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Abstract. This paper presents a new Lagrangian type scheme for solving the Euler
equations of compressible gas dynamics. In this new scheme the system of equations
is discretized by Runge-Kutta Discontinuous Galerkin (RKDG) method, and the mesh
moves with the fluid flow. The scheme is conservative for the mass, momentum and
total energy and maintains second-order accuracy. The scheme avoids solving the ge-
ometrical part and has free parameters. Results of some numerical tests are presented
to demonstrate the accuracy and the non-oscillatory property of the scheme.
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1 Introduction

In determining a numerical method for the multi-dimensional fluid flow, there are two
typical choices. One is the Lagrangian framework in which the mesh is embedded in the
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fluid and moves with it. And the other is the Eulerian framework in which the mesh
is treated as a fixed reference frame when the fluid moves. More generally, the grid
points may be moved in some arbitrarily specified way that it is called the Arbitrary
Lagrangian-Eulerian method (ALE). Most ALE algorithms consist of three steps. One is
the Lagrangian step in which the solution and the grid are updated. The second step is
a rezoning mesh in which the grid nodes are moved to a more optimal position and the
third is remapping values in which the Lagrangian solution values are transferred to the
new grid. In the numerical simulations of multi-material compressible fluid flows, the
difficulty is how to handle the moving medium interface. Since the Lagrangian method
can calculate fluid interface clearly, we present a new Lagrangian type scheme for solving
the Euler equations of compressible gas dynamics in this paper.

An important point of constructing a Lagrangian discrete scheme is to decide where
to locate degrees of freedom. It is generally separated into two kinds. One is the stag-
gered scheme in which the velocity is defined at the nodes while the other variables are
located inside the cells. This type of scheme was first introduced by von Neumann and
Richtmyerfor in [2] for one-dimensional flows. The two-dimensional scheme was ex-
tended by Wilkins in [23] based on an internal energy formulation. The scheme was not
conservative and admitted numerical spurious modes. In spite of these drawbacks, the
scheme has been widely used for many years. Of course, many improvements have been
made in order to solve the previous problems. Caramana and Shashkov constructed a
staggered scheme which ensures the conservation of total energy in [1]. In [3], based on
a mimetic finite difference scheme, Campbell and Shashkov improved the discretization
of artificial viscosity so that the staggered Lagrangian scheme is an accurate and robust
method. The other is the cell-centered scheme in which all variables are defined inside
the cells. Here we concentrate our interests in the cell-centered schemes. This is because
the staggered Lagrangian schemes use different control volumes for primary variables,
it is very difficult to construct coherent high-order schemes for all these variables. On
the contrary, the cell-centered Lagrangian schemes use only one control volume for pri-
mary variables, thus it is possible to construct coherent high-order schemes for all these
variables.

In general, there are two kinds of the cell-centered Lagrangian schemes.

The first is that the mesh moves with the flow velocity (e.g. [4–8]). In [4], Cheng
and Shu developed a class of Lagrangian cell-centered schemes on quadrilateral meshes.
Their schemes are based on the finite volume method and achieve a higher order ac-
curacy by using the high-order ENO reconstruction. The schemes are conservative for
the density, momentum and total energy, are essentially non-oscillatory, have free pa-
rameters, and can maintain formal high order accuracy both in space and time. But the
ENO reconstruction requires the information from the surrounding cells. Therefore, this
method has less compactness for high order schemes. In [6], Maire et al. developed a
new Lagrangian cell-centered scheme. In their scheme the vertex velocities and numer-
ical fluxes through the cell interfaces are not computed independently as usual but in
a consistent manner. The scheme feature is the introduction of four pressures on each
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edge, two for each node on each side of the edge. In the limit of a one-dimensional flow
computed by their two-dimensional solver, the scheme recovers the classical Godunov
approximate Riemann solver. This scheme is first order accurate.

The second is that the mesh is fixed in the Lagrangian space (e.g. [9–12, 19]). De-
sprés and Mazeran proposed a new and canonical way of writing the equations of gas
dynamics in a fully Lagrangian form in [19]. They showed that the physical part is sym-
metrizable and that the weak hyperbolicity is due to shear contact discontinuities. Based
on this formulation, a new conservative and entropy consistent Lagrangian scheme in
two-dimension was obtained by using the finite volume method. The node velocity is
computed in a coherent manner with the face fluxes. However, it appears that the scheme
leads to a nodal velocity depending on the cell aspect ratio in the case of one-dimensional
flows. In [9], Hui et al. introduced a unified coordinate system. In this system the flow
variables are considered to be functions of time and of some permanent identification of
pseudo-particles which move with velocity hU, where U is the velocity of fluid particles,
and h is a parameter. This turns out to be a unified description, ranging from Eulerian
when h=0 to Lagrangian when h=1, and the freedom in choosing h makes it possible to
avoid the disadvantages of excessive diffusion across slip lines in the Eulerian descrip-
tion and of severe grid deformation in the Lagrangian description. But this method has to
choose a proper h in every test case. In [10], Jia and Zhang solved a fully Lagrangian form
of the gas dynamics equations which contains the physical part and the geometrical part.
They discretized this system in the Lagrangian space by discontinuous Galerkin method
using a spectral basis. The feature is that the vertex velocities and numerical fluxes are
computed by using the method in [6]. In [12], Zhao and Yu also used discontinuous
Galerkin method to solve the gas dynamics equations which contains the physical part
and the geometrical part, and they used the Lax-Friedriches flux in their DG scheme. The
schemes in [10] and [12] can maintain high-order accuracy both in space and time and has
free parameter, but their system has eight equations and it is weakly hyperbolic system.

