
Commun. Comput. Phys.
doi: 10.4208/cicp.110613.270913a

Vol. 15, No. 5, pp. 1343-1351
May 2014

A Frequency Determination Method for Digitized

NMR Signals

H. Yan1,2,∗, K. Li1,2, R. Khatiwada1,2, E. Smith1,2, W. M. Snow1,2,
C. B. Fu3,1,2, P.-H. Chu4, H. Gao4 and W. Zheng4

1 Indiana University, Bloomington, Indiana 47408, USA.
2 Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN
47408, USA.
3 Department of Physics, Shanghai Jiaotong University, Shanghai,200240, China.
4 Triangle Universities Nuclear Laboratory and Department of Physics, Duke Uni-
versity, Durham, North Carolina 27708, USA.

Received 11 June 2013; Accepted (in revised version) 27 September 2013

Communicated by Michel A. Van Hove

Available online 21 February 2014

Abstract. We present a high precision frequency determination method for digitized
NMR FID signals. The method employs high precision numerical integration rather
than simple summation as in many other techniques. With no independent knowl-
edge of the other parameters of a NMR FID signal (phase φ, amplitude A, and trans-
verse relaxation time T2) this method can determine the signal frequency f0 with a
precision of 1/(8π2 f 2

0 T2
2 ) if the observation time T ≫ T2. The method is especially

convenient when the detailed shape of the observed FT NMR spectrum is not well
defined. When T2 is +∞ and the signal becomes pure sinusoidal, the precision of the
method is 3/(2π2 f 2

0 T2) which is one order more precise than the ±1 count error in-
duced precision of a typical frequency counter. Analysis of this method shows that the
integration reduces the noise by bandwidth narrowing as in a lock-in amplifier, and
no extra signal filters are needed. For a pure sinusoidal signal we find from numerical
simulations that the noise-induced error in this method reaches the Cramer-Rao Lower
Band (CRLB) on frequency determination. For the damped sinusoidal case of most in-
terest, the noise-induced error is found to be within a factor of 2 of CRLB when the
measurement time T is 2 or 3 times larger than T2.We discuss possible improvements
for the precision of this method.
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1 Introduction

In nuclear magnetic resonance (NMR) one often encounters a free induction decay (FID)
signal S(t) which takes the form of a sinusoidal function multiplied by a decaying expo-
nential:

S(t)=Acos(ω0t+φ0)exp
(

−
t

T2

)

, (1.1)

where t is time, A is the signal amplitude, ω0=2π f0 is the resonance frequency, φ0 is the
signal phase, and T2 is the transverse spin relaxation time. In practice, limited by exper-
imental conditions, parameters, like f0, φ0, etc., usually cannot be determined without
error, on one hand, S(t) is disturbed by various noises, on the other hand, S(t) can nei-
ther be digitized with infinitesimal time intervals nor observed for an infinitely long time.
It is of a general interest to determine these parameters using various types of analysis.
In particular, the determination of the resonance frequency precisely for a digitized FID
signal S(t) observed over a finite time is crucial for recent experiments [1–3] searching
for possible new spin dependent interactions which, if present, would cause a tiny shift
of the resonance frequency.

When T2→+∞, Eq. (1.1) can be simplified to:

S(t)=Acos(2π f0t+φ0). (1.2)

In this case, many different algorithms using Fast Fourier transform (FFT) or Digital
Fourier transform (DFT) [4, 5] were developed for frequency and spectra estimation in
power systems. For sinusoidal signals, by using S̈(t) =−ω2

0S(t), one can obtain ω0 [6]
from a linear fit of S̈(t) to S(t), where S̈(t) is derived by finite differentiation of the digi-
tized signal S(t), but extra noise filtering is needed since the second derivative is suscep-
tible to high frequency noise.

To determine the frequency precisely and to reduce the noise without filtering, we
propose a different approach in this paper based on integration. We argue that our ap-
proach is especially valuable in situations when the shape of the signal in frequency space
possesses bias. The structure of this paper is as follows. We first describe the basic princi-
ple of the method with an example. We then thoroughly analyze the method and derive
its precision. The effect of noise is discussed in the following section. Possible improve-
ments are discussed in the conclusion.

