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Abstract. Schwarz waveform relaxation (SWR) algorithm has been investigated deeply
and widely for regular time dependent problems. But for time delay problems, com-
plete analysis of the algorithm is rare. In this paper, by using the reaction diffusion
equations with a constant discrete delay as the underlying model problem, we inves-
tigate the convergence behavior of the overlapping SWR algorithm with Robin trans-
mission condition. The key point of using this transmission condition is to determine
a free parameter as better as possible and it is shown that the best choice of the param-
eter is determined by the solution of a min-max problem, which is more complex than
the one arising for regular problems without delay. We propose new notion to solve
the min-max problem and obtain a quasi-optimized choice of the parameter, which is
shown efficient to accelerate the convergence of the SWR algorithm. Numerical results
are provided to validate the theoretical conclusions.

AMS subject classifications: 30E10, 65M12, 65M55
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1 Introduction

In the past decade, Schwarz waveform relaxation (SWR) algorithm has received much at-
tention by many authors. The algorithm is characterised by firstly partitioning the space
domain into several overlapping subdomains, and then solving the subproblems simulta-
neously inside each subdomain through iterations; hence the algorithm is different from
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the classical domain decomposition method [2, 3, 30] and takes the form of waveform re-
laxation iteration (see [23–25, 31] and references therein). We refer to [9, 13, 14] and [12]
for the original idea of this algorithm.

Duo to the excellent capability in parallel computation for PDEs, the SWR algorithm
is becoming more and more popular, particularly in the field of solving time dependent
problems. It is a common point that the algorithm can be classified into two categories
depending on the used transmission condition between the subdomains: the classical
SWR algorithm and the optimized one. For the former, Dirichlet condition is used as
transmission condition (see, e.g., [6, 8, 9, 11–15, 28]) and in this case the overlap between
adjacent subdomains is essentially important to guarantee the convergence and the con-
vergence rate can not be adjustable. It has been pointed out by Gander and Halpern [16]
that Dirichlet condition is ineffective transmission condition. In particular, this trans-
mission condition inhibits information exchange between subdomains and therefore the
convergence rate of the classical SWR algorithm is slow.

To overcome this drawback, many authors utilize the transmission condition of Robin
type on the artificial boundary interfaces (see, e.g., [1, 4, 16, 19, 21, 22, 26, 27, 32]). A free
parameter, say p, is usually involved in this transmission condition and can be optimized
technically to speed up the convergence of the algorithm. With the best p, the algorithm
is called optimized SWR algorithm (for more details, we refer the interested reader to the
systematic work by Gander and his colleagues [1,4,5,16–19,21,22,26,27,29], particularly
to [1] and [16] for deep investigation of the optimization procedures for determining
the best parameters). Nowadays, the optimized SWR algorithm is becoming more and
more popular in the field of scientific and engineering computing and is adopted to solve
complex problems, such as ferro-magnetics equations in the micro-magnetic model [10],
wave equations [17,20], shallow-water problem [27,29] and Maxwell’s equations [5], etc.

However, all of the aforementioned results are obtained for the regular PDEs without
time delay. For PDEs with delay, the situation becomes very complex and the concrete
results are rare. For example, the superlinear convergence of the classical SWR algorithm
can be easily obtained for the regular reaction diffusion equations by using an existing
results about inverse Fourier transform (see, e.g., [6, 12, 16]), while it is difficult and still
unknown when time delay is taken into account. In the seminal paper [32], Vandewalle
and Gander have shown that, the techniques proposed for the regular PDEs can not be
straightforwardly applied to PDEs with time delay. In that paper, two representative
model problems are studied: the heat equation with a constant discrete delay and one
with a distributed delay. For the classical SWR algorithm, by using an elementary but
very technical method they presented an estimate of the convergence rate. In our pre-
vious paper [34], we further analyzed the classical SWR algorithm for delay problems,
where the reaction diffusion equations with a constant discrete delay were considered as
the underlying model problems. We obtained a much sharper bound of the convergence
rate and investigated the convergence behavior of the algorithm at semi-discrete level
and in the case of arbitrary number of subdomains.

For the transmission condition of Robin type, the main difficulty arises from the com-
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plexity of the curve along which one needs to solve the min-max problems. To derive a
proper parameter p involved in the transmission condition, Vandewalle and Gander [32]
proposed a very technical idea: first, choosing a regular box which contains the complex
curve, and then solving the min-max problem over the box, instead of along the curve.
But they do not present the details about how to choose a proper box and how to solve
the min-max problem over the box. Besides this, only the non-overlapping case was
studied. In our previous paper [35], we investigated the convergence behavior of the
Robin type SWR algorithm for the reaction diffusion equations with a constant discrete
time delay and proposed a new idea to determine the involved parameter p. This idea is
different from the one proposed in [32] and the key point lies in first choosing an upper
bound of the convergence factor obtained in frequency domain, which is a function of
the parameter p and the Fourier symbol ω, and then we solve the optimization problem
with this upper bound in closed formulas. When the situation reduces to the heat equa-
tions with a constant discrete delay, it was shown that the quasi-optimized parameter
derived by using this idea can result in much faster convergence compared to the param-
eter obtained in [32]. However, as in [32] we have only considered the non-overlapping
situation in [35].

For delay PDEs, duo to the current status of the SWR algorithm with Robin transmis-
sion condition we believe that the convergence property has not been fully investigated
yet, which is still open and remains challenging. This paper is a continuous work of [32]
and [35]. Here, by using the same model problem as in [35] we continue to analyze the
SWR algorithm with the Robin transmission condition. We consider the overlapping case
and try to determine the parameter p as better as possible. The remainder of this paper is
organized as follows. In Section 2, we introduce the model equations and the SWR algo-
rithm with the Robin transmission condition. Our main results are presented in Section
3, where the min-max optimization problem is solved in great details. Section 4 provides
several numerical examples to validate our theoretical results. Finally in Section 5, we
finish this paper with some conclusion remarks.