On the basis of previous studies, in this paper we give a new Lagrangian scheme for
solving the compressible Euler equations. In this new scheme the system of equations is
discretized by the RKDG finite element method. The mesh moves with the fluid flow and
the scheme uses the Lax-Friedrichs and the HLLC numerical flux. In order to control spu-
rious numerical oscillation near the discontinuity, we use a slope limiter in the scheme.
The new scheme is conservative for the mass, momentum and total energy. The scheme
avoids solving the geometrical part, and has no parameters to be tuned for individual test
cases. Several two-dimensional numerical examples show that our scheme can achieve
uniformly second-order accuracy on moving and distorted Lagrangian meshes. More-
over, it is essentially non-oscillatory.

The paper is organized as follows. In Section 2 we recall the gas dynamics equations
written in the Lagrangian form, and give their weak form. In Section 3 we use the RKDG
method to solve this weak form. In Section 4 we validate our new scheme with several
test cases which demonstrate the non-oscillatory property and the accuracy. Finally, we
give concluding remarks in Section 5.
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2 Derivation of the Euler equations in the Lagrangian formalism

In this section we recall briefly how compressible Euler equations are written in the La-
grangian formalism which follow the approach developed in [6], and give its weak form.

Let D be a region filled with an inviscid fluid. Considering a fluid particle, its initial
position is the point M, and at time t >0 it is moving through the point m. The coor-
dinates of point M are denoted by (X,Y) and are named Lagrangian coordinates. The
coordinates of point m are denoted by (x,y) and are named Eulerian coordinates. The
Eulerian coordinates are obtained from the trajectory equations

dx

dt
=u(t,x,y), x(0,X,Y)=X, (2.1a)

dy

dt
=v(t,x,y), y(0,X,Y)=Y, (2.1b)

where V=(u,v) is the fluid velocity. If the velocity field is smooth enough, there exists a
unique smooth solution (x(t,X,Y),y(t,X,Y)). The map is defined as

χt : (X,Y)→ (x,y), (2.2)

where (x,y) is the unique solution of (2.1). With fixed time t>0, this map advances each
fluid particle from its position at time t=0 to its position at time t. If Ω denotes a region
in D, then χt(Ω)=W is the volume Ω moving with the fluid. We assume that for each
t>0, χt is invertible. The Jacobian of the map is

J(X,Y,t)=

∣∣∣∣∣∣∣

∂x

∂X

∂y

∂X
∂x

∂Y

∂y

∂Y

∣∣∣∣∣∣∣
. (2.3)

Since J(X,Y,0)=1, and χt is invertible, for each t>0, we have J(X,Y,t)>0. We know that
the time differentiation of (2.3) is

dJ

dt
− J∇·V =0, (2.4)

where ∇· denotes the divergence operator, namely, ∇·V= ∂u
∂x +

∂v
∂y .

Let us consider a flow variable ϕ : ϕ≡ϕ(x,y,t) depending on the Eulerian coordinates.
The time differentiation of ϕ is

dϕ

dt
=

∂ϕ

∂t
+

dx

dt

∂ϕ

∂x
+

dy

dt

∂ϕ

∂y
.

By using (2.1) we have
dϕ

dt
=

∂ϕ

∂t
+∇ϕ·V, (2.5)
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where ∇ denotes the gradient operator, namely ∇ϕ= ( ∂ϕ
∂x ,

∂ϕ
∂y )

T. Finally, by combining

(2.4) and (2.5) we can have

d

dt
(ϕJ)= J

[ ∂ϕ

∂t
+∇·(ϕV)

]
. (2.6)

The system of compressible Euler equations (see [20]) is





∂ρ
∂t +∇·(ρV)=0,
∂
∂t (ρV)+∇·(ρV⊗V)+∇p=0,
∂
∂t (ρE)+∇·(ρEV)+∇·(pV)=0,

(2.7)

where ρ is the density, p is the press, and E is the specific total energy. We denote the
specific internal energy by ε=E− 1

2‖V‖2. The thermodynamic closure of (2.7) is given by
the equation of state p≡ p(ρ,ε).

Now, by using (2.6) for the conservative variables ϕ=ρ,ρV,ρE and substituting them
into (2.7), we get the compressible Euler equations in Lagrangian form as





d
dt (ρJ)=0,
d
dt (ρJV)+ J∇p=0,
d
dt (ρJE)+ J∇·(pV)=0.

