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Abstract. The definition of a molecular surface which is physically sound and compu-
tationally efficient is a very interesting and long standing problem in the implicit sol-
vent continuum modeling of biomolecular systems as well as in the molecular graphics
field. In this work, two molecular surfaces are evaluated with respect to their suitabil-
ity for electrostatic computation as alternatives to the widely used Connolly-Richards
surface: the blobby surface, an implicit Gaussian atom centered surface, and the skin
surface. As figures of merit, we considered surface differentiability and surface area
continuity with respect to atom positions, and the agreement with explicit solvent sim-
ulations. Geometric analysis seems to privilege the skin to the blobby surface, and
points to an unexpected relationship between the non connectedness of the surface,
caused by interstices in the solute volume, and the surface area dependence on atomic
centers. In order to assess the ability to reproduce explicit solvent results, specific
software tools have been developed to enable the use of the skin surface in Poisson-
Boltzmann calculations with the DelPhi solver. The results indicate that the skin and
Connolly surfaces have a comparable performance from this last point of view.
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1 Introduction

Biomolecular systems are composed of biological macromolecules, proteins and nucleic
acids, and of a number of small organic molecules and electrolytes immersed in aqueous
solution. The role of the solvent is sometimes crucial because of the effects it can have
on the behavior of the biomolecules while performing their function. Therefore, both in
the field of Computational Biological Chemistry and Molecular Visualization, Molecular
Surfaces (MSs) play an instrumental role as the separation between the system one wants
to monitor and the surrounding environment, whose effect cannot be neglected but that
is usually not the focus of the analysis. In Computational Biological Chemistry, the so-
called implicit solvent models provide an estimate of the average solvent effect, resulting
in a huge computational saving, since the number of degrees of freedom of the solvent is
usually much larger than that of the solute. Approaches based on the Poisson-Boltzmann
Equation (PBE) [1] and the Generalized Born Approximation [2] are widely used to esti-
mate the reaction of the media to the electric field generated by the partial charges on the
solute. In particular, the Poisson-Boltzmann equation reads:

∇·[ε(r)∇ϕ(r)]=−

[

ρ f ixed+e
Ns

∑
i=1

Ci(∞)ziexp

(

−
ezi

kBT
ϕ(r)

)

]

, (1.1)

where e is the electron charge, Ci(∞) is the bulk concentration of the i-th ion type and
zi is its valence, kB is the Boltzmann constant, T is the temperature, ρ f ixed represents
the partial charge distribution and ϕ(r) the potential; ε(r) is the space varying dielectric
constant, which is a direct consequence of the adopted surface definition. The solution of
this equation is needed to acquire an accurate knowledge of the reaction field and it can
also be used to derive the electrostatic forces exerted by the solvent on the solute, which
are mostly located at the boundary between high and low dielectric regions, i.e. on the
MS.

Traditionally, the simplest molecular models represent classical atoms as hard spheres
whose radius, namely the van der Waals radius, indicates the largest distance at which an
atom repels its neighbors. The union of these hard spheres is the so-called van der Waals
volume and the resulting enclosing surface is termed the van der Waals surface (VDWS).
In a real solvent, the solvent molecules have a finite size and small invaginations are not
accessible, at least in a static scenario. To account for this fact, other surfaces were iden-
tified, in particular the Solvent Accessible Surface, which is the locus of the centers of a
spherical probe that rolls over the molecular system. Geometrically, it coincides with the
VDWS of the system where each VDW radius is increased by the size of the radius of
the probe. In case of aqueous solution, a probe having the average water molecule ra-
dius of 1.4Å is considered. A subsequent development consisted in the definition of the
Solvent Excluded Surface (SES), often identified with the Molecular Surface; it separates
the volume accessible to a finite size solvent probe from the inaccessible one. This defi-
nition, based on a hard sphere model of both the solute and the solvent, was suggested
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by Lee and Richards [3] and an algorithm for its computation was provided by Con-
nolly [4]. This approach became so widespread that the above described surface is often
called Connolly surface, although Connolly algorithm is not the only one developed to
this purpose [5–7].