2 Model problem and the SWR algorithm

Our guiding model is:















Lu :=
∂u

∂t
−ν2 ∂2u

∂x2
+au(x,t)+du(x,t−τ)= f (x,t), (x,t)∈R×R

+,

u(x,t)=u0(x,t), (x,t)∈R×[−τ,0],

u(±∞,t)=0, t∈R
+,

(2.1)

where τ>0, ν>0 and a,d are constants with a 6=0. This equation is also the basic model
studied in the monograph [33]. For ν= 1, a= 0 and dτ > 0, (2.1) reduces to the one dis-
cussed in [32]. We decompose the space domain Ω=R into two overlapping subdomains
Ω1 =(−∞, L] and Ω2 = [0,+∞) with L≥ 0. The SWR algorithm then consists of solving
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iteratively subproblems on Ωj×R
+(j=1, 2), using as a boundary condition at the inter-

faces x=0 and x=L the values obtained from the previous iteration. The iterative scheme
is thus for the k-th iteration given by















Luk
j = f (x,t), (x,t)∈Ωj×R

+,

uk
j (x,t)=u0(x,t), (x,t)∈Ωj×[−τ,0],

Bju
k
j ((2− j)L,t)=Bju

k−1
3−j ((2− j)L,t), t∈R

+,

(2.2)

where j=1,2, u0
1 and u0

2 are initial guesses. The symbols B1 and B2 are given by

B1=
∂

∂x
+

p

ν
, B2=

∂

∂x
− p

ν
, (2.3)

where p is a free parameter. The transmission condition defined by (2.3) is called Robin
type. If we impose B1 =B2 = I in (2.2), the according algorithm is called classical SWR
algorithm, where I is the identity operator.

From Theorem 2.1 given in [35], we know that for any p > 0 each subproblem of
(2.2) is well posed in the anisotropic Sobolev spaces Hr,s(Ωj×(0,T))= L2(Hr(Ωj);(0,T))
∩Hs(L2(Ωj); (0,T)), where (0,T) denotes the time intervals. Duo to this, we only con-
sider p>0 throughout this paper.

3 Towards the best choice of the parameter p

We denote the errors on subdomain Ωj at iteration k≥0 by ek
j , i.e.,

ek
1=u|Ω1

−uk
1, ek

2=u|Ω2
−uk

2.

We then have the following homogeneous equations














Lek
j =0, (x, t)∈Ωj×R

+,

ek
j (x,t)=0, (x, t)∈Ωj×[−τ, 0],

Bje
k
j ((2− j)L,t)=Bje

k−1
3−j ((2− j)L,t), t∈R

+,

(3.1)

where j=1,2. We perform the Fourier transform in time of the error equations (3.1), and
it leads to











∂2 êk
j (x,ω)

∂x2
− a+de−iωτ+iω

ν2
êk

j (x,ω)=0, (x,ω)∈Ωj×R,

Bj ê
k
j ((2− j)L,ω)=Bj ê

k−1
3−j ((2− j)L,ω), ω∈R,

(3.2)

where êk
j (x,ω)= 1

2π

∫

R
ek

j (x,t)e−iωtdt (we extend ek
j =0 for t<−τ and denote the extension

by ek
j , too). We are thus led to solve an ordinary differential equation in each subdomain.

The roots of the corresponding characteristic polynomial are

λ+=
1

ν

√

λc, λ−=−1

ν

√

λc, λc= a+de−iωτ+iω, (3.3)
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where
√

λc is the complex square root with positive real part. Routine calculation yields

λ±=± α(ω)+iδ(ω)β(ω)
ν , where δ(ω)=sign(ω−dsin(ωτ)) and

α(ω)=

√

a+dcos(ωτ)+
√

(a+dcos(ωτ))2+(ω−dsin(ωτ))2

2
, (3.4a)

β(ω)=

√

−a−dcos(ωτ)+
√

(a+dcos(ωτ))2+(ω−dsin(ωτ))2

2
. (3.4b)

Clearly, Re(λ+)≥ 0 and Re(λ−)≤ 0, and thus the solutions of (3.2) that do not increase
exponentially at infinity are

{

êk
1(x,ω)=αk(ω)eλ+(x−L), for(x,ω)∈ (−∞,L)×R,

êk
2(x,ω)=βk(ω)eλ−x, for(x,ω)∈ (0,+∞)×R,

(3.5)

where αk(ω) and βk(ω) will be computed with the boundary conditions on x = L and
x=0:

αk(ω)=

(

λ−+
p
ν

)

eλ−L

λ++
p
ν

βk−1(ω), βk(ω)=

(

λ+− p
ν

)

e−λ+L

λ−− p
ν

αk−1(ω). (3.6)

Hence, the errors êk
j (x,ω) (j=1,2) satisfy

êk
j (x,ω)=

(

λ−+
p
ν

)(

λ+− p
ν

)

(

λ++
p
ν

)(

λ−− p
ν

) e(λ−−λ+)Lêk−2
j (x,ω), j=1,2. (3.7)

By using these relations and the well known Parseval-Plancherel identity we arrive at
∥

∥

∥
ek

j (x,·)
∥

∥

∥

L2(0,T)
≤ρ(p, L)

∥

∥

∥
ek−2

j (x,·)
∥

∥

∥

L2(0,T)
, ∀x∈Ωj, (3.8)

where j=1,2 and

ρ(p, L)=max
ω∈R

∣

∣

∣

∣

∣

(

λ−+
p
ν

)(

λ+− p
ν

)

(

λ++
p
ν

)(

λ−− p
ν

) e(λ−−λ+)L

∣

∣

∣

∣

∣

. (3.9)

Definition 3.1. The quantity ρ(p, L) defined by (3.9) is called the convergence factor of
the SWR algorithm (2.2).