(2.8)

We notice that (2.8) is only a semi-Lagrangian formula since the gradient and divergence
operate on variables which depend on Eulerian coordinates. In order to write (2.8) in
a full Lagrangian way, one has to express the gradient and divergence operators with
Lagrangian coordinates using the map χt.

In order to use the discontinuous Galerkin (DG) method to perform the space dis-
cretization in the next section, we give the weak form of system (2.8). That is, both
sides of Eq. (2.8) are multiplied by the function ψ(X,Y)∈ L2(Ω) and integrated on the
Lagrangian domain Ω:





d
dt

∫
Ω

ρJψdΩ=0,
d
dt

∫
Ω

ρJVψdΩ+
∫

Ω
J∇pψdΩ=0,

d
dt

∫
Ω

ρJEψdΩ+
∫

Ω
J∇·(pV)ψdΩ=0.

(2.9)

Since χt is invertible, we have

ψ(X,Y)=ψ(χ−1
t (x,y))=ψ·χ−1

t (x,y),

and ψ(X,Y)∈L2(Ω), χ−1
t is invertible, so

ψ·χ−1
t (x,y)∈L2(W).



Z. Z. Li et al. / Commun. Comput. Phys., 15 (2014), pp. 1184-1206 1189

We set ψ·χ−1
t (x,y)= ϕ(x,y). By knowing that χt(Ω)=W and J ·dΩ=dW, we can get





d
dt

∫
W

ρϕdW=0,
d
dt

∫
W ρVϕdW+

∫
W∇pϕdW=0,

d
dt

∫
W ρEϕdW+

∫
W∇·(pV)ϕdW =0,

(2.10)

where V=(u,v) is the velocity. We call that (2.10) is the weak form of (2.8). We notice that
d
dt ψ(X,Y)=0, Eq. (2.10) are obtained by performing a mapping transformation on (2.9).

We set ϕ=1 and use Green’s formula, then (2.10) becomes





d
dt

∫
W ρdW =0,

d
dt

∫
W ρVdW+

∫
∂W pndl=0,

d
dt

∫
W ρEdW+

∫
∂W pV ·ndl=0,

(2.11)

where n is the unit outward normal vector of ∂W. This system (2.11) represents the con-
servation of mass, momentum and energy so that the system (2.10) also satisfies the con-
servation of mass, momentum and energy.

3 RKDG method

3.1 Spatial discretization

In this section, we present a spatial discretization of (2.10) by using the DG method.
Note that Wt=0 = Ω, Ω is discretized into M×N computational cells. As time pro-

gresses, we use the velocity at the vertex to get the new fluid region W and the new parti-
tion {Wij , i=1,··· ,M, j=1,··· ,N}. The four vertices of cell Wij are {(xi,j,yi,j), (xi+1,j,yi+1,j),
(xi+1,j+1,yi+1,j+1), (xi,j+1,yi,j+1)}.

We define a finite-element space consisting of piecewise polynomials

Vk
h =

{
ϕh∈L2(W) : ϕh|Wij

∈Pk(Wij); 1≤ i≤M, 1≤ j≤N
}

,

where Pk(Wij) denotes a set of polynomials of degree up to k defined on the cell Wij. We

use the DG method to solve (2.10) as follows: find the approximate function Uh∈Vk
h such

that, for all test functions ϕh∈Vk
h and all 1≤ i≤M,1≤ j≤N, we have





d
dt

∫
Wij

ρh ϕhdWij =0,
d
dt

∫
Wij

(ρV)h ϕhdWij+
∫

Wij
∇ph ϕhdWij =0,

d
dt

∫
Wij

(ρE)h ϕhdWij+
∫

Wij
∇·(pV)h ϕhdWij =0.

(3.1)

where Uh=(ρh,(ρV)h,(ρE)h)
t=(ρh,(ρu)h,(ρv)h,(ρE)h)

t, and we set

F(U)=(0,p,0,pu)t, G(U)=(0,0,p,pv)t .
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Then (3.1) can be rewritten as

d

dt

∫

Wij

Uh ϕhdWij+
∫

Wij

∇·(F(Uh),G(Uh))ϕhdWij =0. (3.2)

By using Green’s formula we get

d

dt

∫

Wij

Uh ϕhdWij =
∫

Wij

(F(Uh),G(Uh))·∇ϕhdwij−
∫

∂Wij

(F,Ĝ)·nϕhdl, (3.3)

where n=(nx,ny) is the unit outward normal vector of ∂Wij,(F,Ĝ)·n is the numerical flux,

which is a single-valued function defined at the cell interfaces. Here we set Ĥ=(F,Ĝ)·n.
In this paper, we use the following two typical numerical fluxes:

(1) The L-F (Lax-Friedrichs) flux

ĤWij
= ĤWij

(U−
h ,U+

h )=
1

2
[(F(U−

h ),G(U−
h ))·n+(F(U+

h ),G(U+
h ))·n−αij(U

+
h −U−

h )],

where U±
h are the values of Uh inside and outside the cell Wij, and αij is taken as an

upper bound for the eigenvalues of the Jacobian. Here in the Lagrangian formulation,
αij =max(c+ij ,c−ij ), c±ij are the values of the sound speed inside and outside the cell.

