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Abstract. Numerical methods based on gyrocenter gauge kinetic theory are suitable
for first principle simulations of high frequency waves in magnetized plasmas. The
of gyrocenter gauge PIC simulation for linear rf wave has been previously realized.
In this paper we further develop a full-f nonlinear PIC algorithm appropriate for the
nonlinear physics of high frequency waves in magnetized plasmas. Numerical cases
of linear rf waves are calculated as a benchmark for the nonlinear GyroGauge code,
meanwhile nonlinear rf-wave phenomena are studied. The technique and advantage
of the reduction of the numerical noise in this full-f gyrocenter gauge PIC algorithm
are also discussed.
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1 Introduction

Radio frequency (rf) waves have been theoretically proposed and experimentally proved
an effective method for plasma heating and current drive in magnetic confinement fu-
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sion (MFC) research [1-4]. Recent research shows strong evidences that toroidal plasma
rotations can be induced by rf waves launching in tokamaks [5-7]. These facts reflect that
rf waves launching is important to improve confinement and to maintain H-mode runs
of tokamaks. On the other hand, our understanding on the physics of rf waves in mag-
netized plasmas is still limited. The multi-scale and nonlinear properties of rf physics in
magnetized plasmas bring challenges to theoretical analysis. First principle simulations
build a bridge between theories and experiments for rf wave research. To numerically
study rf waves, an efficient algorithm is thus required. A éf particle-in-cell (PIC) algo-
rithm based on gyrocenter gauge kinetic theory has been successfully applied to linear
rf wave simulation [8]. In this paper, we further develop a full-f gyrocenter gauge PIC
algorithm which is appropriate for the description of nonlinear rf wave physics.

Because the frequencies of rf waves are high enough, the high-frequency responses
of charged particles in magnetized plasmas, as well as the changes of their gyro-orbits,
have to be taken into account. This indicates that the length of time step in rf wave sim-
ulations should be extremely small compared with the time scale of the problem, which
brings along heavy computational burdens. Traditional gyrokinetic theory improves nu-
merical efficiency through averaging out the fast gyromotion of charged particles and
only sustain the slow gyrocenter dynamics. Though traditional gyrokinetics is a pow-
erful tool for low frequency physics, it cannot be applied to rf-wave simulation directly
because the fast responses of charged particles are erased by gyro-average.

Gyrocenter gauge kinetic theory is a special version of the generalized kinetic the-
ory, which deal with the Vlasov-Maxwell system in a geometric view [9-11]. Gyrocenter
gauge kinetic theory is aimed to solve the multi-time-scale problems, such as the high fre-
quency waves in magnetized plasmas. In the theory, fast gyromotion of charged particles
is decoupled from slow gyrocenter dynamics instead of being removed by gyro-average.
Then particle dynamics with different time-scales can be advanced separately in differ-
ent time steps. When decoupling dynamics with different time-scales, the key step is to
find a proper symmetry, which is the gyro-symmetry in the case of charged particles in
magnetized plasmas. However, the existence of high frequency electromagnetic pertur-
bations breaks the original gyro-symmetry. gyrocenter gauge kinetic theory resolves it
through a second gyrocenter coordinate transform using Lie perturbation method.

Traditional gyrokinetics consists of two pivotal steps, gyrocenter coordinate trans-
form and gyrophase average. Gyrocenter gauge kinetic theory shares the first step with
traditional gyrokinetics. In this first gyrocenter coordinate transform, particle coordi-
nate (x,v) is transformed to unperturbed gyrocenter coordinate Z = (X, i, ﬁ,é), where
x is particle position coordinate, v is particle velocity coordinate, X is gyrocenter posi-
tion coordinate, i is parallel velocity, i is magnetic moment, and 8 is gyrophase. Yet in
gyrocenter gauge kinetic theory, a second gyrocenter coordinate transform is needed to
transform the unperturbed gyrocenter coordinate Z to the perturbed gyrocenter coordi-
nate Z= (X,u,,0). The second gyrocenter coordinate transform employs Lie coordinate
perturbation method and thus requires assumption that high frequency perturbations
are not strong enough to violently break the original gyro-symmetry. This assumption
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means that the differences between two sets of gyrocenter coordinates are higher order
small values, which can be guaranteed if the magnitude of high frequency perturbation is
small and magnetic confinement still holds. Finally, the distribution function in particle
coordinate f(x,v) is replaced by two distribution functions, the gyrocenter distribution
function F(X,u, ) and a gauge function S(X,u,,0). The gyrocenter distribution function
F, which describe slow dynamics of gyrocenters, does not depend on gyrophase and ad-
vances at large time step. Gauge function S contains dynamics of fast time-scale and can
be sampled intensively through a structure called Kruskal ring [12]. These techniques
enable algorithms based on gyrocenter gauge kinetic theory to take sample in a more
efficient way compared with full kinetic 6D simulations [13,14].

