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Abstract. The non-dimensional form of Navier-Stokes equations for two di-

mensional mixing layer flow are solved using direct numerical simulation. The

governing equations are discretized in streamwise and cross stream direction us-

ing a sixth order compact finite difference scheme and a mapped compact finite

difference method, respectively. A tangent mapping of y = β tan(πζ/2) is used

to relate the physical domain of y to the computational domain of ζ. The third

order Runge-Kutta method is used for the time-advancement purpose. The

convective outflow boundary condition is employed to create a non-reflective

type boundary condition at the outlet. An inviscid (Stuart flow) and a com-

pletely viscous solution of the Navier-Stokes equations are used for verification

of the numerical simulation. The numerical results show a very good accuracy

and agreement with the exact solution of the Navier-Stokes equation. The re-

sults of mixing layer simulation also indicate that the time traces of the velocity

components are periodic. Results in self-similar coordinate were also investi-

gated which indicate that the time-averaged statistics for velocity, vorticity,

turbulence intensities and Reynolds stress distribution tend to collapse on top

of each other at the flow downstream locations.

Key Words. Mixing Layer, Compact Finite Difference, Mapped Finite Dif-

ference, Self-Similarity.

1. Introduction

The plane mixing layer is characterized by the merging of two co-flowing fluid
streams with different velocities. Typically, the two streams are separated by an
impermeable object upstream of the confluence of these streams. This situation is
illustrated in Fig1 [1]. Downstream of the confluence, the two streams exchange
momentum as they come into intimate contact with each other. The mixing layer
itself is defined by the region in which this merging process is occurring. Being
such a simple configuration, it stands to reason that the mixing layer is one of the
more common flows experienced in nature. Mixing layer are encountered in many
application such as combustion furnaces, chemical lasers, the lip of an intake valve
in an internal combustion engine and the trailing edge of a turbine blade.
Schlichting [2] shows that the boundary layer equations are valid for mixing layer
at high Reynolds number. He assumed that two initially unperturbed parallel
flow streams with velocities U , λU interact as a consequence of friction with one
another from the position x = 0 to downstream. For the low values of viscosity ν,
the transition from the velocity U to the velocity λU takes place in a thin mixing
zone, in which the transverse component v of the velocity is small in compare with
the longitudinal velocity component u. This boundary layer equation without the
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presence of pressure gradient term is valid. Since there is no characteristic length
in this problem, similar solutions are found.
Perhaps the first major experimental investigation of the mixing layer was under-
taken by Liepmann and Laufer [3]. Many of the statistical quantities were explored
in this investigation. Brown and Roshko [4] performed a study on density effects
in the mixing layer which would lay the groundwork for a virtual revolution in tur-
bulence. Mungal and Dimotakis [5] considered the mixing and combustion of two
reactants in a gaseous mixing layer.
With advent of large scale computers, there has been a veritable explosion of nu-
merical work done in concert with the experiments in an effort to understand the
physics of mixing layer. Generally, there are two advanced methods of comput-
ing turbulent flow: large eddy simulation (LES) and direct numerical simulation
(DNS).
In LES, a low-pass spatial filtering is applied to the Navier-Stokes equation and
the filtered equations are solved directly. It is most promising for engineering flow
of low-to-moderate Reynolds numbers [6], [7]. A review of LES for incompressible
flow can be found in [8].
The main purpose of DNS is to solve (to best of our ability) for the turbulent
velocity field without the use of turbulent modeling. This condition means that the
Navier-Stokes momentum equation for fluid must be solved exactly, which is not a
simple task [9], [10]. Thus, any DNS code is very time consuming and the extensive
storage requirements. The DNS requires a large number of grid points and time
steps to reach a statistically steady state and are usually limited to relatively low
Reynolds numbers. With the advantage of powerful super computers, numerical
simulation have become a viable tool for investigating mixing layer flows such as
high speed mixing layer [11], particle laden mixing layer [12] and mixing layer with
chemical reaction [13], [14].
In this paper the governing equations are derived from the full incompressible
Navier-Stocks equations. These are solved in a domain which is finite in the stream-
wise direction, x and doubly infinite in the cross stream direction of y. In the x
direction a high order compact finite difference scheme is used. In the y direction,
a mapped compact finite difference method is employed. All quantities are non-
dimensionalized by the appropriate characteristic scales of the nixing layer flow.
Specially, all lengths are normalized by the vorticity thickness of the reference ve-
locity profile, δω0 . Velocities are normalized by free streams streamwise velocity
difference ∆U , where ∆U = U1 − U2 and those pertaining to time are normalized
by δω0/∆U .
The mean component of the streamwise velocity at the inlet plane of the domain,
termed ”reference” velocity also, is represented by:

(1) U0 (y) =
1
2

{(
1/λ

)
+ tanh (2y)

}
.

where the aforementioned normalization has been incorporated. The parameter
λ = [U1 − U2] / [U1 + U2] represents a measure for the intensity of shearing of the
layer. The value of 2 in the argument for the tanh is required to make the vorticity
thickness of this profile consistent with the implicit normalization of z on δω0 .

2. The Governing Equations

Figure (1) shows the coordinate system and the computational domain in which
the governing equations for the incompressible mixing layer flow are solved. The
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inlet mixing profile is specified by U0 (y) that has a superimposed computational
velocity. The mixing layer flow is allowed to develop in the spatial direction x.
Applying Newton’s second low of motion for a Newtonian fluid particle gives the
equation of motion, known as the Navier-Stokes equations. These equations to-
gether with an equation representing mass conservation are the governing equation
for an incompressible mixing layer flow.
The governing equations (Eq. (2) and Eq. (3)) have been non-dimensionalized by
the characteristic length (δω0) and velocity scales (∆U).

(2)
∂~U

∂t
+ (~U.∇)~U = −∇p +

1
Re

(∇2~U),

(3) ∇.U = 0.

One of the main difficulties in the solving the Navier-Stokes equations are the lack
of information about the pressure at the boundaries. This is overcome by either
using the staggered grid for the discritization or by eliminating the pressure term
from the Navier-Stokes equations. Application of the following vector identity:

(4) ∇(A.B) = (B.∇)A + (A.∇)B+
B × (∇×A) + A× (∇×B) .

for the case of A = B = ~U = (U, V, W ) results in the formation of Eq. (5)

(5) (~U.∇)~U = ~ω × ~U +
1
2
∇(~U.~U)

where ~ω = (ω1, ω2, ω3) = ∇ × U. If Eq. (5) is substituted for the convective term
in the non-dimensionalized Navier-Stokes equation (Eq. (2)), it gives:

(6)
∂~U

∂t
= ~H −∇(p +

~U.~U

2
) +

1
Re

(∇2~U)

where ~H = (H1,H2,H3) = ~U × ~ω. Taking ∇× (6) results in

(7)
∂(∇× ~U)

∂t
= ∇× ~H −∇×∇(p +

~U.~U

2
) +

1
Re
∇2(∇× ~U)

which will further simplify to Eq. (8) on the usage of ∇×∇ (scalar) = 0.

(8)
∂~ω

∂t
= ∇× ~H +

1
Re
∇2~ω.

By taking ∇× (8), the following equation will be obtained.

(9)
∂∇× (∇× ~U)

∂t
= ∇× (∇× ~H) +

1
Re
∇2(∇× (∇× ~U)).

Using the continuity equation (∇.~U = 0) and applying the next vector identity

(10) ∇× (∇× ~U) = ∇(∇.~U)−∇2~U

converts Eq. (9) into the following equation
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(11)
∂∇2~U

∂t
= ∇× (∇× ~H) +

1
Re
∇4~U.

Where the vector ~H = ~U × ~ω contains the non-linear terms and Re = ∆Uδω/ν.
Equations (8) and (11) are the evolution equations responsible for the time-advancement
in the simulation.
The instantaneous velocity U = (U, V ) is decomposed into a base flow (U0 (y) , 0)
and the computational flow velocity components (u (x, y, t) , v (x, y, t)) as follow.