(2) The HLLC (Harten-Lax-van Leer contact wave) flux.

We refer to [14] for the details of the HLLC flux. This flux has been successfully used
to compute the compressible Euler equations in the Lagrangian framework [4].

3.2 The basis functions

Let the Taylor basis be a set of basis functions of Vk
h . For the P1 case, assuming that uh is

a component of Uh, we use the following expression for the approximate solution

uh(x,y,t)= ∑
l=1,3

uijl(t)Blij(x,y), (x,y)∈Wij, (3.4)

where the basis functions are

B1ij(x,y)=1, B2ij(x,y)=
x−xc

∆x
, B3ij(x,y)=

y−yc

∆y
.

Here (xc,yc) is the centroid of the cell Wij. ∆x = 0.5(xmax−xmin), ∆y = 0.5(ymax−ymin),
and xmax, xmin, ymax and ymin are the maximum and minimum coordinates in the cell Wij

in x-, and y-direction, respectively.
Because for all test functions ϕh ∈Vk

h , (3.3) is right. We substitute (3.4) into (3.3), and
set ϕh=Bmij, m=1,2,3, then we have

d

dt
Mij ·uhij= L(Uh), (3.5)
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where uhij =(uij1,uij2,uij3), Mij =
∫

Wij
BlijBmijdWij (l = 1,2,3; m= 1,2,3) denotes the mass

matrix, and L is a discrete spatial operator.
Notice that Pk(Wij) and Blij (l=1,2,3) are defined in the cell Wij. As time progresses,

Wij is updated, so Pk(Wij) and Blij (l=1,2,3) should be updated at every time step. The
detail is described in Section 3.4.

3.3 The determination of the vertex velocity

In the Lagrangian formula, the grid moves with the fluid velocity, thus we would need to
know the velocity at the vertex to move the grid. Since the velocity is a deduced quantity,
we would need to obtain it from the conserved variables. In the following we describe
how to determine the vertex velocity in our scheme, which follows the approach in [4].

Considering a vertex (i, j) shared by four edges, we give these four edges a serial
number k=1,2,3,4, and define the direction of each edge to be the direction of the incre-
mental index i or j, for example the direction of the edge with two endpoints (i−1, j) and
(i, j) is from (i−1, j) to (i, j). For the piecewise-constant approximation, we use the cell-
averaged solution as left and right variables (ρk±,(ρu)k±,(ρv)k±,(ρE)k±) at the point (i, j)
of the edge k. For the linear piecewise polynomial approximation, we use the expansion
formulation (3.4) of left and right cells to compute the values (ρk±,(ρu)k±,(ρv)k± , (ρE)k±)
at the point (i, j) of the edge k. Then at the point (i, j) of each edge k we can obtain the
left value of velocity (uk−,vk−)=((ρu)k−/ρk−,(ρv)k−/ρk−) and the right value of velocity
(uk+,vk+)=((ρu)k+/ρk+,(ρv)k+/ρk+).

We then split the left and right velocities into normal and tangential components
along the edge k. Let (nk

x,nk
y) be the clockwise unit normal of the edge k, wk−

t and wk+
t

be their tangential components, and wk−
n and wk+

n be their normal components. Then we
define the tangential velocity of the vertex (i, j) along the edge k

wk
t =

1

2
(wk−

t +wk+
t ), k=1,2,3,4. (3.6)

As to the normal velocity, we define it as the Roe average of the normal velocities from
its two sides

wk
n=

√
ρ−wk−

n +
√

ρ+wk+
n√

ρ−+
√

ρ+
, k=1,2,3,4. (3.7)

Thus by the formulas (3.6) and (3.7), we can get four x-velocities and y-velocities at the
vertex (i, j) which have the following form

wk
x=wk

nnk
x−wk

t nk
y, wk

y=wk
nnk

y+wk
t nk

x, k=1,2,3,4. (3.8)

Finally, the velocity at the vertex (i, j) is obtained as follows

ui,j =
1

4
(w1

x+w2
x+w3

x+w4
x), vi,j =

1

4
(w1

y+w2
y+w3

y+w4
y). (3.9)
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3.4 Time discretization

The time marching for the semi-discrete scheme (3.5) is implemented by a class of Runge-
Kutta (RK) type methods [21]. Since the mesh changes with the time advancing in the
Lagrangian simulation, the velocity at the position of each vertex and the size of each cell
needs to be updated at each RK stage. In this section the variables with the superscripts
n and n+1 represent the values of the corresponding variables at the nth and n+1th time
steps, respectively.