In PIC method, fields are sampled on Euler grids fixed in configuration space, there-
fore distribution of electric current density in particle coordinate are required. Since
the evolution of charged particles are advanced in gyrocenter coordinate, the calcula-
tion of electric current density involves pullback transformation. In previous linear algo-
rithm [8], first-order term of perturbation current density is obtained directly by analytic
integration and then feeded into Maxwell equations. This method is a kind of 6f method
because zero-order current density, the equilibrium quantity, does not appear. It can re-
duce numerical noises evidently. However, nonlinear phenomena require more higher-
order terms, which are too complex to calculate. The nonlinear algorithm abandons this
series expansion technique. Current density, which include all terms in the series ex-
pansion, is given directly by pullback transformation, see Egs. (2.29)-(2.31). In Section 2,
we construct the nonlinear algorithm based on gyrocenter gauge kinetic theory for high
frequency waves in magnetized plasmas. Then in Section 3, some numerical results us-
ing this method are presented, including both linear and nonlinear cases. Linear cases
are used as benchmarks to show the correctness of this algorithm, meanwhile nonlinear
cases, such as frequency doubling phenomena, are simulated. In Section 4, we give a
brief discussion and the future plan.

2 Nonlinear algorithm based on gyrocenter gauge kinetic theory

In this section, we construct the nonlinear algorithm for high frequency waves in mag-
netized plasmas based on gyrocenter gauge kinetic theory. We start from the Poincaré-
Cartan-Einstein one-form + in the particle coordinate

y(x,v) = (gA+mv)-dx— <q¢+ %mvz) dt, 2.1)

where A denotes the potential vector, ¢ denotes the potential scalar, g is the electric
charge, and m is the mass of the charged particle. This one-form can be transformed
to the unperturbed gyrocenter coordinate Z = (X,i,fi,0) through the first gyrocenter co-
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ordinate transform. The transform relation satisfies

x:)~(+p:)~(+%a, (2.2)

v=ilb+dc, (2.3)

where By denotes the background magnetic field at the position of the gyrocenter, b is a
unit vector along By, a is a unit vector parallel to the gyro-radius p, and c is a unit vector
along the perpendicular component of velocity.

In the nonuniform background magnetic field, a set of local frame should be chosen.
We choose two unit vectors, e; and e;, perpendicular to b satisfying e; x e, =b, that is
e1, ex and b constitute a local right-handed orthogonal frame. In this local frame, unit
vectors a and c are expressed as

a(f) =cosfe; +sinfe,, (2.4a)
¢() =sinfe; —cosfe,. (2.4b)

This relation can be in turn taken as the definition of the gyrophase. We can also write
down the following relations

axb=c¢, b= E, (2.5a)
By

a_ . .. (2.5b)

00 00

Moreover, the magnetic moment and the gyro-radius are respectively defined as

_ omd? 1 |2miji
T (2.6)

Each field quantity can be expressed as the summation of a slow varying background
part and a fast varying perturbation part. Given there is no background electric field, we
can write these field quantities as

B=By+B, E=E;, (2.7a)
A=Ag+Ai,  p=¢1, (2.7b)
E:—w—%—?, B=V xA. (2.70)

According to Egs. (2.2)-(2.7), the one-form in unperturbed gyrocenter coordinate Z takes
the form