(12) U (x, y, t) = u (x, y, t) + U0 (y) ,

(13) V (x, y, t) = v (x, y, t) .

Using the streamwise components of Eq. (8) and Eq. (11) and the decomposition
shown by Eq. (12) yields:

(14)
∂

∂t
∇2u =

∂2

∂y2
H1 − ∂2

∂x∂y
H2 +

1
Re
∇4U,

where ω1 = ω2 = H3 = 0 for the case of two dimensional flow. Eq. (14) and the
convective outflow boundary condition are responsible for the time-advancement of
the simulation. The cross-stream velocity component v is recovered directly from
the continuity equation.

(15)
∂v

∂y
= −∂u

∂x
.

The vorticity component ω3 is calculated following its definition.

(16) ω3 =
∂V

∂x
+

∂U

∂y
.

Figure 1. Spatially developing mixing layer geometry [1].

3. Boundary and Initial Conditions

Equation (14) is a fourth-order, partial differential equation, so it requires four
boundary conditions. The u velocity is specified at the inlet (x = 0) and the outlet
boundaries (x = Lx). With the help of continuity equation, ∂u/∂x is also specified
at the inflow and outflow boundaries:

(17)
∂u

∂x
= −∂v

∂y
.
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The former and the latter are known as Dirichlet and Neumann type boundary con-
ditions, respectively. The boundary conditions are set to be zero in the transverse
direction.
In the numerical simulations, the instantaneous velocity component at the inlet
boundary is specified using tangent hyperbolic profile (Eq. (1)) which is super-
imposed by some perturbations. The perturbations are introduced in the form of
a traveling wave. The perturbation part, which is a combination of linear eigen-
functions obtained from the linear stability calculations, is specified for the inflow
boundary condition [15]. In other words:

(18) v (x, y, t) = A · Real
[
V (y) ei(−ωt)

]

where V (y) is the velocity eigenfunction corresponding to the most amplified mode
of the two-dimensional Orr-Sommerfeld equation and A is the amplitude of the
two-dimensional forcing which corresponds to the fundamental frequency.
Convective outflow boundary conditions are specified at the outflow. The bound-
ary conditions must be non-reflective to avoid feedback problem. The convective
boundary conditions are used to generate the Dirichlet boundary conditions for
both velocity components.

(19)
∂ψ

∂t
= −c

∂ψ

∂x
.

where ψ is replaced by each of the velocity components. In (19), c represent the
advection speed of the large-scale structures in the layer. The purpose of this con-
dition is to allow the fluid structures to flow out of the domain in a natural manner.
Therefore, the advection speed is chosen to match the convective velocity of the
large spanwise rollers. Experimental studies of the mixing layer have indicated that
these large rollers advect downstream at speeds close to that of the mean speed of

the layer [15]. Therefore, c was set as c =
−
U = [U1 + U2] /2 (including normal-

ization) for the simulations presented here. Lang [16] has indicated that, while
the large scale structures appear to advect at approximately the average of the free
stream speeds, c, the small scale structures move with a different speed – something
close to the local mean speed of the layer. For the low Reynolds number flows simu-
lated in this work the small-scale structures are, in fact, relatively large. Moreover,
the results indicate that the region of the influence of the outflow boundary condi-
tion is restricted to a fairly short distance upstream of the exit plane-roughly one
layer thickness. Therefore, the choice of c = Ū is appropriate for these simulations
as will be evident in the result to outflow.
An unforced, two-dimensional mixing layer simulation whose inlet boundary con-
tains a base profile (Tangent hyperbolic mean velocity distribution), provided the
initial conditions for the forced mixing layer simulations.
A uniformly distributed Tangent hyperbolic mean velocity at all x stations is the
initial condition for the unforced two-dimensional mixing layer simulation. These
initial conditions must then be allowed to wash out before performing any statistical
analysis on the layer. In other words, any particle at the inlet (x = 0) must be
allowed to leave the outlet boundaries (x = Lx). The mixing layer flow must also
reach the statistically stationary state in which the mean velocity component is
time independent
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4. Numerical Formulation

The spatially developing mixing layer is solved in a domain with a finite extend
in the streamwise direction and doubly infinite (y → ±∞) in the major-gradient
(MG) direction. A mapping is employed to convert the doubly-infinite y extend of
the original domain into a computational domain of ζ with interval −1 ≤ ζ ≤ 1.
Equations (14), (15) and (16) indicate that for each time step (sub time step) a
method is required that can:

• evaluate the spatial derivatives,
• integrate the continuity equation to recover v from Eq. (15),
• compute the non-linear terms in Eq. (14),
• solve the two dimensional Poisson equation for u.