For the first-order spatial discretization, the corresponding time discretization uses
the first-order forward Euler step. Now the basis function is Bij =1. So

M
ij
=

∫

W
ij

1·1dW
ij
=S

ij
,

where Sij is the area of cell Wij. We know the value of each variable at the nth time step.
By using the vertex velocity we get

xn+1
ij = xn

ij+un
ij∆tn, yn+1

ij =yn
ij+vn

ij∆tn, i=1,··· ,M+1, j=1,··· ,N+1,

thus the four vertices of cell Wn+1
ij

are
{
(xn+1

i,j ,yn+1
i,j ), (xn+1

i+1,j,y
n+1
i+1,j), (xn+1

i+1,j+1,yn+1
i+1,j+1),

(xn+1
i,j+1,yn+1

i,j+1)
}

. Then we can get

Mn+1
ij

=
∫

Wn+1
ij

1·1dWn+1
ij

=Sn+1
ij

=
1

2
[(xn+1

i+1,j+1−xn+1
i,j )(yn+1

i,j+1−yn+1
i+1,j)−(xn+1

i,j+1−xn+1
i+1,j)(y

n+1
i+1,j+1−yn+1

i,j )].

Therefore, the first-order time discretization of (3.5) is

Mn+1
ij ·un+1

hij =Mn
ij ·u

n
hij+∆tn L(Un

h ). (3.10)

For the second-order spatial discretization, the corresponding time discretization uses
the second-order RK method. We know the value of each variable at the nth time step.
The time marching is as follows.

Step 1: Using the method in Section 3.3, we get the vertex velocity (u(1)
ij

,v(1)
ij

), then

x
(1)
ij = xn

ij+u
(1)
ij ∆tn, y

(1)
ij =yn

ij+v
(1)
ij ∆tn; i=1,··· ,M+1, j=1,··· ,N+1.

Through the four vertices
{
(x

(1)
i,j ,y

(1)
i,j ), (x

(1)
i+1,j,y

(1)
i+1,j), (x

(1)
i+1,j+1,y

(1)
i+1,j+1), (x

(1)
i,j+1,y

(1)
i,j+1)

}
of

W
(1)
ij , we can get (x

(1)
c ,y

(1)
c ), ∆x(1) and ∆y(1). Then

B
(1)
1ij (x,y)=1, B

(1)
2ij (x,y)=

x−x
(1)
c

∆x(1)
, B

(1)
3ij (x,y)=

y−y
(1)
c

∆y(1)
,
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M(1)
ij

=
∫

W
(1)
ij

B
(1)
lij B

(1)
mijdW(1)

ij
,

M(1)
ij

·u(1)
hij

=Mn
ij ·u

n
hij+∆tn L(Un

h ).

Step 2: Using variables obtained from Step 1 and the method in Section 3.3, we get the
vertex velocity (un

ij
,vn

ij
), then

xn+1
ij =

1

2
xn

ij+
1

2
(x

(1)
ij +un

ij∆tn), yn+1
ij =

1

2
yn

ij+
1

2
(y

(1)
ij +vn

ij∆tn), i=1,··· ,M+1, j=1,··· ,N+1.

Through the four vertices
{
(xn+1

i,j ,yn+1
i,j ), (xn+1

i+1,j,y
n+1
i+1,j), (xn+1

i+1,j+1,yn+1
i+1,j+1), (xn+1

i,j+1,yn+1
i,j+1)

}

of Wn+1
ij , we can get (xn+1

c ,yn+1
c ), ∆xn+1 and ∆yn+1. Then

Bn+1
1ij (x,y)=1, Bn+1

2ij (x,y)=
x−xn+1

c

∆xn+1
, Bn+1

3ij (x,y)=
y−yn+1

c

∆yn+1
,

Mn+1
ij =

∫

Wij

Bn+1
lij Bn+1

mij dWij, (l=1,2,3; m=1,2,3),

Mn+1
ij ·un+1

hij =
1

2
Mn

ij ·u
n
hij+

1

2
(M(1)

ij
·u

(1)
hij+∆tL(U

(1)
h )).

The time step ∆tn is chosen as follows

∆tn =λ· min
i=1,···,M; j=1,···,N

(∆ln
ij/cn

ij), (3.11)

where ∆ln
ij is the shortest edge length of the cell Wij, and cn

ij is the sound speed within this

cell. The Courant number λ in the following tests is set to be 0.1 unless otherwise stated.

3.5 Boundary conditions

Usually boundary conditions are expected to provide numerical fluxes at the boundaries.
We add some fictitious cells adjacent to the boundary real cells, and give the values of
variables in the fictitious cells according to the boundary conditions, then we can com-
pute the boundary fluxes as done for the interior cells. In this section, we prescribe fic-
titious data values in the fictitious cells, and the variables with the superscripts of f and
r represent the values of the corresponding variables in fictitious cells and the real cells,
respectively. Here we only consider two types of boundaries: prescribed normal velocity
and transmissive boundaries.

Prescribed normal velocity. Let w∗
n be the value of the prescribed normal velocity along

the boundary edge. Let (w
f
n,w

f
t ),(w

r
n,wr

t) be the normal and tangential velocity along the
boundary edge for the fictitious cell and the real cell, respectively. Then we set

w
f
n=2w∗

n−wr
n, w

f
t =wr

t .
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Thus we can get the x-velocity and the y-velocity:

u
f
x =w

f
nnx−w

f
t ny, u

f
y =w

f
nny+w

f
t nx,

where (nx,ny) is the unit normal vector of the fictitious cell. We also set

ρ f =ρr , e f = er,

where ρ f and ρr are the density, e f and er are the specific internal energy. Then we can
get the specific total energy

E f = e f +
1

2
u

f
xu

f
x+

1

2
u

f
yu

f
y .