F(Z) =qAo-dX+mib-dX— "L a6 — g, (x,t)dt <%mﬁ2+ﬁBo) dt

q
~ m . 2mpi . ~
+A;(x,t)- (qu-l—1 / 27iBo adfi—4/ B—Ocdf)). (2.8)
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We further assume that the background magnetic field changes very slowly with space
just for simplicity. This assumption neglects the effects caused by the nonuniform of
the background field, such as the gyrocenter drift motion, but has no impact on high
frequency physics. The one-form -y determines the behaviors of charged particles in the
electromagnetic fields. To decouple the dynamics with different time-scales, we could
divide the one-form into two parts. One depends only on the background fields 4 and
the other depends on perturbation fields ;. Their explicit expressions are

Fo(Z) = (qu—i—mﬁb)«df(—%dé— (%mﬂz—l—ﬁBo)dt, (2.9)

and

- ~ 2mii ~
F1(Z) = A1 (xt)- <qolX+1 / 2;';0 adji— | Bﬂ()"cd(a) — g1 (x,t)dt. (2.10)

In Eq. (2.10), Ay, ¢1, a and c are all quantities with the fast time scale. Note that this
partition of one-form is in some extent arbitrary.

Now, Lie perturbation method can be used to the second gyrocenter coordinate trans-
form, which transforms unperturbed gyrocenter coordinate Z to perturbed gyrocenter
coordinate Z. The transform relation is

Z=7+G. (2.11)

Given the magnitudes of the perturbation fields are much smaller than that of the back-
ground fields, G is much smaller than Z. Then we have

7(2)=7(2)=7(Z-G)=7(Z) —icd¥(Z). (2.12)
In perturbed gyrocenter coordinate, y; takes the form
1(Z) =1(Z) —icdY0(Z)+dS(Z), (2.13)
where S is called gauge function, satisfying
dS(Z) =%0(Z) —y0(Z). (2.14)

We have to appeal to gyro-symmetry now to accomplish the decouple of different time
scales. The gyro-symmetry demand the relation 0y; /90 =0 holds, that is ; is indepen-
dent of gyrophase 6. Under the limit of this prerequisite, there is still a freedom left for the
choice of S(Z). Different choices of S brings different expressions for ;. Essentially, the
choice of S is a kind of gauge choice. That’s why S is called gauge function and why the
theory is named gyrocenter gauge kinetic theory. Different gauge choices only influence
the complexity of computation, but doesn’t change the real physics.
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The second term in Eq. (2.13) can be proved as

icd¥0(Z) = (gBox Gx+mG,b)-dX+ (muGy—mb-Gy)du
- <%G9+B0Gt> dy—%GVdG— (muGi+BoG,) dt, (2.15)

where G; =0 because there is no transform for the time coordinate. Then the expression
of y1 is

71(Z)=(qA1(x,t) —gBo x Gx —mG,b+VS)-dX+ (mb~Gx—i—a—S> du

ou
m m 0S 2muy m 0S
g Allxt)a—— — |d —\| 5 AL(xt) e+ — — | df
+< Z‘MB() 1<X,) a qG9+8y> }4+< Bo 1(X, ) C+qGV‘|‘89>
aS
We choose a gauge S which simply makes
71(Z)=0 (2.17)
hold. Then the evolution equation, which S obeys, is
S qBodS \/ 21By
§+ubvs—7£ —q¢] (X,t) qub A] (X,t) q TAI (X,t) C. (218)
At the same time, we can get the evolution equations for G as
19S 1 1
GX——agb—B—obXAl(X,t)—q?ObXVS, (219a)
_af(, |2 o
Gu= - < B, Ai(x,t)-c 5 |’ (2.19b)
Gu:ib-Al (x,t)-i—lb-VS, (2.19¢)
m m

_q( [m 495
Gg— o ( Z‘MB() A](X,t) a+ay> . (219d)

According to Hamilton’s principle, the dynamics of the charged particle follow the rule

irdy=0. (2.20)
Then we have
x =uTtb, (2.21a)
7,=0, (2.21b)
7, =0, (2.21¢0)