At the end of each time step the solution can be regarded as a new initial condition
for u. This is required for time-advancement of the computations.

4.1. Streamwise Derivatives. The derivatives in the streamwise direction are
computed using the Pade’ finite difference scheme developed by Lele [17], [18]. He
introduced the first derivative of f(x) implicitly according to

(20) αf ′j−1 + f ′j + αf ′j+1 = α+2
3h (fj+1 − fj−1)+4α−1

12h (fj+2 − fj−2)

where a prime denotes the first derivative, j represents the grid number (0 ≤ j ≤ J)
and h = ∆x = Lx/J . By setting α = 1/4 or α = 1/3 a fourth-order or sixth-order
accurate scheme is obtained. At the stramwise boundaries (e.g. at j = 0 and j = J)
an implicit one-sided, third-order derivative approximation is used:

(21) f ′0 + 2f ′1 =
1
2h

(−5f0 + 4f1 + f2),

(22) f ′J + 2f ′J−1 =
1
2h

(5fJ − 4fJ−1 − fJ−2).

At the vicinity of the boundaries (e.g. at j = 1 and j = J − 1) the general form
of the first derivatives (Eq. (20)) is used with α = 1/4. Lele [17] discussed that
replacing of α by α′ = (16α + 32)/(40α − 1) at j = 2 and j = J − 2 guarantees
the stability and numerical conservation of (∂/∂t)u = (∂/∂x) f (u). Figure (2)
shows the accuracy of the Pade’ finite difference scheme for the first derivatives of
y = 3 sin(2x) + x2.
The Pade’ finite difference scheme, as introduced above, is an implicit scheme. It
is expected to realize a third order accurate scheme at the boundaries and a sixth
order accurate scheme far from both boundaries (e.g. at x = Lx/2). Figure (3)
shows the order of accuracy [19].
Equation (23) represents the second derivative of f(x), which is the family of fourth
order accurate Pade’ finite difference schemes.

(23)
αf ′′j−1 + f ′′j + αf ′′j+1 = 4(1−α)

3h2 (fj+1 − 2fj + fj−1)+10α−1
12h2 (fj+2 − 2fj + fj−2)

where α = 1/4. At the boundaries, one-sided, third order scheme are used. They
are:

(24) f ′′0 + 11f ′′1 =
1
h2

(13f0 − 27f1 + 15f2 − f3)



M.J. MAGHREBI and A. ZARGHAMI 179

and

(25) f ′′J + 11f ′′J−1 =
1
h2

(13fJ − 27fJ−1 + 15fJ−2 − fJ−3).

Taking the first order derivative from both sides of Eq. (21) gives

(26) f ′′0 + 2f ′′1 = 1
2h (−5f ′0 + 4f ′1 + f ′2) =−3

h f ′0 + 1
2h (f ′0 + 4f ′1 + f ′2) .

Substituting the left-hand-side of Eq. (21) (using α = 1/4) for the terms in the
parenthesis of Eq. (26) forms the following equation.

(27) f ′′0 + 2f ′′1 =
−3
h

(
df

dx
)x=0 − 3

2h2
(f0 − f2).

Equation (27) is used at the inlet boundary when both the function value and its
derivative are known. An analogous approach is performed to specify the second
derivative at the outflow boundary when both function value and first derivatives
are available.

(28) f ′′J + 2f ′′J−1 =
3
h

(
df

dx
)x=Lx − 3

2h2
(fJ − fJ−2).

