system, an elliptic system. It
was proved in [26, 27] that the last term in the above equation is τ-independent. The
boundedness of numerical solution can be obtained by applying mathematical induction
and inverse inequalities for the last term if suitable regularity of the solution Un can be
proved.

Numerical analysis for the time-discrete equations from some other time-dependent
problems was made by several authors [23, 32, 34, 36, 49] for different purposes. Pani
et al. [34] studied the linearized backward Euler approximation (time-discrete) to the
Oldroyd model of viscoelastic fluid with more realistic initial data. A first-order time-
discrete viscosity-splitting scheme was studied in [23] for the three-dimensional Navier-
Stokes equations, and the optimal error estimate for the pressure (in the time direction)
was obtained. Fully discrete schemes were not investigated in both [23, 34]. In [36], a de-
generate parabolic equation was studied with the fully implicit backward Euler scheme
and a mixed finite element approximation, in which a Newton-type iterative algorithm
was used for solving the nonlinear system arising at each time step. The convergence
order for both time-discrete system and fully discrete system were estimated. In [32],
authors studied miscible displacements in two-dimensional porous media by the lin-
earized backward Euler scheme and a streamline-upwind-Petrov-Galerkin method com-
bined with a post-process technique on the velocity. Both time discrete system and fully
discrete system were investigated. Error estimates with quasi-optimal rates were de-
rived for the fully discrete system by assuming that the solution of the corresponding
time-discrete equations in Wr+1

∞ -norm is bounded and under certain conditions for both
time stepsize and spatial stepsize.

In this paper, we present two linearized semi-implicit Euler schemes with a standard
Galerkin-Galerkin finite element approximation in the spatial direction for the system
(1.1)-(1.4). One is semi-decoupled and one is fully decoupled. We establish optimal L2

error estimates almost without any time-step restriction (or when h and τ are smaller
than some positive constants). The theoretical analysis is based on the splitting tech-
nique proposed in [26, 27]. Numerical simulations for the system in both two and three
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dimensional spaces are provided. Our numerical results show clearly that no time step
restriction is needed for both schemes.

The rest of the paper is organized as follows. In Section 2, we introduce two linearized
semi-implicit Euler schemes with a Galerkin approximation in the spatial direction for the
system (1.1)-(1.4) and present our main results. In Section 3, we present a priori estimates
of the solution to the corresponding time-discrete system and the optimal error estimates
of the semi-decoupled discrete scheme in L2-norm are given. Analysis presented in this
paper can be extended easily to the fully decoupled scheme. Finally we present numer-
ical results in Section 4 to illustrate the convergence rate and the unconditional stability
of schemes.

2 The Galerkin FEMs and the main results

For any integer m≥0, 1≤p≤∞ and 0<α<1, let Wm,p and Cm+α be the usual Sobolev and
Hölder spaces [1], respectively. Let πh be a quasi-uniform division of Ω into triangles
Tj, j = 1,··· ,M, in R

2 or tetrahedrons in R
3, and let h =max1≤j≤M{diamTj} denote the

mesh size. For a triangle Tj with two nodes (or a tetrahedron with three nodes) on the

boundary, we denote by T j the triangle with one curved edge (or a tetrahedron with one

curved face) with the same nodes as Tj. For an interior element, T j = Tj. We define the

standard finite element space on Ωh =∪M
1 Tj by

V̂r
h ={wh ∈C0(Ωh) : wh|Tj

is a polynomial of degree r for each Tj ∈πh}.

Let x=G(x̂) denote a map from Ωh to Ω such that for each triangle Tj, G maps Tj one-to-

one onto T j [52]. And we define an operator GV on V̂r
h by GV w(x) :=w(G−1(x)) for x∈Ω.