Tg=— @Tt, (2.21d)
m
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and the equations of motion for the gyrocenters as

dX

[5'¢

TR ub, (2.22a)
% — %‘ —0, (2.22b)
% _ %‘ —0, (2.220)
% _ % __ ‘iﬂﬂ, (2.22d)
The distribution function for gyrocenters F thus satisfies
%—l;—l— b-V F—%&)g—gzo, (2.23)
and the gauge function S satisfies
ds 2uB
S =i (o) —qub- Ar(x 1) =gy L2 A1 () <. (2.24)

According to Eq. (2.19), the calculation of G, and Gy requires the value of dS/d6 and
dS/du. They can be obtained from the partial derivative of Eq. (2.24) as

doS o dS / /
aa—@dt aVCPl ZBaVbA1xt)
—a-V(Aq(xt)-c)—qy/ 7 VAI(X )¢, (2.25)

and
ddoS 9dS 2mpy 2mpy
&@—%a—— BO —C:- V(Pl(x t) BO V(b Al(X t))
+2uc-V(A1(x,t)-c)—gq %Aa. (2.26)

At the moment, we successfully obtain the decoupled gyrocenter gauge kinetic equa-
tions. The evolution of the gyrocenter distribution function F depends only on the back-
ground magnetic field. All the fast kinetic effects are included in the evolution of the
gauge function S. The next task is to calculate the correct response current density ac-
cording to the particle distribution in perturbed gyrocenter coordinate.

In previous linear gyrocenter gauge kinetic algorithm [8], the first-order term of cur-
rent density are analytically calculated using pullback transformation and series expan-
sion as

2By
L) ==Y kA Xi+p; 1)V [(ngwb) Ar(Xi+p; ) +Boagsi,j} . 27)

T i
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where J, (r) denotes current density perpendicular to the background magnetic field, vt
is thermal velocity, x; denotes the weight of the ith gyrocenter, VZL] and p, ; are the per-
pendicular velocity and the gyro-radius of the jth sampling point on the Kruskal ring
carried by the ith gyrocenter respectively, X; is the spatial position of the ith gyrocenter.
This method is a type of éf method, which doesn’t count in the contribution from unper-
turbed background electric current density as well as the higher order terms. It has the
advantage of low numerical noises, but is inconvenient for nonlinear simulation. On the
one hand, nonlinear phenomena involves the higher order terms in the series expansion
of current density. These higher order terms are more difficulty to handle for analytic
deduction and too resource consuming for numerical computation. On the other hand,
it is impossible to calculate all the expansion terms, which means strong nonlinear phe-
nomena cannot be fully described by this means. Further more, in the future large-scale
integrated rf wave simulations the equilibrium quantities may also change with time,
which can not be dealt with by the linear expansion algorithm. So we need a more effec-
tive way to calculate the current density for nonlinear rf wave physics.

According to the twice gyrocenter coordinate transforms and corresponding pullback
transformation, it is feasible to calculate the current density in particle coordinate directly
from its definition as

j(r)= —e/f(r,v)v d3v. (2.28)

Its discrete version which can be used in numerical simulation is
n,m
](I‘) = —€ZKI‘A(X,‘,]'—I‘)V,‘,]', (229)
i,j

where x and v denote the position and velocity of charged particles in particle coordinate.
They can be achieved from the pullback transform from perturbed gyrocenter coordinate
as

2Bo(p—G
)= X—Gy+ 1 [ 2Pl =Ci) ¢
qBo m

v=1] W [sin(@—Gg)ex—cos(G—Gg)ey] +(u—Gy)e;. (2.31)

The current density obtained from this method contains the contribution from the distri-
bution of the background plasmas. For example the polarization current density caused
by the density gradient of the background plasmas can be achieved directly by this
method.

The coordinate transform and corresponding pull-back transform are both exact, so
all the nonlinear effects of the gyrocenter system are kept. The approximation only exists
in Eq. (2.12), where the higher order terms of the 1-form are dropped. The equations for X

cos (0—Gg)e,+sin(6—Gy)ey], (2.30)
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and S are based on this expansion, which means that the gyrocenter system is not exactly
equivalent to the original particle system. The Lagrangian densities of the gyrocenter
system and the original particle system differ by the higher order terms. In this sense,
some higher- order nonlinear terms of the original particle system are still missing in the
gyrocenter gauge algorithm.