Clearly, the best constant p involved in the Robin transmission condition can be de-
termined by the following min-max problem:

min
p>0

max
ω∈R

∣

∣

∣

∣

∣

(

λ−+
p
ν

)(

λ+− p
ν

)

(

λ++
p
ν

)(

λ−− p
ν

) e(λ−−λ+)L

∣

∣

∣

∣

∣

. (3.10)

It is shown in [32] and [35] that the min-max problem (3.10) is essentially different from
the one arising for regular PDEs without time delay and that it is usually impossible to
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obtain a closed formula for the solution. Duo to this, Vandewalle and Gander in [32]
propose the so-called box technique to derive a quasi-optimized solution for the case a=0
and L=0. For a=0, the model problem (2.1) reduces to the heat equation with a constant
discrete delay studied in [32]. In [35] we further consider the case L= 0 and propose a
new method to obtain quasi-optimized choice of the parameter. It is shown that by using
the parameter obtained in [35] the algorithm converges faster.

In the sequel, we use the idea proposed in [35] to derive an approximate value of the
solution of (3.10) with L> 0. From the analysis given in Section 3 in [35], we know that
the convergence factor ρ(p, L) can be rewritten as

ρ(p, L)=max
ω∈R

(ξ(ω)−p)2+ξ2(ω)−a−dcos(ωτ)

(ξ(ω)+p)2+ξ2(ω)−a−dcos(ωτ)
e−2 ξ(ω)

ν L, (3.11)

where

ξ(ω)=

√

√

[a+dcos(ωτ)]2+[ω−dsin(ωτ)]2+a+dcos(ωτ)

2
.

Let ζ0 =minω∈Rξ(ω) and then from [35] we have

min
p>0

ρ(p,L)≤min
p>0

(

max
ζ≥ζ0

(ζ−p)2+ζ2−a+|d|
(ζ+p)2+ζ2−a+|d| e−2 ζ

ν L

)

. (3.12)

We remark that the approximation idea mentioned above leads to the upper line of the
box, and with the minus sign one obtains the lower line. In the sequel, we try to solve the
min-max problem in the right hand side of (3.12), which leads to an approximate value of
the solution of the original min-max problem (3.10). To this end, we define the following
arguments

α=

(

2L

ν

)2

(a−|d|), q=
2L

ν
p, y=

2L

ν
ζ, y0=

2L

ν
ζ0, (3.13a)

R(y,q,α)=
(y−q)2+y2−α

(y+q)2+y2−α
e−y, (3.13b)

and then we get

min
p>0

(

max
ζ≥ζ0

(ζ−p)2+ζ2−a+|d|
(ζ+p)2+ζ2−a+|d| e−2 ζ

ν L

)

=min
q>0

(

max
y≥y0

R(y,q,α)

)

. (3.14)

From Lemma 3.1 in [35] we know ζ2
0≥a−|d| and therefore the quantities y0 and α defined

by (3.13) satisfy y2
0≥α.

Remark 3.1. For regular reaction diffusion equations, for example d= 0 and a> 0, it is
easy to get ζ0 =

√
a and α=y2

0. In this situation, the min-max problem

min
q>0

(

max
y≥y0

R(y,q,α)

)
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can be solved in closed formulas [1,16]. However, if time delay occurs, i.e., τ>0 and d 6=0,
we have α≤ y2

0 and this implies that we need to solve a more general min-max problem
than the regular case.

Lemma 3.1. For given y≥y0 >0 and q>0, it holds

∂R(y,q,α)

∂q

(

q−
√

2y2−α

)

≥0.

Proof. A routine calculation yields

∂R(y,q,α)

∂q
=4y

q2−(2y2−α)

[(y+q)2+y2−α]2
e−y. (3.15)

Hence, by using y≥y0 >0 and y2
0≥α we have

∂R(y,q,α)

∂q

(

q−
√

2y2−α

)

=4y
q+

√

2y2−α

[(y+q)2+y2−α]2

(

q−
√

2y2−α

)2

e−y≥0,

and this completes the proof.

Lemma 3.1 implies that the optimal parameter q which solves the min-max prob-

lem (3.14) should satisfy q≥
√

2y2
0−α. Otherwise, for y ≥ y0 increasing q will decrease

R(y,q,α).

Lemma 3.2. For α≥ 0, the cubic polynomial S(α,q)=−q3−4q2+q(4+2α)+8α has a unique
positive root q1(α) and with the argument q1(α), we have

1. if q ≥ q1(α), the function R(y,q,α) is monotonously decreasing with respect to y for y ∈
(0,+∞);

2. if 0<q<q1(α), the function R(y,q,α) has a unique local maximum located at

ȳ(α,q)=

√

2q+α+
√

qS(α,q)

2
. (3.16)

If α∈(−∞,α0], for any q>0 the function R(y,q,α) is monotonously decreasing with respect to y
for y∈ (0,+∞), where α0=−0.10189181250394.

Proof. We first note that
∂S(α,q)

∂q =0 has at most two roots r1=
√

28+6α−4
3 and r2=−

√
28+6α+4

3 .

Moreover, the larger one—r1, must be a maximizer, since S(α,q)→−∞ as q→+∞. There-
fore, for q∈ (0,+∞) there exist three cases for the distribution of the roots as shown in
Fig. 1. Increasing α from α≪0 to a positive quantity, we will first meet the left case, then
the middle case, and finally the right case. Clearly, the right case occurs if and only if
α≥0, since S(α,0)=8α. Hence, if α≥0 the cubic polynomial S has a unique positive root
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Figure 1: Sketch map of the distribution of the roots of S(α,q).

q1(α). Moreover, we have S(α,q)>0 if 0<q<q1(α) and S(α,q)<0 if q>q1(α). For α<0, it
is easy to know that there exist a critical value of α which distinguishes the left case and
the middle case shown in Fig. 1. This critical value—denoted by α0 here, is universal and
can be determined by

S(α0,q)=0,
∂S(α0,q)

∂q
=0. (3.17)

Solving (3.17) numerically, we get α0 =−0.10189181250394. Hence, for α ≤ α0 we have
S(α,q)≤0 for q>0.