Thus we get the conserved variables (ρ f ,ρ f u
f
x,ρ f u

f
y ,ρ f E f ).

Transmissive boundaries. For a transmissive boundary we give the boundary condition
as follows:

ρ f =ρr , u
f
x =ur

x, u
f
y =ur

y, e f = er .

3.6 The local slope limiting

In the case of piecewise-constant approximations, the artificial viscosity is introduced by
the numerical flux which is enough to keep the stability. But for high-order piecewise
polynomial approximations, the influence of the numerical fluxes can not be enough to
guarantee the absence of spurious oscillations of the scheme. To enhance the stability of
the scheme and eliminate possible spurious oscillations in the approximate solution, we
introduce a local slope limiting developed in [21].

The slope limiting is performed on uij2 and uij3 in (3.4). By using the differences of
the means. For a scalar equation, uij2 would be limited by

ũij2= m̄(uij2,ūi+1,j−ūi,j,ūi,j−ūi−1,j), (3.12)

where the function m̄ is the TVB corrected minmod function defined by

m̄(a1,a2,··· ,an)=

{
a1, if |a1|≤H ·∆x2,
m(a1,a2,··· ,an), else,

(3.13)

with the minmod function

m(a1,a2,··· ,an)=

{
s·min |ai|,

i

if s= sign(a1)= ···= sign(an),

0, else.

For an estimate of the TVB constant H in (3.13), see [15]. Similarly, uij3 is limited by

ũij3= m̄(uij3,ūi,j+1−ūi,j,ūi,j−ūi,j−1), (3.14)
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just with a change of ∆x to ∆y in (3.13).

For the system, when we obtain the physical variables and the moving control volume
Wn+1 at the time t= tn+1, we perform the limiting in the local characteristic variables at
this fixed time t = tn+1 and this fixed fluid region Wn+1 (see [21]). Here we just give a
simple description.

The Euler equations (2.7) can be rewritten as

Ut+ f (U)x+g(U)y=0,

where

f (U)=(ρu,ρu2+p,ρuv,(ρE+p)u)t ,

g(U)=(ρv,ρuv,ρv2+p,(ρE+p)v)t .

To limit the vector Uij2 in the element Wn+1
ij , we proceed as follows:

(1) Find the matrix R and its inverse R−1 which diagonalize the Jacobian evaluated at the
mean in the element Wn+1

ij in the x-direction,

R−1 ∂ f (Ūij)

∂U
R=Λ,

where Λ is a diagonal matrix containing the eigenvalues of the Jacobian.

(2) Transform all quantities needed for the limiting, i.e., the three vectors Uij2, Ūi+1,j−Ūi,j,
and Ūi,j−Ūi−1,j, to the characteristic fields. This is achieved by left-multiplying these

three vectors by R−1.

(3) Apply the scalar limiter (3.12) to each of the components of the transformed vectors.

(4). The result is transformed back to the original space by left multiplying R on the left.

4 Numerical results

It is much more difficult to simulate a 2D problem than to simulate a 1D one in the La-
grangian framework, mainly because of the mesh distortion in multi-dimensions. In this
section, we present several tests in order to validate our numerical scheme. We use the
L-F flux and the HLLC flux in our scheme. Their results are similar, so we mainly show
the results obtained by using L-F flux.

4.1 Accuracy test

First we compute two problems to check the accuracy of our schemes.
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Example 4.1 (The two-dimensional low-density flow problem). The initial condition is
set to be

ρ0(x,y,0)=1+0.99·sin(2π(x+y)), u0(x,y,0)=1,

v0(x,y,0)=1, p0(x,y,0)=1.

The domain is taken as [0,1]×[0,1], and periodic boundary conditions in both directions
are used. The exact solution is

ρ(x,y,t)=1+0.99·sin(2π((x+y−2t))), u(x,y,t)=1,

v(x,y,t)=1, p(x,y,t)=1.

The errors and the convergence order of our first, second-order Lagrangian schemes with
L-F flux at t = 0.1 are listed in Tables 1 and 2, respectively. Through the convergence
results, we can see the desired first and second-order accuracy.

Table 1: The density results of first-order scheme for the low-density problem.

P0 L1 L2 L∞

Grids error order error order error order

20×20 0.15808 0.17768 0.31690

40×40 8.599E-002 0.8784 9.917E-002 0.8413 0.201695 0.6518

80×80 4.5288E-002 0.9251 5.4712E-002 0.8581 0.126958 0.6678

160×160 2.3411E-002 0.9519 3.0040E-002 0.8649 7.9326E-002 0.6784

Table 2: The density results of second-order scheme for the low-density problem.