To calculate the nonlinear physics of the original particle system more accurately, the
idea to keep the second-order term in Eq. (2.12) has been proposed to decrease the dif-
ferences between the two systems. However, this treatment brings computational com-
plexities evidently. If G is large enough, more higher-order terms should be kept to make
sure that the difference between the gyrocenter system and the original particle system is
small, and this scheme is impractical. A more efficient method is used in the gyrocenter
gauge algorithm to solve this problem. The initial value of G is zero, but the value of G
could grow larger and larger by accumulation. When the value of G goes higher than a
relative threshold ¢, this time should be taken as a new starting point for the transform.
The coordinate transform Z — Z is restarted at this time step, and G is reset to zero again.
Then another gyrocenter system, which is a better approximation to the original particle
system, is found at this time step. The difference between the Lagrangian density of the
gyrocenter system and that of the original particle system is always smaller than €. The
accuracy of the particle system’s nonlinear phenomena is thus determined by the value of
the threshold €. Because at each time step the particle coordinates have been calculated
to give the current, it is convenient to carry out the new coordinate transform without
any extra computation cost.

Once the correct current density is obtained, it can be used to compute the field quan-
tities on the Euler grids through Ampere’s circuital law

oE )
VxB= }40€0§ +1oj- (2.32)

Taken the Weyl gauge, also known as the temporal gauge, ¢ =0 to the electromagnetic
potential, we have

0A
E=——"— 2.
=, 239
B=VxA, (2.34)
and the equation for the potential vector
10°A .

The current density j on the right-hand side of the equation reflects the responses from
the plasmas to the evolution of the electromagnetic fields. Then with the equations of the
particle dynamics, the method to calculate the current density, and the equation for the
field, the whole flow chart of the algorithm is completed, see Fig. 1. We will practise this
algorithm with some rf wave problems in magnetized plasmas in Section 3.
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Figure 1: Flow chart of simulation.Within each loop of time advance, particles’ dynamics, including gyrocenter
coordinates and gauge function, is calculated from fields on grids and then gives the current density on grids.
The current density in turn gives the fields. Gyrocenter coordinates advance at large time step because its slow
time-scale dynamics. So the computation consumption on gyrocenter coordinates can be neglected.

3 Numerical cases

Based on the algorithm introduced in Section 2, the rf waves in magnetized plasmas
can be studied through the first-principle gyrocenter gauge kinetic simulation. In this
section, we carry out some numerical simulations of high frequency waves in magnetized
plasmas to verify the correctness and effectiveness of this method. In these cases, we
focus on the waves with frequencies around the gyro-frequency of the electrons. Then
for simplicity, the ions can be taken as the continuous positively-charged background for
the electrons because the response from the ions to the waves with such high frequencies
can be neglected.

At first, the linear physics of the rf waves is reproduced as benchmarks to the gyro-
center gauge algorithm. The simulation code used here is in principle a nonlinear one,
which means the simulation results contain all the nonlinear physics of the particle-field
system, similar to the experimental results in the real lab. However, the linear phenom-
ena can still be recovered from this nonlinear code by decreasing the amplitudes of the
electromagnetic perturbations to a very low level. The nonlinear effects are thus sup-
pressed.

The magnetized plasma is set to be uniformly distributed in the configuration space
with the periodic boundary conditions in the x, y, and z directions. The external back-
ground magnetic field By is along the z direction. The electromagnetic perturbations with
small amplitude are initialized in the spacial region. The evolution of the electromag-
netic perturbations and the motion of electrons are computed following the nonlinear
gyrocenter gauge kinetic PIC method. To reproduce linear results, the amplitude of the
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perturbations is set to be small enough to make sure that the change of the magnetic mo-
ment u caused by the electromagnetic waves is much smaller than the value of y itself.
Meanwhile, we set the number density of the electrons to be 1, = 102 /m3 and the back-
ground magnetic field to be By =5T. In each direction of the configuration space region
400 sampling grids are taken, and the distance between two adjacent grids is 0.25mm.
Ten sampling points for the electrons are taken on each Kruskal ring to meet the desired
precision. If adjusting the thermal velocity of the electrons to let their gyro-radii be much
smaller than the wavelength, that is k < 1/p,, we obtain the dispersion relation of X
waves, see Fig. 2, and O waves, see Fig. 3, in cold plasmas. The same dispersion rela-
tions can also be achieved by rigorous analytic calculation [15]. According to the analytic
results, the dispersion relation of X waves in cold plasmas satisfies