The cubic polynomial S is connected with the maximum of the function R with respect
to y. Indeed, a partial derivative of R with respect to y leads to

∂R(y,q,α)

∂y
=−4y4−4(2q+α)y2+(q2+4q−α)(q2−α)

[(y+q)2+y2−α]2
e−y,

and therefore R has at most two local extrema

ȳ(α,q)=

√

2q+α+
√

qS(α,q)

2
, y(α,q)=

√

2q+α−
√

qS(α,q)

2
, (3.18)

where qS(α,q) is the discriminant. The larger quantity—ȳ, must be a maximizer, since
R≥0 and R goes to 0 as y→+∞. We next consider the following three cases.

Case 1: α ≥ 0 and q ≥ q1(α). For α ≥ 0 and q > q1(α), we have S(α,q)< 0 for q > q1(α),
which implies that the function R(y,q,α) is monotonously decreasing with respect to y,
since R(y,q,α)→0 as y→+∞. For q=q1(α), we have

ȳ(α,q)=y(α,q)=

√

2q1(α)+α

2
>0.

Moreover, routine calculation yields

∂2R(y,q,α)

∂y2

∣

∣

∣

q=q1(α), y=ȳ
=−8ȳ

2ȳ2−(2q1(α)+α)

[(ȳ+q1(α))2+ ȳ2−α]2
e−ȳ=0, (3.19a)

∂3R(y,q,α)

∂y3

∣

∣

∣

q=q1(α), y=ȳ
=− 32ȳ2

[(ȳ+q1(α))2+ ȳ2−α]2
e−ȳ 6=0. (3.19b)
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Therefore, we know that y=
√

2q1(α)+α
2 is not a maximizer of R(y,p1(α),α). Hence, we get

the conclusion that the function R(y,q,α) is monotonously decreasing with respect to y
for p≥ p1(α).

Case 2: α≥0 and q∈(0,q1(α)). In this case, we have S(α,q)>0 and therefore R(y,q,α) has
a unique local maximum located at y= ȳ.

Case 3: α≤α0. If α=α0 and q=q1(α0), we have

ȳ(α0,q1(α0))=y(α0,q1(α0))=

√

2q1(α0)+α0

2
>0.

A treatment similar to (3.19) will show that ȳ(α0,q1(α0)) is not a maximizer of R. For
α<α0, we have S(α,q)<0 and this implies that the function R is monotonously decreas-
ing with respect to y. It then follows by combing these two situations that the function
R(y,q,α) is monotonously decreasing with respect to y for any q>0.

Based on Lemma 3.2, we present the first result about the solution of the min-max
problem

min
q>0

max
y≥y0

R(y,q,α). (3.20)

Theorem 3.1. Let L>0, q̃0=
√

2y2
0−α, α0=−0.10189181250394 and α, y0 be defined by (3.13).

Assume α≤α0 (i.e., (a−|d|)(2L/ν)2 ≤α0) and y0 >0, then for the overlapping SWR algorithm
(2.2) the parameter p involved in the Robin transmission condition (2.3) can be approximated by
p= p∗ :=q∗ ν

2L , where q∗= q̃0 is the solution of the min-max problem (3.20).

Proof. By using the conclusion concerning α≤α0 given by Lemma 3.2 we get

min
q>0

max
y≥y0

R(y,q,α)=min
q>0

R(y0,q,α).

By Lemma 3.1, we know that R(y0,q,α) decreases for q ∈ (0,q̃0) and increases for q ∈
(q̃0,+∞). Moreover, from (3.15) we get ∂qR(y0,q̃0,α)= 0 and therefore R(y0,q,α) gets its
global minimum at q= q̃0.

Lemma 3.3. Let

X(q)=−q4−4q3+2αq2+(4α+8y2
0)q−(α−2y2

0)
2.

Assume y0>0 and y2
0≥α≥0 and then X(q) has at most two different positive roots. Moreover, if

X(q) has two different positive roots x1 and x2 (x1<x2) it holds X(q)<0 for q∈(0,x1)∪(x2,+∞),

X(q)≥0 for q∈ [x1,x2] and x1≤ q̃0, where q̃0=
√

2y2
0−α.
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Proof. Since X′(q)=4(−q3−3q2+αq+α+2y2
0), X′(q) has at most three different positive

roots. Because X(3)(q)=−24(q+1)<0 for q>0, X′(q) does not have local minimum for
q>0. Since X′(0)=4(α+2y2

0)>0 and X′(q)=−∞ as q→+∞, it is easy to know that X′(q)
has a unique positive root. This means that X(q) has at most two different positive roots.

If X(q) has two different positive roots x1 and x2 with x1<x2, it is easy to get X(q)<0
for q ∈ (0,x1)∪(x2,+∞) and X(q) ≥ 0 for q ∈ [x1,x2], since X(0) = −(α−2y2

0)
2
< 0 and

X(q) =−∞ as q →+∞. It remains to prove x1 ≤ q̃0. We suppose by the contrary that
x1> q̃0 and thus it holds X(q̃0)<0 and X′(q̃0)>0. This gives

− q̃4
0−4q̃3

0+2αq̃2
0+(4α+8y2

0)q̃0− q̃4
0<0, − q̃3

0−3q̃2
0+αq̃0+α+2y2

0 >0,

i.e.,

− q̃3
0−2q̃2

0+αq̃0+2(α+2y2
0)<0, − q̃3

0−3q̃2
0+αq̃0+α+2y2

0 >0. (3.21)

We therefore get

−q̃3
0−3q̃2

0+αq̃0+α+2y2
0 >−q̃3

0−2q̃2
0+αq̃0+2(α+2y2

0),

i.e., − p̃2
0−(α+2y2

0)>0. Clearly, this is a contraction.

With the argument q1(α) introduced in Lemma 3.2, we define

X1=

{

x1, if X(q) has two positive roots x1 and x2 (x1< x2),

−1, otherwise,
(3.22a)

X2=

{

x2, if X(q) has two positive roots x1 and x2 (x1< x2),

0, otherwise,
(3.22b)

X̃2=







X2, if
q̃2

0
2 ≥q1(α),

q1(α), if
q̃2

0
2 <q1(α).