P1 L1 L2 L∞

Grids error order error order error order

20×20 8.7791E-003 1.1768E-002 3.2857E-002

40×40 1.9441E-003 2.1750 3.1439E-003 1.9043 1.1317E-002 1.5377

80×80 4.5108E-004 2.1076 7.8545E-004 2.0010 3.4939E-003 1.6955

160×160 9.8273E-005 2.1985 1.7019E-004 2.2063 8.9011E-004 1.9728

Example 4.2 (The two-dimensional periodic vortex problem). The periodic vortex prob-
lem is described as follows: The mean flow is ρ=1, p=1 and (u,v)=(1,1) (diagonal flow).
We add to this mean flow an isentropic vortex perturbation in (u,v) and the temperature
T= p

ρ , no perturbation in the entropy S= p
ργ , that is

(δu,δv)=
ε

2π
e0.5(1−r2)(−ȳ, x̄),

δT=−
(γ−1)ε2

8γπ2
e(1−r2), δS=0,
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Table 3: The density results of first-order scheme for the vortex problem.

P0 L1 L2 L∞

Grids error order error order error order

20×20 1.2260E-002 3.2825E-002 0.2838

40×40 7.4237E-003 0.7237 2.0169E-002 0.7026 0.1831 0.6323

80×80 4.1550E-003 0.8373 1.1298E-002 0.8359 0.1006 0.8640

160×160 2.2127E-003 0.9089 6.0107E-003 0.9105 5.3096E-002 0.9219

Table 4: The density results of second-order scheme for the vortex problem.

P1 L1 L2 L∞

Grids error order error order error order

20×20 3.3967E-003 8.3551E-003 8.2688E-002

40×40 7.8493E-004 2.1135 1.8629E-003 2.1650 2.3617E-002 1.8078

80×80 1.8907E-004 2.0536 4.4571E-004 2.0634 5.5510E-003 2.0890

160×160 4.6594E-005 2.0207 1.0968E-004 2.0227 1.3550E-003 2.0343

where (x̄,ȳ)=(x−5,y−5), r2= x̄2+ ȳ2, and the vortex strength is ε=5.

The domain is taken as [0,10]×[0,10], and periodic boundary conditions in both di-
rections are used. It can be readily verified that the Euler equations with the above initial
conditions admit an exact solution which is convected with speed (1,1) in the diagonal
direction. The errors and the convergence order of our first, second-order Lagrangian
schemes with L-F flux at t=1.0 are listed in Tables 3 and 4, respectively. The initial mesh
and the mesh at t = 1.0 are displayed in Fig. 1. Through the convergence results and
Fig. 1, we can see the desired first and second-order accuracy on moving and distorted
Lagrangian meshes.
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Figure 1: The mesh of the vortex problem. Left: initial mesh; Middle: the mesh of first-order accuracy at
t=1.0; Right: the mesh of second-order accuracy at t=1.0.
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4.2 Non-oscillatory tests

We compute five problems to check the non-oscillatory property of our scheme.

Example 4.3 (Two-dimensional Sod’s shock tube problem [12]). This problem can assess
the reasonableness and non-oscillatory property of our schemes. Its initial condition is as
follows

(ρL,uL,vL,pL)=(1.0,0,0,1.0), x≤0.5;

(ρR,uR,vR,pR)=(0.125,0,0,0.1), x>0.5.

The domain is taken as [0,1]×[0,1]. The problem can be interpreted as the two-dimension
form of one-dimensional Sod’s shock tube problem. Let nx and ny be the number of
cells in the x- and y-directions. We set nx = 200 and ny = 10. In Fig. 2, we present the
results by using the L-F flux at t = 0.2, y = 0.5, and we plot the piece-wise straight line
connecting the two ends of each cell in x-direction for the density and pressure results of
the second scheme. From the results we can see that the second-order scheme satisfy the
non-oscillatory property.
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Figure 2: The results of the Sod problem. Left: first-order; Right: second-order. Top: density; Bottom: press.

Example 4.4 (The Saltzman problem [18]). This is a well known difficult test to validate
the robustness of a Lagrangian scheme when the mesh is not aligned with the fluid flow.
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Figure 3: The initial computational mesh of the Saltzman problem.

The problem consists of a rectangular box whose left end is a piston. The piston moves
into the box with a constant velocity of 1.0. The one-dimensional symmetry is broken by
the initial mesh composed of 100×10 non-uniform cells defined as follows:

x(i, j)=(i−1)∆x+(11− j)sin(0.01π(i−1))∆y,

y(i, j)=(j−1)∆y,

where ∆x=∆y= 0.01. The initial mesh is displayed in Fig. 3. Note that the initial mesh
is deliberately distorted to set it as a more demanding test case. The working fluid is
described by an ideal gas with γ= 5/3. The initial conditions involve a stationary gas
with a unity density and an internal energy of 10−4. Reflective boundary conditions are
used on the right, upper and lower boundaries. For this test case, it is necessary to first
use a smaller Courant number in order to maintain stability. The Courant number λ is set
to be 0.01 initially and returns to be 0.1 after t=0.01. Under such conditions, a first shock
propagates toward the right with a velocity almost equal to 1.333; the post shock state is
defined by a density of almost 4, a pressure of almost 1.333 and a velocity of almost 1. The
results by using the HLLC flux are shown in Fig. 4 at time t=0.75. At this time, the shock

Figure 4: The results of the Saltzman problem at t=0.75. Left: mesh; Right: density contours. Top: first-order;
Bottom: second-order.
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wave hits the face x= 1. We can observe that the numerical result of our second-order
scheme is well except for the region near the up and bottom wall boundaries where the
results are affected by the boundary conditions.