2 2
wr—w
e
*K? :wz—w;%ezizp, (3.1)
W2 =Wl

where w), is the electron plasma frequency, wy;p is the upper-hybrid resonant frequency,
satisfying

and (), is the electron gyro-frequency. And moreover, the dispersion relation of O waves
in cold plasmas satisfies

Ak =w—w?,. (3.3)

w/Q, 25[ T T T T 1

k rad/mm

Figure 2: Contour plot of the x component of electric perturbation E in spectrum space. The abscissa denotes
wave vector in y direction in unit of rad /mm. The ordinate denotes frequency w of perturbed field Ey in the unit
of electron gyro-frequency Q.. This plot depicts the dispersion relation of X waves propagating perpendicular
to the background field. The three horizonal dotted lines mark the value of wg, wyyg and wy respectively.
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E:

w/Q, 250 . T

k rad/mm

Figure 3: Contour plot of the y component of electric perturbation E; in spectrum space. The abscissa denotes
wave vector in y direction in unit of rad /mm. The ordinate denotes frequency w of perturbed field E; in the unit

of electron gyro-frequency Q,. This plot depicts the dispersion relation of O waves propagating perpendicular
to the background field. The horizonal dotted line marks the value of wy,.

It’s obvious that for X waves there are two cutoff frequencies,

QN2
WR,L= (76) +w%€:|:

0,
> (3.4)
and a resonance frequency wy; g, while for O waves there exists only one cutoff frequency
wpe. According to the parameter setup in this case, the values of these characteristic
frequencies are wpe = 0.64Q), wr =1.31Q),, wi =0.31Q), and wyy = 1.19Q) respectively.
By comparison, it turns out that the first-principle simulation results fits the analytical
ones perfectly.

When the gyro-radii are set to be about the same size with wavelength, that is ko, 2> 1,
by adjusting the electron temperature, the finite Larmor radius effect begins to appear.
The dispersion relations of perpendicularly propagating waves are different from those
in the long-wavelength case. The simulation results in Fig. 4 exhibit the dispersion rela-
tions of perpendicularly propagating waves with short wavelengths. With the increase
of the wavelength k, the component of the electric field perturbation in the x direction,
which is perpendicular to the wave propagation direction, disappears and the wave de-
velops into the electron Bernstein waves. An interesting phenomenon is that the slow X
wave may connect to different branches of electron Bernstein wave in the dispersion re-
lation diagram, with the change of wyp /(.. For different plasma parameters, the mode
conversion of the slow X wave to the electron Bernstein wave is different. It is also can be
observed that the lower branches of the electron Bernstein wave, the branches near the
resonance frequency, have stronger amplitudes.

The second case represents the process of a rf wave launching into a spatially nonuni-
form plasma from the low-density side. The density profile of the magnetized plasma
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w/Q, & T T E w/Q, sF T

sF

4E

Figure 4: Dispersion relations for perpendicularly propagating waves in magnetized plasmas for short wavelength.
The left one is the contour plot of Ey in spectrum space. The right one is the contour plot of Ey in spectrum

space. The abscissa denotes the value of kp,, the ordinate denotes the value of w /(.. Several horizonal dotted
lines marked the value of w;, wgr, wyH, wyH, and harmonic resonance frequencies w,; =n). In this case,
plasma parameters are set to fit Wy, =2.13(2.

in the wave propagation direction, y direction, is depicted by Fig. 5. The uniform back-
ground magnetic field is still along the z direction with the magnitude By =4T. The rf
wave is launched into the plasma from left, with the frequency w;, =1.5C),. The injection
wave is set to be linearly polarized in the vacuum. Its original polarization direction is
along the x direction. In Fig. 5, the position of the plasma boundary and the places where
the wave frequency equals the local right-handed cutoff frequency, w;, =wg, and the local
upper-hybrid resonance frequency, w;, = wyn, are indicated by vertical dotted lines. The
right-side boundary condition of this region is set to be the absorption layer condition,
avoiding wave reflection from this boundary.