(3.22c)

Lemma 3.4. Let L>0, α≥0 and Z(q)=q−
√

2q+
√

qS(α,q) and q∈(0,q1(α)), where S(α,q) is

the cubic polynomial defined in Lemma 3.2 and q1(α) is the unique positive root of S(α,q). Then
we have

1. if q1(α)∈ (0,2], it holds Z(q)<0 for q∈ (0, q1(α));

2. if q1(α)>2, the function Z(q) has a unique positive root z0∈(0, q1(α)). Moreover, it holds
Z(q)<0 for q∈ (0,z0) and Z(q)>0 for q∈ (z0, q1(α)).

Proof. Let

Z̃(q)=Z(q)

[

q+

√

2q+
√

qS(α,q)

]

=q2−2q−
√

qS(α,q).



790 S.-L. Wu and T.-Z. Huang / Commun. Comput. Phys., 14 (2013), pp. 780-800

It is obvious that Z̃(q)< 0, ∀q∈ (0,q1(α)) if q1(α)∈ (0,2] and this gives Z(q)< 0 for q∈
(0,q1(α)) with q1(α)∈(0,2]. To discuss the case q1(α)>2, we first note that if α=0 it holds
q1(α)=2(

√
2−1)<2. Hence, q1(α)>2 implies α>0. It is clear that Z̃(q)<0 for q∈(0,2] and

Z̃(q1(α))= q1(α)[q1(α)−2]>0. Therefore, Z̃ shall has at least one root z0 which satisfies
z0∈ (2, q1(α)). On the other hand, for q∈ (2,q1(α)] we have

Z̃(q)=0⇔
(

q2−2q
)

=qS(α,q) ⇔ q3−αq−4α=0. (3.23)

For α> 0, it is easy to show that the last equation q3−αq−4α= 0 has only one positive
root. Therefore, the root z0 of Z(q) is unique. By using the continuity of Z̃, it is easy to
get Z̃(q)<0 for q∈ (0,z0) and Z̃(q)>0 for q∈ (z0,q1(α)].

Theorem 3.2. Let q̃0=
√

2y2
0−α and α, y0 be defined by (3.13). Assume α≥0 (i.e., a≥|d|) and

y0 > 0. Then the performance of the overlapping SWR algorithm (2.2) with Robin transmission
condition (2.3) can be optimized for p=p∗ :=q∗ ν

2L , where q∗, the solution of the min-max problem
(3.20), is given by

q∗=

{

q∗1, if Z(q∗0)≥0,

q∗0, otherwise,
(3.24a)

provided (0,q1(α))∩(X1,X2) 6=∅, X̃2>q̃0 and R(y0,q̃0,α)<R(ȳ(α,q̃0),q̃0,α); otherwise, q∗=q̃0.
Here,

Z(q)=q−
√

2q+
√

qS(α,q),

X1, X2 and X̃2 are defined by (3.22a)-(3.22c), q1(α) is the unique positive root of the cubic poly-
nomial S(α,q), q∗1 is the unique solution of Z(q)=0 and q∗0 is the unique solution of the following
equation

R(ȳ(α,q),q,α)=R(y0,q,α). (3.24b)

Note that, for α≥0 and q∈ (0, q1(α)) it follows by applying Lemma 3.2 that

dR(ȳ(α,q),q,α)

dq
=

∂R(ȳ,p,α)

∂y
× ∂ȳ(α,q)

∂q
+

∂R(ȳ(α,q),q,α)

∂q
=

∂R(ȳ(α,q),q,α)

∂q
,

since
∂R(ȳ,p,α)

∂y = 0 (because ȳ is a local maximizer of R). Hence, by using Lemma 3.1 we

have
dR(ȳ(α,q),q,α)

dq

(

q−
√

2ȳ2(α,q)−α

)

≥0.

Now, keeping this in mind we begin our proof.

Proof. Since α≥0, from the first conclusion of Lemma 3.2 we know

min
q>0

(

max
y≥y0

R(y,q,α)

)

=min

{

min
q≥q1(α)

R(y0,q,α), min
0<q<q1(α)

(

max
y≥y0

R(y,q,α)

)}

. (3.25)



S.-L. Wu and T.-Z. Huang / Commun. Comput. Phys., 14 (2013), pp. 780-800 791

For q∈ (0,q1(α)), we know from the second conclusion of Lemma 3.2 that the function R
has a unique maximum at y= ȳ(α,q). Therefore, for q∈ (0,q1(α)) it holds

max
y≥y0

R(y,q,α)=

{

R(y0,q,α), if ȳ(α,q)≤y0,

max{R(y0,q,α),R(ȳ(α,q),q,α)}, otherwise.
(3.26)

Hence, we first need to know under what condition it holds ȳ(α,q)> y0. To this end, we
note

ȳ(α,q)>y0 ⇔
√

qS(α,q)>2

(

q̃2
0

2
−q

)

. (3.27)

Clearly, if
q̃2

0
2 ≤q<q1(α)

(

of course, this requires
q̃2

0
2 <q1(α)

)

, we have ȳ(α,q)>y0. If q≤ q̃2
0

2 ,
routine calculation yields

ȳ(α,q)>y0 ⇔
√

qS(α,q)>2

(

q̃2
0

2
−q

)

⇔ qS(α,q)>4

(

q̃2
0

2
−q

)2

⇔ X(q)>0, (3.28)

where X(q) is the quartic polynomial defined in Lemma 3.3. To determine the best pa-
rameter which solves the min-max problem (3.20), we consider the following two cases.

Case A: (0,q1(α))∩(X1,X2) 6=∅, i.e., 0<X1<q1(α). In this case, we know that the quartic
polynomial X(q) has two different positive roots x1 and x2 and from (3.22a)-(3.22b) we
have X1= x1 and X2= x2. We claim

ȳ(α,q)>y0, if and only if q∈
(

X1, X̃2

)

, (3.29)

where X̃2 is defined by (3.22c). The proof of (3.29) is divided into two cases and depends

on
q̃2

0
2 ≥q1(α) or not.