Then, the finite element space is defined by

Vr
h ={GV wh : wh∈ V̂r

h},

and Ṽr
h =Vr

h /{constant}. Let Îh : L2(Ωh)→ V̂r
h be the Lagrange interpolation operator of

degree r. We define Ihv=GV ÎhG
−1
V v for any v∈H1(Ω). By classical interpolation theory,

it is easy to see that

‖Ihv−v‖L2 +h‖∇(Ihv−v)‖L2 ≤Chr+1‖v‖Hr+1 . (2.1)

In the rest part of this paper, we assume that the solution to the initial-boundary value
problem (1.1)-(1.4) exists and satisfies

‖p‖L∞(I;H3)+‖u‖L∞(I;H2)+‖ut‖L2(I;W1,3/2)+‖c‖L∞(I;W2,4)

+‖ct‖L∞(I;H2)+‖ct‖L4(I;W1,4)+‖ctt‖L4(I;L4)≤C (2.2)

and

‖qI‖H1 ,‖qP‖H1 ≤C, (2.3)
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where I :=[0,T].
Correspondingly, we assume that the permeability k∈W2,∞(Ω) and satisfies

k−1
0 ≤ k(x)≤ k0 for x∈Ω, (2.4)

and the concentration-dependent viscosity µ∈W2,∞(R) satisfies

µ−1
0 ≤µ(s)≤µ0 for s∈R, (2.5)

for some positive constants k0 and µ0. Moreover, we assume that the diffusion-dispersion
tensor is given by D(u)=Φdm I+D∗(u), where dm > 0, D∗(u)= d1(u)I+d2(u)(u⊗u) is
symmetric and positive definite and ∂ui

D ∈ L∞(Ω), ∂2
uiuj

D ∈ L∞(Ω) [6]. For the initial-

boundary value problem (1.1)-(1.4) to be well-posed, we require

∫

Ω
qI dx=

∫

Ω
qP dx. (2.6)

Let {tn}N
n=0 be a uniform partition of the time interval [0,T] with τ=T/N and denote

pn = p(x,tn), un =u(x,tn), cn = c(x,tn).

For any sequence of functions { f n}N
n=0, we define

Dτ f n+1=
f n+1− f n

τ
.

A semi-decoupled time-discrete Galerkin finite element scheme is to find Pn
h ∈ Ṽr+1

h and

Cn
h ∈Vr

h , n=0,1,··· ,N, such that for all (ϕh,φh)∈Vr+1
h ×Vr

h ,

(
ΦDτC

n+1
h ,φh

)
+
(

D(Un
h)∇Cn+1

h ,∇φh

)
+
(

Un
h ·∇Cn+1

h ,φh

)
=
(

ĉqI−Cn+1
h qP,φh

)
, (2.7)

(
k(x)

µ(Cn+1
h )

∇Pn+1
h ,∇ϕh

)
=
(

qI−qP, ϕh

)
, (2.8)

where

Un
h =−

k(x)

µ(Cn
h )

∇Pn
h

and the initial data C0
h = Ihc0.

With an explicit treatment of the nonlinear convection, source and concentration-
dependent viscosity, a slightly different semi-implicit Galerkin scheme is defined by

(
ΦDτC

n+1
h ,φh

)
+
(

D(Un
h)∇Cn+1

h ,∇φh

)
+
(

Un
h ·∇Cn

h ,φh

)
=
(

ĉqI−Cn
h qP,φh

)
, (2.9)

(
k(x)

µ(Cn
h )

∇Pn+1
h ,∇ϕh

)
=
(

qI−qP, ϕh

)
, (2.10)
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where P0
h can be obtained from (2.8) with n=−1. Clearly, the second linearized scheme is

fully decoupled. At each time step, one can solve these two linear systems in the second
scheme for (Pn+1

h ,Cn+1
h ) in parallel, while for the first scheme, one has to solve the system

(2.7) for Cn+1
h and then, the system (2.8) for Pn+1

h . Here, we present our theoretical analy-
sis only for the linearized scheme (2.7)-(2.8). The analysis presented in this paper can be
easily extended to the second linearized scheme. Numerical results given in section 4 will
show clearly that both linearized schemes are of the optimal accuracy and unconditional
stability.

In this paper, we denote by C a generic positive constant and by ǫ a generic small
positive constant, which are independent of n, h and τ. We present our main results in
the following theorem.