The definition of the best MS model is a complex problem and the requirements it
should satisfy are slightly different for the various context of use; for instance, for real-
time visualization the emphasis is on speed, while in computational physics, the robust-
ness, accuracy and interpretability of the simulation results are crucial aspects. In this
work, we discuss the possibility that MS definitions originated in Computer Graphics
and Applied Mathematics fields for visualization purposes can valuably contribute to ap-
plications in Physics and Biochemistry. We mainly focus on the so-called skin and blobby
surfaces, and describe their suitability for the estimation of the electrostatic reaction field
energy of biomolecular systems. To our knowledge, such analysis has not been done be-
fore and we believe it gives interesting insights in these alternative MS models. Lee and
Richards’ MS is kept as a reference model and several figures of merit are adopted in this
study; one of them is regularity, expressed in terms of:

(i) the presence of regions where the normal vector is not defined;

(ii) the continuous dependence of surface area on the position of the solute atomic cen-
ters;

(iii) the generation of spurious high dielectric interstices in the solute region.

Another important aspect is the agreement with energetic profiles generated by the
Potential of Mean Force (PMF) in explicit solvent calculations (which can be considered
as the ground truth), in line with the works of Masunov and Lazaridis [8] and Swanson,
Mongan and McCammon [9]. In this work, we specialize our findings to the effects that
might apply to the approach adopted by the DelPhi PBE solver [10], which maps the
system on a grid where the equation is discretized and then iteratively solved. To this
aim, we coupled different surface definitions to DelPhi and compared the results.

The paper is organized as follows: first, a brief overview on MSs is performed, which
includes some critical aspects for their application. In the Methods section the skin and
the blobby surfaces are detailed together with the procedures used to make their assess-
ment. In Section 4 the results of the analysis with respect to regularity and agreement
with the PMF results are given. Finally, conclusions are drawn and a few comments on
computational costs are given.

2 A brief survey on molecular surfaces

In this Section, alternative MS definitions are reported as well as some of the limitations
that have been ascribed to the Lee and Richards’ MS and that hinder, for instance, its use
in molecular dynamics applications.
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2.1 From molecular visualization to implicit solvent models

For visualization purposes the most frequently adopted molecular surfaces are the VDWS
and the SES [4]. Recently, both scientists in Computational Biological Chemistry and
Computer Graphics developed different algorithms based on the Connolly method to
derive the Lee and Richards surface. Besides the original Connolly algorithm [4], we
would like to mention the Euclidean distance transform [11], Sanner MSMS package [5],
the Contour-Build-up algorithm [7], the Level Set Method [12], the discretization with
curved elements [13] and the method employed in the DelPhi PBE solver [6]. In the
Computer Graphics community, algorithms were also developed for the classical Con-
nolly surface: a NURBS based method [14], alpha shapes [15] and beta shapes [16].

Alternative MS definitions have also been suggested, see for instance Lu and Luo
in [17] and in [18] among the others. The minimal molecular surface [19] is an elegant
formalization of the MS problem: the resulting surface is implicit and can be triangulated
via a standard meshing algorithm such as the ”marching cubes” [20]. A completely dif-
ferent approach has been pursued in [21] and in [22], where the abrupt transition from
high to low dielectric regions is abandoned in favor of a smooth spatial variation of the
dielectric. This choice improves the convergence of the numerical PBE solvers but it does
not resolve all of the remaining problems affecting the surface, moreover it pays the price
of a higher complexity due to the fact that the polarization charge, which represents the
dielectric reaction, is spread over a volumetric shell rather than over a surface.

Two alternative definitions of the molecular surface seem to be particularly promis-
ing: the blobby surface, an implicit surface based on the Gaussian atom centered idea
adopted also in [22], and the skin surface, a more elaborated mathematical concept de-
fined by Edelsbrunner [23]. The blobby surface, originally proposed in [24], but later en-
hanced in [25], is an implicit surface that is usually triangulated for visualization, while
the skin can be either triangulated [26, 27] or ray-casted [28, 29], resulting in a very high
quality rendering. We considered these surfaces for several reasons: chiefly, for their
smoothness and because they are expected, due to their mathematical definition, to pro-
vide a surface area which is continuous with respect to both surface parameters and atom
positions. Additionally, the blobby surface is interesting because it has a simple mathe-
matical definition and it is inherently computationally parallel; in light of this fact, it has
been implemented for instance in GAMER, a module of the APBS Poisson-Boltzmann
solver [30] and parallelized by the Authors on a Graphics Processing Unit (GPU) archi-
tecture [31]. With respect to the blobby, the skin surface is less intuitive in its geometric
definition, but, similarly to the Connolly one, all of its patches can be analytically defined.
This aspect well suits the DelPhi philosophy where the analytical nature of the MS is ex-
ploited as much as possible in order to reduce the finite grid size artifacts. Both blobby and
skin surfaces are implicit; thus, one can consider using ray-tracing techniques for visual-
ization, which involve a ray-surface intersection routine. Interestingly, the projection of a
point over a surface, which is a primitive needed by DelPhi, also consists in a root finding
problem as the intersection procedure and could benefit from a GPU implementation.
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From the PBE solution standpoint, surface analyticity is not mandatory, since the most
commonly used methods, namely Finite Differences, Boundary Elements and Finite Ele-
ments, rely on a discrete description of the boundary. However, one can observe that the
analytical surface definition is used a posteriori by DelPhi [6], to improve the accuracy of
the reaction field energy, and also in some Boundary Elements solvers [13].