If
q̃2

0
2 ≥q1(α), by using (3.28) and Lemma 3.3, we have

ȳ(α,q)>y0, if and only if q∈ (X1,min{X2,q1(α)}). (3.30)

Suppose q1(α)< X2 and then we have q1(α)∈ (X1,X2) and this gives X(q1(α))> 0. By
using (3.28), this however implies

√

q1(α)S(α,q1(α))>2

(

q̃2
0

2
−q1(α)

)

,

i.e., 0>2
( q̃2

0
2 −q1(α)

)

, which is a contradiction since
q̃2

0
2 ≥q1(α). Hence, it holds q1(α)≥X2

and this together with (3.30) gives

ȳ(α,q)>y0, if and only if q∈ (X1,X2). (3.31)

If
q̃2

0
2 <q1(α), from (3.27)-(3.28) and Lemma 3.3 we get

ȳ(α,q)>y0, if and only if q∈
{(

0,
q̃2

0

2

)

∩(X1,X2)

}

∪
[

q̃2
0

2
, q1(α)

)

. (3.32)
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Since
q̃2

0
2 <q1(α), we get

[

√

qS(α,q)−2

(

q̃2
0

2
−q

)]

q=q̃2
0/2

>0.

Hence, by using (3.28) and Lemma 3.3 we have X
( q̃2

0
2

)

> 0 and this implies
q̃2

0
2 ∈ (X1,X2).

Therefore, from (3.32) we get

ȳ(α,q)>y0, if and only if q∈ (X1, q1(α)). (3.33)

Now, using the argument X̃2 defined by (3.22c), we get (3.29) by combining (3.31) and
(3.33). Moreover, from the aforementioned analysis we know

X̃2≤q1(α). (3.34)

Hence, for 0<X1<q1(α) it follows by using (3.25), (3.26) and (3.29) that

min
q>0

max
y≥y0

R(y,q,α)

=min

{

min
q∈(X1,X̃2)

(max{R(y0,q,α),R(ȳ(α,q),q,α)}) , min
q∈(0,X1]∪[X̃2,+∞)

R(y0,q,α)

}

. (3.35)

We next claim

R(y0,X̃2,α)≥R(ȳ(α,X̃2),X̃2,α). (3.36)

If X̃2 =X2, we have X(X2)=0, since X2 = x2. By routine calculation we get ȳ(α,X2)=y0,
which gives (3.36) in the sense of “=”. If X̃2=q1(α), by using the first conclusion in Lemma
3.2 we know R(y,q1(α),α)≤R(y0,q1(α),α) for all y≥y0. Beginning with (3.34)-(3.36), we
consider in the sequel two cases which depend on X̃2≤ q̃0 or not.

a© X̃2 ≤ q̃0. In this case, for any q∈ (X1,X̃2) we know from Lemma 3.1 that
∂R(y0,q,α)

∂q ≤ 0.

Moreover, since ȳ(α,q)>y0 holds for any q∈(X1,X̃2), we get q−
√

2ȳ2−α<q− q̃0<0 and

this together with Lemma 3.1 gives
∂R(ȳ,q,α)

∂q ≤0. Hence, we know that both R(y0,q,α) and

R(ȳ(α,q),q,α) decrease monotonically for q∈ (X1,X̃2). We thus get

min
q∈(X1,X̃2)

(max{R(y0,q,α),R(ȳ(α,q),q,α)})

=max{R(y0,X̃2,α),R(ȳ(α,X̃2),X̃2,α)}=R(y0,X̃2,α), (3.37)

where in the last equality we have used (3.36). For q∈(0,X1]∪[X̃2,+∞), by using Lemma
3.1 we have

min
q∈(0,X1]∪[X̃2,+∞)

R(y0,q,α)=R(y0,q̃0,α), (3.38)
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since X̃2≤ q̃0. Then, by combing (3.37) and (3.38) it follows by using (3.35) that

min
q>0

max
y≥y0

R(y,q,α)=min{R(y0,X̃2,α),R(y0,q̃0,α)}=R(y0,q̃0,α), (3.39)

where in the last equality we have used X̃2≤ q̃0 and Lemma 3.1 again.

b© X̃2 > q̃0. In this case, we know from Lemma 3.3 that q̃0 ∈ (X1,X̃2). Since X̃2 ≤ q1(α)
(see (3.34)) and ȳ(α,q)>y0 for q∈ (X1,X̃2), we know from Lemma 3.1 that both R(y0,q,α)
and R(ȳ,q,α) decrease monotonically for q∈ (X1,q̃0]. Besides this, we also know that the
function R(y0,q,α) is increasing for q≥ q̃0 and that increasing q from q̃0 decreases R(ȳ,q,α)
provided q <

√

2ȳ2(α,q)−α, after which R(ȳ,q,α) will increase. We next consider the
following two situations for q∈ [q̃0,X̃2].

1© R(y0,q̃0,α)≥R(ȳ(α,q̃0),q̃0,α). In this case, it is easy to get

min
q∈(X1,X̃2)

(max{R(y0,q,α),R(ȳ(α,q),q,α)})=R(y0,q̃0,α), (3.40)

since R(y0,q,α) is increasing for q≥q̃0; see the illustration shown in Fig. 2. Moreover,
since q̃0∈ (X1,X̃2) we have

min
q∈(0,X1]∪[X̃2,+∞)

R(y0,q,α)≥R(y0,q̃0,α).

Hence, by using (3.35) we get

min
q>0

max
y≥y0

R(y,q,α)=R(y0,q̃0,α).
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R(ȳ, q , α)
R

0 qX1 X̃2
q̃0

0 0.2 0.4 0.6 0.8 1 1.2

−2

−1.5

−1

−0.5

0

0.5

1

1.5
R(y0, q , α)

R(ȳ, q , α)
R

0 qX1 X̃2
q̃0

Figure 2: Illustration of three representative relationship between the two functions R(y0,q,α) (solid line) and
R(ȳ,q,α) (dash line) for R(y0, q̃0,α)≥R(ȳ(α, q̃0), q̃0,α).