Theorem 2.1. Suppose that the initial-boundary value problem (1.1)-(1.4) has a unique solution
(p,c) which satisfies (2.2). Then there exist positive constants h0 and τ0 such that when h<h0 and
τ<τ0, the finite element system (2.7)-(2.8) admits a unique solution {(Pn

h ,Cn
h )}

N
n=1∈ (Ṽ2

h ,V1
h ),

which satisfies

‖Pn
h −pn‖H1 +‖Cn

h −cn‖L2 ≤C(τ+h2), (2.11)

‖Cn
h −cn‖H1 ≤C(τ+h). (2.12)

3 The proof of Theorem 2.1

We define a time-discrete solution (Pn,Cn) by the following elliptic system:

ΦDτC
n+1−∇·(D(Un)∇Cn+1)+Un ·∇Cn+1= ĉqI−Cn+1qP, (3.1)

−∇·

(
k(x)

µ(Cn+1)
∇Pn+1

)
=qI−qP, (3.2)

for x∈Ω and t∈ [0,T], with the initial and boundary conditions

D(Un)∇Cn+1 ·n=0,
k(x)

µ(Cn+1)
∇Pn+1 ·n=0, for x∈∂Ω, t∈ [0,T], (3.3a)

C0(x)= c0(x) for x∈Ω, (3.3b)

where

Un =−
k(x)

µ(Cn)
∇Pn

and the condition
∫

Ω
Pn+1dx = 0 is enforced for the uniqueness of solution. With the

solution of the time-discrete system (Pn,Cn), the error functions can be split into

‖pn−Pn
h ‖≤‖pn−Pn‖+‖Pn−Pn

h ‖, (3.4)

‖cn−Cn
h ‖≤‖cn−Cn‖+‖Cn−Cn

h ‖. (3.5)
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The estimate for the first part of the error splitting in (3.4)-(3.5) and the regularity of the
solution of the time-discrete system (3.1)-(3.3) were given by Theorem 3.1 of [27]. We
present the results in the following lemma.

Lemma 3.1. Suppose that the initial-boundary value problem (1.1)-(1.4) has a unique solution
(p,u,c) which satisfies (2.2). Then there exists a positive constant τ1 such that when τ<τ1, the
time-discrete system (3.1)-(3.3) admits a unique solution (Pn,Cn), n=1,··· ,N, which satisfies

‖Pn‖2
H3+‖DτC

n‖2
L4 +‖Cn‖2

W2,4 +
N

∑
n=1

τ‖Dτ Pn‖2
H2 +

N

∑
n=1

τ‖DτCn‖2
H2 ≤C,

and

‖Pn−pn‖H1 +‖Cn−cn‖L2 ≤Cτ. (3.6)

The following Sobolev embedding inequality will be used in our proof.

‖uh‖Lp ≤C‖uh‖H1 , 1≤ p≤6, uh∈V1
h . (3.7)

To present a τ-independent estimate for the second part of the error splitting in (3.4)-(3.5),
we define two projections below.

Let Πh : L2(Ω)→V2
h be the L2 projection defined by

(Πhφ,χ)=(φ,χ), for all φ∈L2 and χ∈V2
h .

For any fixed integer n≥0, let Πn+1
h :H1(Ω)→V1

h be a projection defined by the following
elliptic problem,

(
D(Un)∇(v−Πn+1

h v),∇φh

)
=0, for all φh∈V1

h , v∈H1(Ω) (3.8)

with
∫

Ω
(v−Πn+1

h v)dx=0.