2.2 On the regularity of molecular surfaces

Different applications have different requirements as far as regularity of the MS is con-
cerned. Techniques using the positions and the normals of MS patches to calculate the
electrostatic potential throughout the space, such as the Boundary Element Method for
the solution of the PBE, are particularly sensitive to existence and continuity of the nor-
mal vector. The Connolly surface is a conceptually simple, physically sound and there-
fore widely accepted model also for PBE solution [10, 30, 32]; however, its definition suf-
fers from some limitations, namely the possibility to have singularities and a discontin-
uous dependence of the surface area on the position of atom centers [17, 26, 29]. On the
other side, it has already been pointed out that alternative MS definitions based on atom
centered functions may create unphysical high dielectric cavities that affect the estimation
of the energy of the system [9]. In the following, these typical drawbacks are discussed
also with respect to a possible use in the DelPhi solver.

2.2.1 Irregularity induced by self-intersections

Critical molecular conformations can occur where the fictitious solvent probe rolls in
a region that has already been visited; this leads to so-called self-intersections, as de-
scribed by Bajaj et al. [33]. The resulting spurious surface patches can be removed, or
even avoided, as done by Lindow et al. [29] and by the DelPhi code [6], respectively.

As shown in Fig. 1, the result of this removal leads to cusps or more extended loci
where the normal vector is undefined. When the surface is used in a volumetric grid
based numerical solver, the presence of these singularities does not affect much the po-
tential calculated at the lattice points. However, when, as in the case of the DelPhi code,
the polarization charge located in grid cubes containing the singularities is projected onto
the MS, a slight misplacement might occur.

2.2.2 Cavities and voids

The presence of cavities in proteins has been well documented and studied [34]. In the
following, we will call ”cavities” regions in a macromolecule that are big enough to con-
tain one or more water molecules, while we will term ”voids” the smaller interstices due
to local atomic displacements. Cavities can become accessible regions if the probe radius
is so small that the MS tends to coincide with the VDWS; they can in principle contain
actual water molecules but it is arguable that they can be assigned the same high dielec-
tric constant as it is done in the bulk of the solvent. Moreover, if we consider a dynamic
situation, the creation of a passage between the cavity and the external solvent is not
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Figure 1: Self-intersection induced singularities of the Lee and Richards molecular surface; projected points
computed from DelPhi surface algorithm.

unlikely. If the surface of the cavity was not counted as a patch of the MS, there could
happen a very large and abrupt jump in the MS area, which has a very clear physical
counterpart. In this case, the definition of the MS is not very influential and a possible
solution might consist, for example, in treating explicitly the solvent in the cavity, maybe
exploiting the DelPhi feature that assigns different dielectric constants to different parts
of the system [10].

Much more relevant is the MS definition if voids are considered; as a matter of fact,
small empty spaces between atoms can occur both in a crystal structure and, even more
likely, during the dynamics of a macromolecule. Depending on the MS definition, it
is possible that a high dielectric is assigned to the interior of these interstices. This is
the case, for instance, for MSs based on atom centered functions as it has been pointed
by Swanson et al. [9], and leads to an unphysical overestimation of the reaction of the
dielectric media. The problem arising when these voids are located in the very close
proximity of the MS is even more subtle. In fact, during the dynamics, there can be
atomic displacements that continuously give and deny these small interstices access to
the external solvent. If the MS definition is such that voids are ”filled” of low dielectric
medium, as it is the case of the Connolly surface, this leads to a discontinuity of the
surface area corresponding to this open/close effect, as shown in Figs. 9 and 10. As
observed for instance by Luo et al. [17] and in [18], this phenomenon leads to a such
serious instability in force determination that undermines its use in Molecular Dynamics
applications.