102/m?

o

Ne

IS

launching wave

e N
ha o
e T T T T T T [ T T [T I T T[T T T o

[TSTRETITE INRTETRER] RITTURTITA INTRTETRTI SARTRNTEY

o

1 L L n L 1 L n 1 n 1
1c0 150
w=wg  W=wy,

50
Plasma
Boundary

Figure 5: Profile of electron number density 7, along y. The abscissa denotes the grid number in y direction. The
ordinate denotes electron number density. A rf wave with frequency w=1.5() is launched from the left boundary.
Three vertical dotted lines indicate the position of plasma boundary and where the wave frequency equals the
right-handed cutoff frequency, w;, =wpg, and upper-hybrid resonance frequency, w;, =wyy, respectively.
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Figure 6: Contour plots depict the volution of Ey and Ey in time and space. The abscissa denotes space
coordinate in y direction. The ordinate denotes time. Three vertical dotted lines correspond to the characteristic
positions in Fig. 5.

The evolution of the electric field perturbation with time and space are displayed in
Fig. 6. The behavior of the rf wave in the nonuniform plasma are precisely portrayed.
After entering the magnetized plasma, the wave propagates as a fast X wave. The E,
component appears in this region. At the cutoff position, where w;, =wg, the fast X wave
is reflected to the left. A portion of the wave energy penetrates the forbidden region for
the fast X wave, and continues propagating to the right through the resonance position
for the fast X wave, where w;, = wypn. On the right of the resonance position, where the
fast X waves with original frequency are allowed to propagate, electric field perturbation
with complex properties emerge.

To analyse the nonlinear phenomena in this process in detail, we check the spectrum
of the high-frequency electric field perturbations at different positions, see Fig. 7 and
Fig. 8. It’s clearly shown that the waves with the frequency w =2wj, arise at the posi-
tion y=70. The rf wave doesn’t form a steady wave pattern after crossing the resonance
region, which reflects the complexity of nonlinear nature of rf physics in the nonuniform
magnetized plasmas.
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Figure 7: Spectrum of Ey at different positions, y =5, y=>50, y=90, and y =120 respectively. The abscissa
denotes the ratio between frequency and electron gyro-frequency w/Q),. The frequency of injection wave is
Winp = 1-508-
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Figure 8: Spectrum of E, at different positions, y=5, y=>50, y=90, and y =120 respectively. The abscissa

denotes the ratio between frequency and electron gyro-frequency w/Q),. The frequency of injection wave is
Win= 1.50g.

4 Discussions

In this paper, the nonlinear PIC algorithm based on gyrocenter gauge kinetic theory for
high frequency electromagnetic waves in magnetized plasmas have been developed. The
manipulation of particle dynamics, the current density, and the perturbation field have
been discussed in detail. To successfully apply this algorithm, the reduction of numerical
noises is a technical but important problem. In PIC simulation, the sampling of parti-
cles on Lagrangian grids is very coarse because of the limit of now available computa-
tional ability [16]. So numerical noises may grow large enough to exceed the physical
perturbation fields and lead to the failure of simulations. In éf method, the equilibrium
quantities are set fixed and only perturbations are considered. This operation enhances
the efficiency of sampling. Instead, we employ another approach to solve the problem
of numerical noises in the nonlinear gyrocenter gauge algorithm. Main numerical noise
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in the full-f PIC simulation comes from the unperturbed trajectories of particles. In Gy-
roGauge code, when calculating current density, the numerical noises from unperturbed
trajectories are subtracted directly, because it’s easy to obtain the unperturbed trajectories
of the sampling particles. Besides, other methods, such as smoothing functions and the
sampling optimization, can also be utilized to reduce the numerical noise [17].

The numerical cases in Section 3 have verified the correctness and effectiveness of the
nonlinear algorithm based on gyrocenter gauge kinetic theory. Both linear and nonlinear
physics can be proper simulated. In the future work, we plan to apply this algorithm
to integrated rf wave simulation with real tokamak geometry. The nonlinear gyrocenter
gauge kinetic algorithm can be used to explore more high-frequency wave problems in
the research of magnetized plasmas.