By the classical theory of finite element methods for linear elliptic problems [37, 44],
with the regularity Un ∈H2(Ω), we have

‖v−Πhv‖L2 +h‖v−Πhv‖H1 ≤Ch3‖v‖H3 , for all v∈H3(Ω), (3.9)

‖v−Πn
h v‖L2 +h‖v−Πn

h v‖H1 ≤Ch2‖v‖H2 , for all v∈H2(Ω), (3.10)

‖∇Πn
h v‖Lp ≤‖v‖W1,p , 2≤ p≤∞, for all v∈W1,p(Ω), (3.11)

and

(N−1

∑
n=0

τ‖Dτ(C
n+1−Πn+1

h Cn+1)‖2
H−1

)1/2

≤Ch2, (3.12)
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Now we start to prove Theorem 2.1. Since the coefficient matrices of the finite element
systems (2.7) and (2.8) at each time step are symmetric positive definite, the existence and
uniqueness of the numerical solution follow immediately. Let

en
h =Pn

h −ΠhPn and θn
h =Cn

h −Πn
hC

n,

where {(Pn,Cn)}N
n=1 is the solution of the time-discrete system (3.1)-(3.3). First we prove

the following estimate

max
1≤n≤N

‖en
h‖H1 + max

1≤n≤N
‖θn

h‖L2 ≤Ch2 . (3.13)

We rewrite the time-discrete system (3.1)-(3.3) in a weak form by

(
ΦDτC

n+1,φh

)
+
(

D(Un)∇Cn+1,∇φh

)
+
(

Un ·∇Cn+1,φh

)
=
(

ĉqI−Cn+1qP,φh

)
, (3.14)

( k(x)

µ(Cn+1)
∇Pn+1,∇ϕh

)
=
(

qI−qP, ϕh

)
, (3.15)

for any φh ∈ V1
h and ϕh ∈ V2

h . From the finite element system (2.7)-(2.8) and the above

equations, we see that the error functions (en+1
h ,θn+1

h ) satisfy the equations

(
ΦDτθn+1

h ,φh

)
+
(

D(Un
h)∇θn+1

h ,∇φh

)

=
(

ΦDτ(C
n+1−Πn+1

h Cn+1),φh

)
−
(

Un ·∇(Cn+1
h −Cn+1),φh

)

−
(
(Un

h−Un)·∇Cn+1
h ,φh

)
−
(
(Cn+1

h −Cn+1)qP,φh

)

+
(
(D(Un)−D(Un

h))∇Πn+1
h Cn+1,∇φh

)

:=J1(φh)+ J2(φh)+ J3(φh)+ J4(φh)+ J5(φh), (3.16)

and

(
k(x)

µ(Cn+1
h )

∇en+1
h ,∇ϕh

)

=

(
k(x)

µ(Cn+1
h )

∇(Pn+1−ΠhPn+1),∇ϕh

)
−

((
k(x)

µ(Cn+1
h )

−
k(x)

µ(Cn+1)

)
∇Pn+1,∇ϕh

)
, (3.17)

for any φh∈V1
h and ϕh∈V2

h .

We substitute ϕh= en+1
h into (3.17) to obtain

‖en+1
h ‖H1 ≤C(‖Pn+1−ΠhPn+1‖H1+‖Cn+1

h −Cn+1‖L2)

≤Ch2+C‖θn+1
h ‖L2 . (3.18)
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Taking φh= θn+1
h in (3.16), we get

|J1(θ
n+1
h )|≤C‖Dτ(C

n+1−Πn+1
h Cn+1)‖H−1‖θn+1

h ‖H1

≤ǫ‖θn+1
h ‖2

H1+Cǫ−1‖Dτ(C
n+1−Πn+1

h Cn+1)‖2
H−1 ,

|J4(θ
n+1
h )|≤C‖qP‖L3(‖θn+1

h ‖2
L3+‖Cn+1−Πn+1

h Cn+1‖L2‖θn+1
h ‖L6)

≤ǫ‖∇θn+1
h ‖2

L2 +Cǫ−1‖θn+1
h ‖2

L2+Cǫ−1h4,

|J5(θ
n+1
h )|≤C‖∇Πn+1

h Cn+1‖L∞‖Un
h−Un‖L2‖∇θn+1

h ‖L2

≤Cǫ−1‖Un
h−Un‖2

L2+ǫ‖∇θn+1
h ‖2

L2

≤ǫ‖∇θn+1
h ‖2

L2 +Cǫ−1‖θn
h‖

2
L2 +Cǫ−1h4,

and

|J3(θ
n+1
h )|=

∣∣((Un
h−Un)·∇θn+1

h ,θn+1
h

)
+
(
(Un

h−Un)·∇Πn+1
h Cn+1,θn+1

h

)∣∣

≤C‖Un
h−Un‖L2‖θn+1

h ‖L6(‖∇θn+1
h ‖L3+‖∇Πn+1

h Cn+1‖L3)