2.2.3 Dynamical picture of superficial voids

PBE is often used to process structures coming either from experimental measurements,
e.g. X-ray diffraction crystal structures, or from computational models, e.g. homology
modeling predictions, Molecular Dynamics trajectory snapshots in a ’fixed point’ eval-
uation, based on atomic centers and radii. However, biological macromolecules are not
frozen structures, they constantly undergo thermal fluctuations; in order to get a deeper
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understanding of the effect of quasi-superficial voids we considered a very simplified
system where three atoms are positioned exactly in the configuration where the external
probe is about to ”fall” into the interstice. We then added a white gaussian zero-mean
perturbation to the atomic positions of our model. For each perturbed configuration, we
built the Connolly surface and stored the in/out information on a very fine lattice. At
the end, we obtained for each point of the lattice the frequency of being inside the MS.
Results are shown in the first panel of Fig. 2; dark red regions are always inside, while
intense blue regions are always in the solvent, light blue regions correspond to critical re-
gions with intermediate occupancy. The obvious consideration resulting from this simple
experiment is that a soft sphere model for both the solute and the solvent probe would
probably help to face the problem. The already discussed approaches that smoothen the
space variability of the dielectric constant [21, 22] have a similar spirit. Sticking to an
in/out description, if in our model we select an iso-frequency contour, we get the results
shown in the second panel of Fig. 2, where we show the surface comprising all the points
that fell inside the Connolly MS in more than 50% of the cases upon random fluctua-
tions around the critical configuration. Incidentally, it is interesting to note that, despite
it descends from the Connolly surface, this method produces a surface devoid of the
self-intersection induced irregularities.

3 Methods

3.1 Mathematical definition and algorithmic implementation of alternative
molecular surfaces

3.1.1 The skin surface

The skin surface was formally defined in [23]. The salient features for which we evaluated
this surface as a promising alternative to the Connolly surface are the following:

• It can be decomposed in a finite set of trimmed quadric surfaces.

• There exist fast combinatorial algorithms (Regular Delaunay triangulation/Additively
Weighted Voronoi diagram) to build it.

• Pathological configurations leading to normal discontinuity are extremely limited.

• Its area is continuous with respect to atom positions and radii.

Operatively the skin surface can be built starting from a set of weighted points S:

S=
{

pi =(xi,wi),xi ∈R
3, i=1,··· ,na

}

(3.1)

and a shrink factor s∈ (0,1]. When representing a molecule, the points xi are the atom
centers, na is the number of atoms and wi are the weights. The weights wi are defined as:

wi=
r2

i

s
, (3.2)
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Figure 2: Thermal motion grid for three atoms; 0.5 level set surface.

where ri is the i-th atomic radius.
Shortly, the basic concept of the skin surface is the mixed complex; it is composed

by mixed cells µs
X, which are solids that can be computed starting from the additively

weighted Voronoi diagram or its geometrically dual Delaunay tethraedrization [23]. The
mixed cell is defined as the Minkowsky sum (indicated by ”⊕” and ruled by s) of a
Voronoi cell with its corresponding Delaunay cell:

µs
X =

{

s·νX⊕(1−s)·δX

}

. (3.3)

The mixed complex partitions R
3 in convex non overlapping polyedra and for s=0 and

s= 1 it coincides with the Delaunay Tetrahedrization and the Voronoi diagram, respec-
tively. All patches are quadric surfaces, either hyperboloids or spheres; each surface is
trimmed by its corresponding mixed cell. Fig. 3 represents the mixed complex and the
corresponding skin surface.

Figure 3: Skin Surface and mixed complex (transparent) in 2D and 3D. In 3D a simple case where 8 equal
atoms are put on the vertices of a cube. Surfaces of the following mixed complexes µs

0,3, µs
3,0, µs

2,1, and µs
1,2

are represented in red, green, yellow and magenta, respectively.
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To visualize the skin surface there are at least three possibilities: developing an al-
gorithm to mesh the skin surface as in [26, 27, 35], performing a point sampling of the
surface or exploiting the analytical structure of the skin to use ray casting techniques for
quadrics [28, 29] and possibly also GPU capabilities to speed up the calculations.

Computing the skin surface is more expensive than computing the Connolly one; this
fact has been empirically shown in [29]. Indeed, computing the skin surface requires first
to compute a regular Delaunay tetrahedrization whose computational cost is O(nlogn)
where n is in this case the number of atoms. After this step, the mixed complex com-
putation and patches computation are required. Finally, in order to solve the Poisson-
Boltzmann equation, a representation compatible with the DelPhi solver is needed: this
means creating a dielectric volumetric map and in computing the projection of boundary
grid points on the surface; both these steps are time consuming. Thus, to get a repre-
sentation of the skin suitable for a finite difference solver, not only the skin surface must
be computed but also imported in the DelPhi representation. However, even neglecting
the importation step, the time needed to build the regular Delaunay tetrahedrization is
longer than the time needed to compute the Connolly surface either with the contour
build-up algorithm as in [29] or using the algorithm currently implemented in DelPhi.