In the immediate vicinity of the boundaries (at j = 1 and j = J − 1), the second-
order compact finite difference scheme Eq. (23) is used with α = 1/10. An evalu-
ation of the fourth derivative, which appears in the biharmonic term of Eq. (14),
is performed by imposing the second order derivative operator twice in succession.
Figure (4) shows the accuracy of the Pade’ finite difference scheme for the second
derivatives of y = 3 sin(2x) + x2. Figure (5) shows the order of accuracy for the
second order Pade’ finite difference scheme at the boundaries and at x = Lx/2 [19].
The compact finite difference scheme is an implicit scheme; hence the highest order
of accuracy can be obtained at the maximum distance from both boundaries where
the lower order schemes are used [20], [21].

Figure 2. First derivative approximation of y = 3 sin(2x) + x2 using sixth order
Pade’ finite difference scheme.
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Figure 3. Order of accuracy for first derivative approximation using Pade’ finite
difference scheme [19].

Figure 4. Second derivative approximation of y = 3 sin(2x) + x2 using sixth
order Pade’ finite difference scheme.

 

 
Figure 5. Order of accuracy for second derivative approximation using Pade’

finite difference scheme [19].

4.2. Cross-Stream Derivatives. A tangent mapping given as

(29) y = β tan(πζ/2)
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is used to map the doubly infinite physical domain −∞ ≤ y ≤ ∞ into a finite
computational domain with the interval of −1 ≤ ζ ≤ 1. β in Eq. (29) is a stretching
parameter of the mapping. The grid spacing in the computational domain are
equally spaced, thus we can directly apply the compact finite difference scheme of
Lele [17], [18] to compute the derivatives in the computational domain. However,
we must use the chain rule of differentiation to find the derivative in y. Application
of the chain rule for the first derivative result in Eq. (30)

(30)
df

dy
=

df

dζ
× dζ

dy
=

2
πβ

cos2(πζ/2)
df

dζ
.

By setting λ1 = 2
πβ cos2(πζ/2), we have:

(31)
df

dy
= λ1

df

dζ
.

An analogous approach is performed to specify the second derivative

(32)
d2f

dy2
= λ2

d2f

dζ2
+ λ3

df

dζ

where

(33) λ2 = λ2
1

(34) λ3 = − 4
πβ2

sin(πζ/2) cos3(πζ/2)

The accuracy of the numerical code used to calculate the first and second derivatives
of f (y) = exp

(−γy2
)
, where γ = 1, is checked against the exact derivatives. The

results, shown in Figs (6) and (7), indicate excellent approximations for the cross-
stream derivatives.

Figure 6. First derivative approximation in cross stream direction for
f(y) = e−γy2

with γ = 1, β = 1.
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Figure 7. Second derivative approximation in cross stream direction for
f(y) = e−γy2

with γ = 1, β = 1.

4.3. Integrating of the Continuity Equation. Equation (15) is the govern-
ing equation for the cross-stream velocity. Using the compact finite difference
scheme, indicate that the right-hand-side (RHS) of equation (20) experience the
ill-conditioning problem. In other words the diagonal elements of RHS matrix of
Eq. (20) are zero. To overcome ill-conditioning problem the y derivative operator
is applied on both sides of Eq. (15).

(35)
∂2v

∂y2
= − ∂2u

∂x∂y
.

Equation (35) is not ill-conditioned. This also satisfies the boundary conditions at
infinities. In other words Eq. (35), which is second order differential equation, is
solved with v (y = ±∞) = 0 as boundary conditions.

4.4. Solution of the Poisson Equation. The application of the time advance-
ment scheme to Eq. (14) generates a Poisson equation for ∆u (x, y).

(36) ∇2∆u =
∂2∆u

∂x2
+

∂2∆u

∂y2
= C

where C is the linear combination of the RHS of (14). Substituting the second
derivatives operators in x and y directions gives

(37) (D2X.∆uT )T + D2Y.∆u = C.

Eq. (37) can be written in the following form.

(38) ∆u.D2XT + D2Y.∆u = C.