≤ (Ch−d/6‖θn
h‖L2 +Ch2−d/6+ǫ)‖θn+1

h ‖2
H1 +Cǫ−1‖θn

h‖
2
L2 +Cǫ−1h4,

where we have noted (3.7) and used the inverse inequality

‖∇θn+1
h ‖L3 ≤Ch−d/6‖∇θn+1

h ‖L2 . (3.19)

Moreover, by noting the fact that ∇·Un =qI−qP and using integration by part, we have

J2(θ
n+1
h )=−(Un ·∇(θn+1

h +Πn+1Cn+1−Cn+1),θn+1
h )

=((qI−qP)(θn+1
h +Πn+1

h Cn+1−Cn+1),θn+1
h )

+(θn+1
h +Πn+1Cn+1−Cn+1,Un ·∇θn+1

h )

and therefore,

|J2(θ
n+1
h )|≤C‖qI−qP‖L3‖θn+1

h ‖L6(‖Cn+1−Πn+1
h Cn+1‖L2 +‖θn+1

h ‖L2)

+C‖Un‖L∞‖∇θn+1
h ‖L2(‖Cn+1−Πn+1

h Cn+1‖L2+‖θn+1
h ‖L2)

≤ǫ‖θn+1
h ‖2

H1 +Cǫ−1‖θn+1
h ‖2

L2 +Cǫ−1h4 .

It follows that

1

2
DτΦ‖θn+1

h ‖2
L2 +

∥∥
√

D(Un
h)∇θn+1

h

∥∥2

L2

≤ (ǫ+Ch−d/6‖θn
h‖L2+Ch2−d/6)‖∇θn+1

h ‖2
L2 +Cǫ−1(‖θn+1

h ‖2
L2 +‖θn

h‖
2
L2)+Cǫ−1h4

+Cǫ−1
∥∥Dτ(C

n+1−Πn+1
h Cn+1)

∥∥2

H−1 . (3.20)

Now we prove the τ-independent estimate

‖θn
h‖L2 ≤h (3.21)
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by mathematical induction. Since ‖θ0
h‖L2 ≤Ch2, there exists a positive constant h1 such

that ‖θ0
h‖L2 <h when h<h1. We assume that the inequality (3.21) holds for 0≤n≤k. Then

there exists a positive constant h2 such that when h<h2, (3.20) reduces to

DτΦ‖θn+1
h ‖2

L2 +
1

2

∥∥
√

D(Un
h)∇θn+1

h )
∥∥2

L2

≤Ch4+C(‖θn+1
h ‖2

L2 +‖θn
h‖

2
L2)+C

∥∥Dτ(C
n+1−Πn+1

h Cn+1)
∥∥2

H−1

for 0≤n≤ k. By applying Gronwall’s inequality and (3.12), there exits τ2>0 such that,

‖θn+1
h ‖L2 ≤Ch2 (3.22)

for 0≤n≤ k, when τ<τ2.
Therefore, there exists h3 >0 such that when h<h3 we have

‖θk+1
h ‖L2 <h.

Taking τ0≤min{τ1,τ2} and h0≤min{h1,h2,h3}, the mathematical induction is closed. We
see that the inequality (3.21) holds and therefore, (3.22) holds for all 0≤n≤N−1.

By (3.18) and (3.22) we further derive that

‖en+1
h ‖H1 +‖θn+1

h ‖L2 ≤Ch2. (3.23)

Secondly, by Lemma 3.1, the projection error estimates (3.9)-(3.10) and the above inequal-
ity, we derive (2.11). Moreover, (2.12) follows from Lemma 3.1 and (3.23) together with
the inverse inequality. The proof of Theorem 2.1 is complete. �

Remark 3.1. The above analysis for unconditional stability relies on the τ-independent
estimate (3.21) or (3.22), and the inverse inequality (3.19), while the previous analysis was
based on an τ-dependent estimate ‖Cn

h −Πn
hcn‖L2 ≤C(τ+h2).