Example 4.5 (The Sedov blast wave problem [12]). We consider the propagation of a
high intensity cylindrical shock wave generated by a strong explosion; see, for instance,
[12]. The initial density is unity and the initial velocity is zero. The internal energy is
zero except in the regional center where it has a value of 1. The domain is taken as
[−1.21,1.21]×[−1.21,1.21], and the mesh is of 121×121 cells. All the boundary conditions
are wall conditions. The analytical solution gives a shock at radius unity at time unity
with a peak density of 6. Due to the symmetry of the problem, we only give the grid and
the density contours of the first quadrant at top and middle of Fig. 5, respectively. But
we display the result of the density in all the cells with respect to the cell center radius
at the bottom of Fig. 5. In Fig. 6 we give the density profiles of the x axis of our second-
order scheme and the same order scheme in [12]. From the direct comparison with the
exact solution, we can clearly see that our second-order scheme is more precise than the
scheme in [12].

Example 4.6 (Explosion problem [17]). The domain is taken as [0,2]×[0,2]. Its initial
condition is as follows

{
(ρL,uL,vL,pL)=(1.0,0,0,1.0), (x−1)2+(y−1)2 ≤0.25,
(ρR,uR,vR,pR)=(0.125,0,0,0.1), (x−1)2+(y−1)2

>0.25.
(4.1)

All the boundary conditions are wall conditions. We remark that in initializing the ex-
plosion problems, we modify the initial data on quadrilateral cells cutting the initial dis-
continuity, by assigning modified area-weighted values to the appropriate cells at the
initial time t=0. This procedure avoids forming small amplitude waves created at early
times by the staircase data. Fig. 7 shows the results of our scheme by using the L-F flux
with 200×200 initially uniform cells at t = 0.25. The up pictures in Fig. 9 show the re-
sults of the WAF (Weighted Average Flux) scheme developed in [17] with 200×200. In
order to obtain the convergence of our scheme, we compute this problem by using the
WAF scheme with 1000×1000 cells as the reference “exact” solution. Fig. 8 shows a com-
parison between the reference “exact” solution and our solutions with the three grids
100×100, 200×200 and 300×300 along the radial line which towards the origin (1,1).
We can observe the convergence of the numerical solutions toward the reference “exact”
solution.

Example 4.7 (Implosion problem [17]). The domain is taken as [0,2]×[0,2]. Its initial
condition is as follows

{
(ρL,uL,vL,pL)=(0.125,0,0,0.1), (x−1)2+(y−1)2≤0.25,
(ρR,uR,vR,pR)=(1.0,0,0,1.0), (x−1)2+(y−1)2

>0.25.
(4.2)
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Figure 5: The results of the Sedov problem by using the L-F flux at t=1.0. Left: first-order; Right: second-order.
Top: mesh; Middle: density contours; Bottom: density as a function of the radius in all the cells.
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All the boundary conditions are wall conditions. We modify the initial data on quadri-
lateral cells cutting the initial discontinuity same as the method in Example 4.6. This
problem is created by reversing the initial data of (4.1). Now shock focusing takes place
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Figure 9: The results of the WAF scheme. Left: density; Right: press. Up: explosion problem. Down: implosion
problem.

as part of the solution. Fig. 10 shows the results of our scheme by using the L-F flux with
200×200 initially uniform cells at t= 0.25. The down pictures in Fig. 9 show the results
of the WAF(Weighted Average Flux) scheme developed in [17] with 1000×1000 initially
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Figure 10: The results of our scheme for the implosion problem. Left: first-order; Right: second-order. Top:
density; Bottom: press.
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uniform cells at t = 0.25 as the reference “exact” solution. Fig. 11 shows a comparison
between the reference “exact” solution and our solutions with the three grids 100×100,
200×200 and 300×300 along the radial line which towards the origin (1,1). We can ob-
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serve the convergence of the numerical solutions toward the reference “exact” solution,
and the numerical result of the second-order scheme is obviously much better than that
of the first-order scheme.

5 Concluding remarks

In this paper we have proposed a new Lagrangian type scheme to solve the compress-
ible Euler equations. In this new scheme the system of equations is discretized by the
RKDG method, and the mesh moves with the fluid flow. The Lax-Friedrichs numerical
flux and the HLLC numerical flux are used in our scheme. A slope limiter is used to
control spurious numerical oscillations near discontinuity. This new scheme is conser-
vative for the mass, momentum and total energy. It can maintain second-order accuracy,
avoids solving the geometrical part, and has free parameter for individual test cases. Sev-
eral two-dimensional numerical examples have been presented to demonstrate the good
performance of the scheme.
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