Thus, the direct solution of Eq. (36), using a Pade’ finite difference scheme for the
second derivatives in x and y, forms a matrix equation of the form AZ + ZB = C.
Bartlez [22] has solved the matrix equation AZ+ZB = C. Note that here A = D2Y
, B = D2XT and Z = ∆u.
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4.5. Time Advancement Scheme. A compact, third order, Runge-Kutta time
differencing scheme developed by Wray [23] is used to advance the computations in
time. Application of the time advancement scheme to the following model equation

(39)
∂u

∂t
= R(u)

is performed in three sub-steps according to table (1). The table shows that the time
advancement of Eq. (39) by one time increment (∆t) requires computation of the
right-hand-side (R) in three successive sub-time-steps. In each of these sub-steps,
time (t) is incremented by (ci + di)∆t and u is accumulated by linear combination
of (R) associated with the current time level and that of the previous sub-time-
step. Results in the second column of the third sub-time-step are regarded as the
solution of the model equation at next time step. In other words, it is the solution
incremented by (∆t).
The coefficient used in the time advancement scheme (ci, di) can be obtained using
the Taylor series for R

′
and R” and equating the terms of like orders. This leads

to:

c1 + c2 + c3 + d1 + d2 + d3 = 1,

c2
1c2 + c3(c1 + c2(1 +

d2

c2
))2 + c2

1d3 = 1/3,

c1c2 + c3(
d2

c2
(1 +

d3

c3
) + c2(1 +

d2

c2
)) = 1/2,

c1c2c3 = 1/6.

There are two parameter families of solutions to the preceding set of equations.
The scheme will be self-starting if d1 = 0. One parameter families of solution to
the set of equations is:

d1 = 0, c1 = 8/15,
d2 = −17/60, c2 = 5/12,
d3 = −5/12. c3 = 3/4,

A test case is performed to verify the order of accuracy for the time advancement
scheme. The equation

(40) du/dt = −u(t)

has an exact solution of u(t) = e−t when the initial condition is set to u (0) = 1.
Hence, the right hand side of Eq. (40) and the initial condition u (0) = 1 are used
to solve for u(t) at t = 1 using different time increment. The maximum errors
between the numerical results and the exact solution are shown in Fig. (8) which
clearly indicates that the order of accuracy is approximately three [10].

Table1. Runge-Kutta time advancement scheme
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Time 1st location 2nd location
tn un R(un)
t′ = tn + c1∆t u′ = un + c1∆tR R′ = R(u′)
t′′ = t′+
(c2 + d2)∆t

u′′ = u′+
(c2R

′ + d2R)∆t
R′′ = R(u′′)

tn+1 = tn + ∆t
un+1 = u′′+
(c3R

′′ + d3R
′)∆t

Figure 8. Order of time advancement scheme for du/dt = −u(t) with u(0) = 1
[19].

5. Code Verification

The verification of the code was performed with two test cases. They are the
two dimensional time dependant diffusion equation and the two dimensional Stuart
solution.

5.1. Time Dependant Diffusion Equation. This test case concerned solving
the two dimensional, time dependant scalar diffusion equation,

(41)
∂ψ

∂t
= ν

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)

on the domain 0 ≤ x ≤ Lx = 2π/3 and −∞ ≤ y ≤ +∞. The boundary conditions
imposed in this problem were,

(42)
∂ψ

∂t
|x=0 =

∂ψ

∂t
|x=Lx = 0,

and

(43)
∂ψ

∂y
|y→±∞ = ψ (x, y, t) |y→±∞ = 0.

The initial condition imposed on ψ was as follows:
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(44) ψ (x, y, 0) = sin (2πx/Lx) e−y2
.

The generic dependant variable, ψ, has been used in this problem to reflect the fact
that the problem was solved for each of the regular flow field u , v simultaneously
during the test. This allows verification of the time advance and diffusion operator
section of the code for each dependant variable.
The problem was solved for the case of ν = 1/100. The problem domain discretized
with the following number of nodes and stretching parameter:
Nx = 45, Ny = 40 and β = 4.
The computation run for 2000 time steps at which the numerical solution was
compared with the analytical solution of (41). That is:

(45) u(x, y, t) = cos(x)× y−1
(1+ 4t

Re )1.5×exp(−2t/Re)× exp(− (y−1)2

(1+ 4t
Re )

) .