4 Numerical examples

In this section, we present some numerical results for incompressible miscible flows in
both two and three-dimensional porous media. We focus on the unconditional stability
of the linearized semi-implicit Galerkin FEMs. All computations are performed by using
the software FreeFem++.

We rewrite the system (1.1)-(1.4) by

∂c

∂t
−∇·(D(u)∇c)+u·∇c= g, (4.1)

∇·u= f , (4.2)

u=−
1

µ(c)
∇p, (4.3)
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Figure 1: Two-dimensional non-uniform meshes.

where Ω=(0,1)×(0,1) and D(u)=1+|u|2/(1+|u|) and µ(c)=1+c.
First, we consider a two-dimensional model where Ω= [0,1]×[0,1]. The functions f

and g are chosen corresponding to the exact solution

p=1000x2(1−x)3y2(1−y)3t2e−t, (4.4)

c=0.1+50x2(1−x)2y2(1−y)2tet, (4.5)

which satisfies the boundary condition (1.4).
Two types of triangular meshes, a uniform mesh and a locally refined mesh, are used

in our numerical tests. The uniform one is generated by a triangular partition with M+1
nodes of uniform distribution in each direction. Four refined ones are given in Fig. 1 with
474, 2202, 5392 and 10136 triangular elements, respectively. Clearly, previous analyses
enforce a stronger time-step restriction when a non-uniform mesh is used. We solve the
system (4.1)-(4.3) by the proposed two schemes presented in (2.7)-(2.8) and (2.9)-(2.10),
respectively, up to the time t= 1, while theoretical analysis was given only for the first
linearized scheme. We apply the FE approximation in Ṽr+1

h ×Vr
h , r = 1,2, in the spatial

direction, with which the optimal error in L2-norm is O(τ+hr+1). A restarted GMRES
algorithm is applied for solving the linear systems at each time step. To illustrate our
error estimates, we take τ = O(hr+1) and present numerical errors in Table 1 for the
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Table 1: Errors of the semi-decoupled scheme (2.7)-(2.8) with the uniform mesh.

τ=8h2 r=1

h ‖PN
h −p(·,tN)‖H1 ‖CN

h −c(·,tN)‖L2

1/8 4.970E-02 2.141E-02

1/16 1.291E-02 4.937E-03

1/32 3.264E-03 1.209E-03

convergence rate 1.98 2.03

τ=64h3 r=2

h ‖PN
h −p(·,tN)‖H1 ‖CN

h −c(·,tN)‖L2

1/8 7.492E-03 9.913E-03

1/16 7.476E-04 9.059E-04

1/32 9.182E-05 1.098E-04

convergence rate 3.03 3.04

Table 2: Errors of the fully decoupled scheme (2.9)-(2.10) with the uniform mesh.

τ=8h2 r=1

h ‖PN
h −p(·,tN)‖H1 ‖CN

h −c(·,tN)‖L2

1/8 6.269E-02 5.912E-02

1/16 1.641E-02 1.535E-03

1/32 4.155E-03 3.877E-03

convergence rate 1.98 1.99

τ=64h3 r=2

h ‖PN
h −p(·,tN)‖H1 ‖CN

h −c(·,tN)‖L2

1/8 3.519E-02 5.026E-02

1/16 4.437E-03 6.306E-03

1/32 5.561E-04 7.898E-04

convergence rate 3.00 3.00

semi-decoupled scheme (2.7)-(2.8) and in Table 2 for the fully decoupled scheme (2.9)-
(2.10). We can observe from Tables 1-2 that the L2 errors for both the semi-decoupled and
the fully decoupled schemes are proportional to O(hr+1). Compared with the fully de-
coupled scheme, the semi-decoupled scheme shows better accuracy. However, the fully
decoupled scheme is more efficient in computation.