2© R(y0,q̃0,α) < R(ȳ(α,q̃0),q̃0,α). In this case, by using (3.36) and the continuity of
R(ȳ,q,α), we know that R(y0,q,α) and R(ȳ(α,q),q,α) intersect for q∈(q̃0, X̃2]. More-
over, duo to the monotonicity of these two functions the following equation has a
unique solution for q̃0<q<q∗1 :

R(ȳ(α,q),q,α)=R(y0,q,α), (3.41)
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Figure 3: Illustration of two representative relationship between the two functions R(y0,q,α) (solid line) and
R(ȳ,q,α) (dash line) for R(y0, q̃0,α)<R(ȳ(α, q̃0), q̃0,α). Left: Z

(

q∗0
)

<0; Right: Z
(

q∗0
)

≥0.

where q∗1 is the unique positive solution of Z(q)= 0 (the uniqueness of q∗1 is given
by Lemma 3.4). We denote the unique solution of (3.41) by q∗0 . Then, by using

Lemma 3.1 we know that if q∗0<
√

2ȳ2(α,q∗0)−α, i.e., Z(q∗0)<0, the maximum of R is

minimized for q=q∗0 ; see the illustration shown in Fig. 3 on the left. Otherwise, the

best parameter q∗ is determined by q∗= q∗1, i.e., q∗=
√

2ȳ2(α,q∗)−α. The situation
Z(q∗0)≥0 is shown in Fig. 3 on the right.

Case B: (0, q1(α))∩(X1, X2)=∅. In this case, we first claim (0, q1(α))∩
[ q̃2

0
2 , +∞

)

=∅. By

the contrary, we shall have q1(α)>
q̃2

0
2 and this gives

[

√

qS(α,q)−2

(

q̃2
0

2
−q

)]

q=q̃2
0/2

>0.

This together with (3.28) gives X
( q̃2

0
2

)

> 0. By using Lemma 3.3 we know
q̃2

0
2 ∈ (X1, X2).

Hence, we get a contradiction, since q1(α)>
q̃2

0
2 and

q̃2
0

2 ∈ (X1, X2) implies (0, q1(α))∩
(X1, X2) 6=∅.

Now, by using (0,q1(α))∩
[ q̃2

0
2 ,+∞

)

= ∅, we have
q̃2

0
2 ≥ q1(α). Moreover, by using

(0,q1(α))∩(X1,X2) =∅, we know X2 = 0 or q1(α)≤ X1. Therefore, by using (3.28) and
Lemma 3.3 we get ȳ(α,q)≤y0 for q∈ (0, q1(α)). Hence, from (3.25) and (3.26) we get

min
q>0

(

max
y≥y0

R(y,q,α)

)

=min
q>0

R(y0,q,α)=R(y0,q̃0,α), (3.42)

where in the last equality we have used Lemma 3.1.

For the case α0 < α < 0 which corresponds to the middle case shown in Fig. 1, the
equality (3.25) does not hold and we need to consider more cases in the right hand side
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of (3.25). Therefore, in this case the analysis of finding the solution of (3.20) is more
complex than the case α≥ 0. A complete analysis is tedious and does not give any new
insight compared to the proof of Theorem 3.2. Hence, we do not plan to analyze this case
in this paper.

Remark 3.2. The proof of Theorem 3.2 is performed case by case and is complicated. It is
however can be shown that each case can occur by choosing special values of α and y0.
The following values are selected for this purpose:

Case A- a©: α=1, y0 =1.5. For this choice, we have

q̃0=1.87082869338697, q1(α)=1.80044140002619,

X1=0.56524881023725, X2=1.80013328000739, X̃2=1.80044140002619,

which implies (0,q1(α))∩(X1,X2) 6=∅ and X̃2≤ q̃0;

Case A- b©- 1©: α=0.8, y0=1.336. For this choice, we have

q̃0=1.66426920899234, q1(α)=1.66620550558771,

X1=0.44304599273716, X2=1.65514565316201, X̃2=1.66620550558771,

R(y0,q̃0,α)=0.02876421298830, R(ȳ(α,y0),q̃0,α)=0.02875253464464.

Hence, we get (0,q1(α))∩(X1,X2) 6=∅, X̃2> q̃0 and R(y0,q̃0,α)≥R(ȳ(α,y0),q̃0,α);

Case A- b©- 2©: α=1, y0=1.25. With this choice, we have

q̃0=1.45773797371133, q1(α)=1.80044140002619,

X1=0.26993212134574, X2=1.74032740687594, X̃2=1.80044140002619,

R(y0,q̃0,α)=0.02198068148992, R(ȳ(α,y0),q̃0,α)=0.03032604729804.

Hence, we get (0,q1(α))∩(X1,X2) 6=∅, X̃2> q̃0 and R(y0,q̃0,α)<R(ȳ(α,y0),q̃0,α);

Case B: α= 16
15 , y0 =1.941. Under this choice, we have q̃0 =2.54328435951101 and q1(α)=

1.84249172393323. Moreover, it is easy to verify that the quartic polynomial X(q) defined

in Lemma 3.3 does not have positive roots. Hence, (0,q1(α))∩
[ q̃2

0
2 ,+∞

)

=∅ and (0,q1(α))∩
(X1,X2)=∅.

Remark 3.3. We have stated in Remark 3.1 that, for regular reaction diffusion equations
without time delay the quantity α equals to y2

0. For α=y2
0, we get q̃0=y0 and

S(y0,y0)=y3
0+4y2

0+4y0 >0, X(y0)=8y3
0>0, ȳ(y0,y0)=

√

y2
0+2y0, (3.43)

which gives X2>y0>X1, q1(y
2
0)>y0 and ȳ>y0. Hence X̃2>y0 and q1(y

2
0)>X1. Moreover,

it is easy to get

∂R(y,y0,y2
0)

∂y
=− 4y4−4(2y0+y2

0)y
2

[(y+y0)2+y2−y2
0]

2
e−y =−4y2 y2−2y0−y2

0

[(y+y0)2+y2−y2
0]

2
e−y, (3.44)



796 S.-L. Wu and T.-Z. Huang / Commun. Comput. Phys., 14 (2013), pp. 780-800

which implies that R(y,y0,y2
0) is monotonically increasing for y∈

[

y0,
√

y2
0+2y0

]

. Clearly,

the conditions (X1,X2)∩(0,q1(α)) 6=∅, X̃2 > q̃0 and R(y0,q̃0,α)<R(ȳ(α,q̃0),q̃0,α) are fully
satisfied. Therefore, from Theorem 3.2 we know that the solution q∗ of the min-max
problem (3.20) will be only determined by (3.24a). This implies that the proof of Theorem
3.2 generalizes the optimization procedure given by Gander and Halpern [16].