2 The basic principle

Consider a pure sinusoidal signal S(t)= Acosω0t observed for a finite time T. By mul-
tiplying S(t) by another sinusoidal function of frequency ω and integrating over a time
interval of length T, a function L of ω can be defined as:

L(ω)=
1

T

∫ T

0
Acos(ω0t)cos(ωt)dt. (2.1)
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If the observing time is long enough, in the limit T → ∞, L(ω) will be maximized at
ω=ω0. The frequency determination problem becomes a maximization problem which
can be solved by various standard methods, and the remaining problem of the integra-
tion with high precision can be addressed using many techniques. For digitized real
time signal over an interval ∆t, the error of the integration using a trapezoidal method
is O(∆t/T)2. An improvement on the integration precision can be achieved by using
Richardson’s extrapolation strategy [7], and the precision of O(∆t/T)4 can be obtained
by using Simpson’s method. Higher precision as O(∆t/T)6, O(∆t/T)8 can be obtained
if necessary by applying the same strategy. In [3], ∆t∼10−6s and T∼10s. The precision
would be O(∆t/T)4 ∼ 10−28 so that Simpson’s method is accurate enough for our pur-
poses. Therefore from now on in this paper, we ignore the error caused by numerical
integration and assume it is zero.

2.1 Frequency determination and precision

We will next analyze the integration and maximization method for precise frequency
determination. If only the frequency is to be determined, the function of ω can be defined
as follows:

LS(ω)=
1

T2

{

[

∫ T

0
S(t)cos(ωt)dt

]2
+
[

∫ T

0
S(t)sin(ωt)dt

]2
}

, (2.2)

or, in the complex notation:

LS(ω)=
1

T2

∣

∣

∣

∣

∫ T

0
S(t)exp(iωt)dt

∣

∣

∣

∣

2

=
A2

T2

∣

∣

∣

∣

∫ T

0
cos(ω0t+φ0)exp(−tΓ2)exp(iωt)dt

∣

∣

∣

∣

2

, (2.3)

where Γ2 =1/T2 is the transverse relaxation time. A brute force calculation of the above
integration gives:

LS(ω)=
A2

4T2

{

1+exp(−2Γ2T)−2exp(−Γ2T)cos(ω+ω0)T

(ω+ω0)2+Γ2
2

+
1+exp(−2Γ2T)−2exp(−Γ2T)cos(ω−ω0)T

(ω−ω0)2+Γ2
2

+
2(ω2−ω2

0+Γ
2
2){cos2φ0[1−exp(−2Γ2T)]+4exp(−Γ2T)sin

(ω+ω0)T
2 sin

(ω−ω0)T
2 cos(ω0T−2φ0)}

[(ω+ω0)2+Γ2
2][(ω−ω0)2+Γ2

2]

+
4Γ2ω0{−sin2φ0[1−exp(−2Γ2T)]+4exp(−Γ2T)sin

(ω+ω0)T
2 sin

(ω−ω0)T
2 sin(ω0T−2φ0)}

[(ω+ω0)2+Γ2
2][(ω−ω0)2+Γ2

2]

}

. (2.4)

If we assume that ω0 ≫ 1 and ω0 ≫ Γ2, then the second term on the right hand side of
Eq. (2.4) contributes the most to LS when ω →ω0. Or if we let ω →ω0, ω0 →+∞ and
Γ2→0, only the second term in the

{

···
}

survives which yields 1/Γ
2
2=T2

2 . In practice the

condition ω0 ≫ 1 is often satisfied, (in [3], for example, ω0 = 2π f0 and f0 ∼ 2.4×104Hz,
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while T2 = 1/Γ2 is not close to 0, e.g., T2 ∼ 10s in Ref. [3]). Defining x= Γ2T = T/T2, we
expand LS around ω=ω0+δω to second order in δω and 1/ω0 to get

LS(ω0+δω)≈
A2

4T2
(aδω2+bδω+c), (2.5)

where a,b,c are constants depending on ω0, x, T2, φ and T:

a=T4
2 [x

2e−x−(1−e−x)2], (2.6a)

b=2T2
2

[cos2φ(1−e−2x)

ω0
+

Te−x sinω0Tsin(ω0T−2φ)

ω0

]

, (2.6b)

c=T2
2 (1−e−x)2+

1+e−2x−2e−x cos2ω0T

4ω2
0+1/T2

2

+
cos2φ(1−e−2x)