Acknowledgments

This research is supported by ITER-China Program (2013GB111000, 2013GB112005,
and 2014GB124005), the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma
Physics (NSFC-11261140328), the National Natural Science Foundation of China (NSFC-
11305171, NSFC-11105065), the Fundamental Research Funds for the Central Universities
(WK2030020022), China Postdoctoral Science Foundation (2013M530296), and the CAS
Program for Interdisciplinary Collaboration Team.

References

[1] N.]J.Fisch. Confining a tokamak plasma with rf-driven currents. Phys. Rev. Lett., 41:873-876,
1978.

[2] N.]J. Fisch. Theory of current drive in plasmas. Rev. Mod. Phys., 59:175-234, 1987.

[3] V. E. Golant and V. I. Fedorov. RF plasma heating in toroidal fusion devices. Consultants
Bureau, New York, 1989.

[4] W. Hooke. Review of experiments on current drive in tokamaks by means of rf waves.
Plasma Phys. Contol. Fusion, 26:133, 1984.

[5] X.Y.Guan, H. Qin, J. Liu, and N. J. Fisch. On the toroidal plasma rotations induced by lower
hybrid waves. Phys. Plasmas, 20:022502, 2013.

[6] A.Ince-Cushman, J. E. Rice, M. Reinke, M. Greenwald, G. Wallace, R. Parker, C. Fiore, J. W.
Hughes, P. Bonoli, S. Shiraiwa, A. Hubbard, S. Wolfe, I. H. Hutchinson, E. Marmar, M. Bitter,
J. Wilson, and K. Hill. Observation of self-generated flows in tokamak plasmas with lower-
hybrid-driven current. Phys. Rev. Lett., 102:035002, 2009.

[7] J.E.Rice, A. C. Ince-Cushman, P. T. Bonoli, M. J. Greenwald, ]. W. Hughes, R. R. Parker, M. L.
Reinke, G. M. Wallace, C. L. Fiore, R. S. Granetz, A. E. Hubbard, J. H. Irby, E. S. Marmar,
S. Shiraiwa, S. M. Wolfe, S. J. Wukitch, M. Bitter, K. Hill, and J. R. Wilson. Observations of
counter-current toroidal rotation in alcator c-mod lhed plasmas. Nulc. Fusion, 49:025004,
2009.

[8] Z.Yu and H. Qin. Gyrocenter-gauge kinetic algorithm for high frequency waves in magne-
tized plasmas. Phys. Plasmas, 16:032507, 2009.



J. Liu, Z. Yu and H. Qin / Commun. Comput. Phys., 15 (2014), pp. 1167-1183 1183

[9] H. Qin, R. H. Cohen, W. M. Nevins, and X. Q. Xu. Geometric gyrokinetic theory for edge

plasmas. Phys. Plasmas, 14:056110, 2007.

[10] H. Qin and W. M. Tang. Pullback transformations in gyrokinetic theory. Phys. Plasmas,
11:1052, 2004.

[11] H. Qin, W. M. Tang, and W. W. Lee. Gyrocenter-gauge kinetic theory. Phys. Plasmas, 7:4433,
2000.

[12] H. Qin. Topics in kinetic theory. Fields Institute Communications, 46:171-192, 2005.

[13] R. A. Kolesnikov, W.W. Lee, and H. Qin. Electromagnetic high frequency gyrokinetic
particle-in-cell simulation. Commun. Comput. Phys., 4:171-192, 2008.

[14] R. A. Kolesnikov, W.W. Lee, H. Qin, and E. Startsev. High frequency gyrokinetic particle
simulation. Phys. Plasmas, 14:072506, 2007.

[15] T. D. Stix. Waves in Plasmas. American Institute of Physics, 1992.

[16] A.B. Birdsall and C. K. Langdon. Plasma Physics Via Computer Simulation. Elsevier Sci-
ence, New York, 1991.

[17] G. R. Liu and M. N. Liu. Smoothed Particle Hydrodynamics a Meshfree Particle Method.
World Scientific, 2003.