4 Numerical results

We do in this section several numerical experiments to measure the effectiveness of the
quasi-optimized parameter obtained in this paper. We use the model problem (2.1) with
x ∈ (0,4) (i.e., Ω= (0,4)) and t∈ (0,10). We impose homogeneous boundary condition,
u(0,t)=u(4,t)=0, and use various source function f (x,t) and initial condition u0(x,t) for
(x,t)∈Ω×[−τ,0].

We show results of numerical experiments for only the algorithm with overlap, since
with overlap we can compare the results to the classical SWR algorithm (i.e., B1=B2=I
in (2.2), where I is the identity operator). From [35], we know that the classical SWR
algorithm does not converge without overlap. We discretize the SWR algorithm (2.2)
by using the central finite difference scheme in space with mesh parameter ∆x and a
backward Euler method in time with time step ∆t=0.02.

Example 4.1. (The case of two subdomains) We choose the parameters ν=1, a=4, d=−1.5,
τ = 3, ∆x = 0.05 and L = 6∆x. Then, by using Theorem 3.2 we know that the quasi-
optimized parameter is p∗=2.73529031016621. In this first set of experiments, the initial
condition and the source function are chosen as

u0(x,t)=1+cos
(

etsin(πx)π
)

, f (x,t)=(x−1)(x−3)sin
(

xt2
)

. (4.1)

In Fig. 4 on the left, we show the convergence rate of the SWR algorithm with Dirichlet
transmission condition (dot line) and Robin transmission condition (solid line). We see
clearly in this panel that, compared to the Dirichlet transmission condition the Robin
transmission condition with p = p∗ can significantly speed up the convergence of the
SWR algorithm. We next verify to what degree the choice of the parameter derived in
this paper corresponds to the best choice one can make in the fully discretized algorithm.
To this end, in Fig. 4 on the right we show the errors obtained after running the SWR
algorithm with Robin transmission condition for 5 iterations using various values for the
free parameter p. The choice p= p∗ is indicated by a star. One can find in this panel that
the quasi-optimized parameter p= p∗ predicts the best one well.

Example 4.2. (The case of many subdomains) We now show experiments which indicate
that the results obtained for two subdomains are also relevant for many subdomains. In
this second set of experiments, the initial condition and the source function are chosen as

u0(x,t)=
1

4
sin(4πx), f (x,t)=100ecos(5t)sin(5πx). (4.2)
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Figure 4: Left: measured convergence rate of the classical SWR algorithm (dot line) and the Robin type SWR
algorithm with parameter p = p∗ (solid line). Right: the errors obtained by running the Robin type SWR
algorithm after 5 iterations and various choices of the free parameters p, and indicated by a star the choice
p= p∗.
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Figure 5: Left: measured convergence rate of the classical SWR algorithm (dot line) and the Robin type SWR
algorithm with parameter p = p∗ (solid line). Right: the errors obtained by running the Robin type SWR
algorithm after 6 iterations and various choices of the free parameters p, and indicated by a star the choice
p= p∗.

We choose for problem parameters ν = 1, a = 3, d = 0.93, τ = 2 and for discretization
parameters ∆x = 0.025 and L = 8∆x. Then, by using Theorem 3.2 we know that the
quasi-optimized parameter is p∗ = 2.77013082323719. We now decompose the whole
space domain Ω = [0,4] into eight subdomains and then we show in Fig. 5 on the left
the convergence rates of the SWR algorithm with Dirichlet transmission condition (dot
line) and Robin transmission condition (solid line). We see clearly in this panel that, the
convergence rate of SWR algorithm with the optimized Robin transmission condition is
remarkable sharper than the algorithm with Dirichlet transmission condition. We next
verify to what degree the choice of the parameter p= p∗ derived in two subdomain case
corresponds to the best choice one can make in eight subdomain case and in the fully dis-
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cretized algorithm. To this end, we show in Fig. 5 on the right the errors obtained after
running the Robin type SWR algorithm for 6 iterations using various values for the free
parameter p. The choice p= p∗ is also indicated by a star. It is interesting to see in this
panel that the quasi-optimized parameter p= p∗ can not predict the best one very well.
In particular, compared to the case of two subdomains, the quasi-optimized parameter
p= p∗ goes away from the best one.

5 Conclusions

Schwarz waveform relaxation algorithm has been investigated deeply and widely for
regular PDEs without time delay, while there is only a few experience of this algorithm
for delay PDEs. In this paper, we focus on investigating the convergence behavior of the
algorithm with Robin type transmission condition in the overlapping case. The analy-
sis towards determining the parameter involved in the Robin transmission condition is
deeper and more technical than the non-overlapping case studied in [35]. It is shown
that the obtained parameter is a reliable approximation of the best choice and that by
using this quasi-optimized parameter the Robin transmission condition can remarkably
outperform the Dirichlet transmission condition.

There are still some important problems that need to be answered. Firstly, we only
considered the case of two subdomains, which is very special in the field of SWR algo-
rithm. For the case of arbitrary number of subdomains, we have shown in Fig. 5 on the
right that the parameter p= p∗ analyzed in two subdomain case can not predict the best
one very well. Therefore, the generation of the work in this paper to the case of many
subdomains is meaningful. Second, for practical applications results in higher spatial di-
mensions would be needed. We intend to extend our analysis to the 2D case in a close
future.
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