2ω2
0

−
sin2φ(1−e−2x)

ω0/T2

≈T2
2 (1−e−x)2. (2.6c)

Obviously if a<0 and c>0, b=0, LS(ω) is maximized at δω=0, i.e., ω=ω0. However in
practice b is usually not 0 and it will cause a small shift of ω around ω0:

δω=−
b

2a
=

Γ
2
2

ω0

cos(2φ0)(1−e−2x)+2xe−x sin2ω0Tsin(ω0T−2φ0)

(1−e−x)2−x2e−x
. (2.7)

It is easy to show that a<0 and c>0 which proves LS(ω) is maximized around ω∼ω0.
Substituting ω=2π f and Γ2=1/T2, we have:

δ f =
1

8π2 f0T2
2

D(x,φ0), (2.8a)

D(x,φ0)=
cos(2φ0)(1−e−2x)+2xe−x sin(ω0T)sin(ω0T−2φ0)

(1−e−x)2−x2e−x
. (2.8b)

Using

|D(x,φ0)|≤
(1−e−2x)+2xe−x

(1−e−x)2−x2e−x
=C(x), (2.9)

we obtain
∣

∣

∣

δ f

f

∣

∣

∣
≤

1

8π2 f 2
0 T2

2

C(x). (2.10)

C(x) is plotted in Fig. 1. When x→0+ and C(x)→+∞ the observation time T is very short
in comparison to T2 and the error for the frequency determination is infinitely large even
though f0 is large and T2 is finite. When x=T/T2 exceeds 1, C(x) decreases quickly to its
asymptotic value of 1. Once T2 and f0 are roughly known, the precision of the method can
be estimated from C(x). Assuming T is large enough, x=T/T2 can be assumed infinite
and C(x)=1 in this case:

∣

∣

∣

δ f

f

∣

∣

∣
∼

1

8π2 f 2
0 T2

2

. (2.11)
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Figure 1: (Color online) Plot of C(x) of x in range [0.1,100].

In deriving Eq. (2.10), T2 is assumed to be finite. T2 could be nearly infinite as often
encountered in power system applications: in this case by similar reasoning the error for
this method is found to be:

∣

∣

∣

δ f

f

∣

∣

∣
∼

3|cos(ω0T)cos(ω0T−2φ0)|

2π2 f 2
0 T2

≤
3

2π2 f 2
0 T2

, (2.12)

while for this case:

a=−
T4

12
, (2.13a)

b=T2 cos(ω0T)cos(ω0T+2φ)

ω0
, (2.13b)

c=T2
[

1+
2sin(ω0T)cos(ω0T−2φ)

ω0T
+

1−cos(2ω0T)

2ω2
0T2

]

≈T2. (2.13c)

3 Noise

When noise N(t) is included, the function LSN(ω) can be defined:

LSN(ω)=
1

T2

∣

∣

∣

∣

∫ T

0
[S(t)+N(t)]exp(iωt)dt

∣

∣

∣

∣

2

. (3.1)

For the experiments under consideration the signal to noise ratio (SNR) of the final signal
is usually ∼ 100, thus the second term of Eq. (3.1) is much smaller than the first term.

How to estimate |
∫ T

0
N(t)exp(iωt)dt| is the key to solving the noise problem. According

to [8] we have:

1

T2

∣

∣

∣

∣

∫ T

0
N(t)exp(iωt)dt

∣

∣

∣

∣

2

=σ2 B

fBW
, (3.2)
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where σ is the noise variance, fBW = 1/2∆t is the sampling rate limited bandwidth, and
B= 1/T is the measurement bandwidth. As discussed [8] for the noise the integration
according to Eq. (3.2) is equivalent to reducing the bandwidth in the frequency domain
to B = 1/T. This is also the principle of how lock-in amplifiers reduce noise, and it is
not a surprise that the same noise reduction principle would also work for the algorithm
presented in the previous section.