The maximum errors between the numerical results and the exact solution are
shown in Fig. (9).The uniform decay of the solution is evident from this plot.
Clearly, the error is within acceptable bounds thereby corroborating the validity of
the time advancement and the computation of the diffusion part of the code.

Figure 9. Error analysis for u in time dependant diffusion equation.

5.2. Stuart Solution. Stuart [24] provides a class of exact solution to the inviscid
Navier-Stokes equations which simulate two dimensional mixing layer flow. The
particular solution of interest here has, as its foundation, a tanh profile for the u
velocity component. As a consequence, the flow is periodic in the x direction and
advects downstream at the mean speed of the layer, c. The analytical expression
for the stream function, ψ (not to be confused with the generic dependant variable
of the previous subsection), is:

(46) ψ(x, y, t) = cy + ln(a cosh(y − y0) + b cos(x− ct))

where b =
√

a2 − 1. The velocity components u and v, as well as the vorticity
component ωz, are obtained by differentiating this expression with respect to x and
y as appropriate. These are:

(47) u =
∂ψ

∂y
= c +

a sinh (y − y0)
a cosh (y − y0) + b cos (x− ct)

,
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(48) v = −∂ψ

∂x
=

b sin (x− ct)
a cosh (y − y0) + b cos (x− ct)

,

(49) ωz =
1

[a cosh (y − y0) + b cos (x− ct)]2
.

The Stuart solution provide an excellent test for the time advancement the for-
mation of the right hand side of Eq.(14) and the advection section of the code.
Therefore, the time development of this field was computed for a case with b = 1/2
and c = 1 on the domain of 0 ≤ x ≤ Lx = 2π/3 and −∞ ≤ y ≤ +∞. The do-
main was discretized using the following number of nodes and stretching parameter:
Nx = 45, Ny = 40 and β = 4.
Plots of the maximum errors between the numerical results and the exact solution
of u and v are shown in Fig. (10).

Figure 10. Error analysis for u and v in time dependant Stuart solution.

6. Mixing Layer Simulation

The case of 2D mixing layer was considered in the domain of 0 ≤ x ≤ 200
and−∞ ≤ y ≤ +∞. The velocity ratio for this case,r = U2/U1, was set at
1/2.This value represents a moderately sheared layer intermediate between the
case of a single-stream mixing layer (i.e., U2 = 0) and the splitter-plate wake case
(r = 1). The average speed of layer,Ū = 0.5 (U1 + U2), was 1.5. The Reynolds
number,Reδω0 = ∆Uδω0/ν, is set at 300. The domain was discretized using 1024
points to represent the streamwise (x) extend of the domain; 256 collocation points
were used to represent the MG direction. A time step of 0.05 was used in this work.
In the absence of external forcing, the results of the simulation display essentially
laminar growth at the Reynolds number described above. Figure (11) illustrates
the streamwise growth of the vorticity thickness, δω = 1/ (∂ū/∂y)max for this case.
A square-root relationship fit to these computed results is shown in the figure. The
layer is responded with the classical laminar, square-root growth characteristics.
This is evident by the close agreement indicated by the computed results. The
slight deviation from this square-root behavior near the exit plane is explained a
result of the artificiality of the outflow boundary condition applied at x = 200.
The mean field statistics for the streamwise velocity component and vorticity are
illustrated in Figures (12) and (13). Clearly, these results are representative of a
self-similar layer.
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Figure 11. Streamwise growth of the vorticity thickness for the unperturbed
layer. Curve fit using δω = a

√
x− x0 with a = 0.2875 and x0 = −12.371

Fig 12. Mean field statistics for
(
−
U −U2

)/
∆U.