To demonstrate the unconditional stability of the schemes, we take several different
spatial meshes with M=8,16,32,64 for each fixed τ and we plot the error functions ‖PN

h −
p(·,tN)‖H1 and ‖CN

h −c(·,tN)‖L2 in Figs. 2-3 for the uniform mesh and in Figs. 4-5 for the
non-uniform mesh. Based on our theoretical analysis, in this case r=1,

‖PN
h −p(·,tN)‖H1 , ‖CN

h −c(·,tN)‖L2 =O(τ+h2)
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Figure 2: Errors of the semi-decoupled scheme (2.7)-(2.8) with the 2D uniform mesh where h=1/M.
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Figure 3: Errors of the fully decoupled scheme (2.9)-(2.10) with the 2D uniform mesh where h=1/M.

which tends to O(τ) as h→0. We can see clearly from Figs. 2-3 that the numerical errors
behave like O(τ) as h→0 (while as τ/h→∞), which shows that no time step condition
is needed.
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Figure 4: Errors of the semi-decoupled scheme (2.7)-(2.8) with the 2D non-uniform mesh where h=1/M.

8 16 24 32
0

0.012

0.024

||
P

N h
−

p
(t

N
,⋅)

||
H

1

1/h

τ=0.05

τ

τ

=0.02

=0.01

r=1

8 16 24 32
0

0.012

0.024

||
C

N h
−

c
(t

N
,⋅)

||
L

2

1/h

τ=0.05

τ=0.02

τ=0.01

r=1

Figure 5: Errors of the fully decoupled scheme (2.9)-(2.10) with the 2D non-uniform mesh where h=1/M.
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Figure 6: Errors of the semi-decoupled scheme (2.9)-(2.10) with the 3D uniform mesh where h=1/M.

Secondly, we solve the equations (4.1)-(4.3) in a three-dimensional cube [0,1]×[0,1]×
[0,1]. The functions f and g are chosen corresponding to the exact solution

p=10000x2(1−x)3y2(1−y)3z2(1−z)3t2e−t, (4.6)

c=0.1+2000x2(1−x)2y2(1−y)2z2(1−z)3te−t. (4.7)

A uniform tetrahedral partition of the cube with M+1 mesh points at each spatial direc-
tion is used. We solve the equations by the semi-decoupled scheme (2.7)-(2.8) with r=1
up to time t = 1 and we present errors of the numerical solution in Fig. 6. Again, the
numerical results show that the scheme is unconditionally stable.
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Figure 7: The FEM meshes with M=32, M=64 and M=128, respectively.

Finally we solve the equations (4.1)-(4.3) in a unit circle by the semi-decoupled scheme
(2.7)-(2.8) with r = 1 up to time t = 1 and the same physical parameters as above. The
functions f and g are chosen corresponding to the exact solution

p=1+40e2t(1+t2)x2y2(1−x)3(1−y)3, (4.8)

c=1+50et(1+t3)sin(x2)sin(y2)(1−x)3(1−y)3. (4.9)

The meshes are generated by the software with M boundary points, where we take M=
16,32,64,128, respectively. Three typical meshes are shown in Fig. 7. We present the L2

errors of the pressure and the concentration in Fig. 8. The same observations can be made
here.
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Figure 8: Errors of the semi-decoupled scheme (2.9)-(2.10) in a unit circle.

5 Conclusions

The time stepsize condition is always a key issue for linearized schemes. In this paper,
we have proved unconditional stability of a commonly-used linearized semi-implicit Eu-
ler scheme with standard Galerkin FEM for a nonlinear and strongly coupled parabolic
system from incompressible miscible flow in porous media. With the stability analysis,
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optimal L2 error estimates of the linearized Galerkin FEMs are obtained also uncondi-
tionally, while all previous works have imposed certain restriction on the time-step size.
Our numerical results confirm our analysis. The approach presented in this paper can be
extended to many other nonlinear equations and other linearized semi-implicit methods.
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