For a sinusoidal signal, according to Refs. [9,10], the Cramer-Rao lower bound (CRLB)
sets the lower limit of the frequency error for any method as:

δ fN ≥

√

12/ fBW

2π(A/σ)T3/2
. (3.3)

For the damped sinusoidal case, by the standard approach described in [10] after some
manipulation the CRLB bound derived in Ref. [9] can be expressed as:

δ fN =

√

1/ fBW

√

8(1−e−2x)

2π(A/σ)T3/2
2

√

(1−e−2x)2−4x2e−2x
. (3.4)

Since the method can reduce noise by integration, the estimation of the frequency error
is expected to be close to the CRLB. Numerical simulations are done to verify this noise
reduction characteristic of the method. A signal with known input frequency is first
generated then White Gaussian Noise (WGN) is added with a predetermined SNR. The
frequency determination method presented is then applied to obtain an output frequency
as the approximation of the input. For the same input signal and measurement time,
the same procedure is repeated for many times (1000 for each measurement time), and
each time independent WGN is added. Over many trials the standard deviation of the
output frequencies gives the error if the difference between the output mean and input
frequency is much smaller. A small SNR (= 1) is chosen when generating the noise so
that the numerical error is negligible compare to the noise induced error, according to
Eqs. (2.11), (2.12), (3.3) and (3.4). For this small SNR, the method works well. For the
pure sinusoidal case, the result is shown as Fig. 2. The errors obtained from simulations
match the CRLB very well. For the damped sinusoidal case shown by Fig. 3, the errors
found by simulation are slightly larger (∼ 15%) than CRLB when x (= T/T2) is smaller
than 3, and increases quickly as x increased to 5. This is not surprising since the actual
SNR decreases exponentially as x increases.

4 Conclusion and discussion

We present to our knowledge a previously unrecognized method for frequency deter-
mination for FID NMR signals. The method is based on numerical methods of high
precision integration and maximum value location. The same principle works both for
sinusoidal and damped sinusoidal signals. For the damped sinusoidal wave, the preci-
sion is 1/(8π2 f 2

0 T2
2 ) which is limited by T2 and the signal frequency if the observation
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Figure 2: (Color online) Plot of Cramer-Rao Lower Bound and the error of the presented method obtained by
simulation for a sinusoidal signal. The input signal has a frequency of 24000 Hz, and white gaussian noise is
added with SNR=1, and the data sampling rate is 106 Hz.
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Figure 3: (Color online) Plot of Cramer-Rao Lower Bound and the error of the presented method obtained by
simulation for a damped sinusoidal signal. The input signal has a frequency of 24000 Hz, white gaussian noise
is added with SNR=1, T2 =1s, data sampling rate 106 Hz.

time is long enough. For a pure sinusoidal wave the precision is limited by observation
time and signal frequency, and it can be expressed as 3/(2π2 f 2

0 T2). The precision is one
order of magnitude better than the ±1 count error induced precision 1/ f0T [11] of a fre-
quency counter. The proposed algorithm is not hard to realize with digital electronics,
thus it is possible to build a more precise frequency counter based on this method. In
Ref. [12], for the exponentially decayed sinusoidal signal, the signal frequency can be
determined by fitting the Fourier transformed spectral to a Lorentzian function, for this
algorithm to work, the global line shape of the spectral has to be well defined to be close
to Lorentzian shape. We expect that the method presented in this paper will be especially
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useful in situations when the shape of the Fourier transformed signal is not well defined
since locating the maximum only requires the maximum point to be well defined.

It is possible to further improve the precision. For the pure sinusoidal case once the
frequency is obtained the phase factor φ0 can be obtained by locating the maximum from
the following integration:

L(φ)=
1

T

∫ T

0
Acos(ω0t+φ0)cos(ω0t+φ)dt. (4.1)

Once the phase and frequency are determined for a pure sinusoidal signal, the frequency
shift from the numerical method can be predicted using Eq. (2.12) and better precision
can be achieved since part of the undesired frequency shift is eliminated. This precision
improvement was verified by computer simulations. For the damped signal the same
strategy could also work except in this case T2 has to be determined precisely by an
independent method.

When taking into account noise the integration method works as a narrow bandwidth
filter around the signal frequency like a lock-in amplifier. For pure sinusoidal signal the
estimated error caused by noise is found to reach the Cramer-Rao Lower Bound [10]. For
the damped sinusoidal case the estimated error is within factor of 2 of the CRLB derived
in literature when x (=T/T2) is less than 5. The method works well for strong white noise
case as SNR=1.
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