Fig13. Mean field statistics for (ω × δω) /∆U.
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7. Forced Mixing Layer

The case of forcing considered in this investigation applies a set of time dependant
perturbations to the v velocity component at the inlet plane. These perturbations
are generated by the means of linear stability analysis for the most unstable mode.
Figure (14) provides a snapshot of the vorticity field at the simulation. Sufficient
time has been elapsed for the initial, start up field to have washed-out of the compu-
tational domain. Note the presence of two pairing regions is evident in this figure.
The structures evident in this figure are advected downstream at approximately

the mean speed of the layer,
−
U . Figure (15) compares the computed streamwise

growth of the vorticity thickness, with the laminar growth of vorticity thickness.
Note that, the inflow perturbation has strong influence on the growth of the mixing
layer. Suitably selected initial conditions can enhance the growth of the mixing
layer [12].
Figures (16) through (20) illustrate time traces of the results for the velocity compo-
nents at selected location in the layer. The figures clearly indicate that the response
of the layer is very periodic. This is due to the periodic forcing imposed at the inlet
plane of the layer.
The peak-to-peak time lapse in these curves provides evidence of the passage of a
structure. This time laps, ∆t, together with an assumed advection speed for these

structures of
−
U , allows estimation of the scale of a structure.

The mean field statistics for each of the velocity components and vorticity are
illustrated in figures (21) through (23). Clearly, these results are not representative
of a self-similar layer. The lack of self-similarity is very evident in the plot of v and
ω. This is apparently as a result of the forcing imposed at the inlet plane. As the
flow goes downstream, the distributions become closer together. This is indicating
that the flow enters the self-similar region.

Figure 14. Snapshots of the results for ωz.

The turbulence intensities realized for the velocity components in this simulation
are presented in Fig (24) and (25). Again, these statistical quantities indicate that
the layer is not self-similar in the near field regions. The curve representing the
turbulence intensity of the u component (Fig. (24)) are very different in the shape
from those of the self-similar layer. Figure (25) illustrates the turbulence intensity
for the v component. The shape of these profiles is more like that of the self-similar
layer than for the u component. The peak intensity for this component exceeds to
that of the u component.
The Reynolds stress statistics obtained from this simulation are illustrated in Fig.
(26). Again, these profiles do not exhibit self-similar behavior. The distributions
are more likely collapse on each other at far downstream of the flow.
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Figure 15. streamwise development of the vorticity thickness in forced layer.

Figure 16. Velocity time histories for the u component at streamwise location
x = 50.

Figure 17. Velocity time histories for the u component at streamwise location
x = 100.

8. Conclusion

The two dimensional incompressible, spatially developing, forced plane mixing layer
has been simulated in this work. A numerical method which employs a combination
of compact finite difference and a mapped compact finite difference scheme are



190 DNS OF FORCED MIXING LAYER

Figure 18. Velocity time histories for the u component at streamwise location
x = 200.

Figure 19. Velocity time histories for the v component at streamwise locations
x = 0, 50, 100.

Figure 20. Velocity time histories for the v component at streamwise location
x = 200.

used to represent the spatial dependence of the mixing layer flow. Compact finite
difference were used to represent the solution in the stramwise direction and a
mapped compact finite difference method was employed to describe the solution
dependence in the major gradient direction. The simulations were time advanced
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Figure 21. Mean field statistics for
(
−
U −U2

)/
∆U.

Figure 22. Mean field statistics for v/∆U.

Figure 23. Mean field statistics for (ω × δω) /∆U.

by means of a third order Runge-Kutta method. The inflow boundaries are excited
to generate the forced mixing layer solutions. An advection type outflow boundary
condition was employed in this work. This condition appears to allow a simulation
that does no distort the structures as they exit the computational domain. This
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Figure 24. Turbulence intensity for
√

u′2
/

∆U .

 

 Figure 25. Turbulence intensity for
√

v′2
/

∆U .

 
 Figure 26. Reynolds stress for

√
u′v′

/
∆U .

simulation reflects the imposition of a time dependant perturbation function at the
inlet plane. This perturbation corresponds to the fundamental mode corresponding
to solutions to the Orr-Sommerfeld equation for the hyperbolic tangent inviscid
shear layer profile. The results of the simulation capture the physics of the forced
mixing layer quite well.
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