In the following subsection it will be explained our approach to build and study the
skin surface for molecules.

3.1.2 Implementation of the skin surface

In the skin surface building process the first step is to compute the mixed complex from
which the surface equations can be derived. To this aim, one first needs to build either
the regular Delaunay tetrahedrization or its dual, namely the weighted Voronoi diagram.
Both procedures need a careful management of floating point errors. For this reason, we
employed the voro++ library [36]: this is a C++ robust floating point implementation of
the additively weighted (or radical) Voronoi diagram. In order to manage ideally infinite
Voronoi regions, voro++ uses a parallelepiped as bounding box; when building the skin
surface, the mixed complex solids that use bounding box vertexes are ignored: this avoids
closing infinite Voronoi regions during mixed complex construction as in [28].

After the Voronoi diagram is computed, the mixed complex and the surface equations
are computed by a Matlab R© (the Mathworks) routine which uses as input the voro++
output reorganized as the output given by DelaunayTri Matlab routine. For high-quality
visualization purposes, the ray tracing software PovRay 3.7 was employed, which na-
tively supports quadrics ray tracing. In particular, this release of the software permits to
define an inside and an outside of a surface mesh; this feature has been used to represent
the mixed complex solids corresponding to the quadric surfaces. The Matlab routine out-
puts a .pov file which represents both the mixed complex and the skin surface if needed.
To speed-up rendering times of PovRay the command bound by was used, while to clip
the quadrics the command clipped by was used.

Once the skin surface is analytically defined, we adapted the DelPhi code [6] to com-
ply with the skin surface in order to get an in/out (dielectric) map and to get projections of
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the boundary grid points, which are the points defining the border between the molecule
and the solvent. These points are needed both to obtain a uniform sampling of the surface
(still grid dependent) and to define the points were the polarization charge is localized
(see [6]). One should observe that in order to obtain a correct in/out test, it is necessary
to locate the patch nearest to each boundary grid point: there is no a priori guarantee
that the surface projection of a point belonging to a given mixed-complex solid resides
on the surface patch of the same mixed-complex solid. Therefore, the projection routine
is also used to locate the nearest patch before the in/out test takes place, and each time
this test is performed, one has to identify the correct patch where the projection lies. The
projection phase is critical both in performance and numerical accuracy terms: at the
moment we only focused on the numerical aspect. We explored several analytical projec-
tions strategies of a point over a quadric. First, we tried the method suggested in [37]: it
derives the projection by first using an eigenvalue decomposition, computing coefficients
of a polynomial of sixth degree and then from its roots getting the projection. Formally,
being x the projection of y over a quadric surface in the form:

S(x)=xtAx+btx+c=0, (3.4)

the vector y−x is normal to the surface, i.e. parallel to the gradient. So the condition to
be met is:

y−x= t∇S(x)= t(2Ax+b), (3.5)

where t is the parameter to be found. This can be re-written as:

x=(I+2tA)−1(y−tb), (3.6)

where I is the identity matrix. If we substitute this last formula into S(x) we obtain a sixth
degree polynomial in t. Computing the coefficients of this polynomial is not straightfor-
ward, for this reason in [37] it is suggested to use Singular Values Decomposition (SVD)
to slightly modify equation (3.6). Given the eigendecomposition A=UΣUt one can write:

x=U(I+2tΣ)−1Ut(y−tb). (3.7)

This transformation has the advantage that writing the coefficients of the polynomial is
significantly simpler and the inversion becomes trivial when computing x for the six val-
ues of t. We tried also this approach but we found that it is not numerically stable due to
the fact that a little error in the eigendecomposition propagates on the roots values; not
only the projection is not correct but frequently it does not even belong to the surface. In
order to avoid the eigendecomposition step we directly substituted (3.6) into the surface
equation: results are more accurate but the computing time is large and the form of the
coefficients of the polynomial is a very complex function of input data. In the construc-
tion of the skin, both the quadric equations in the canonical form and the roto-translation
parameters are known; therefore, we computed the projection according to the three fol-
lowing steps: first rotating the point to be projected in the reference system of the quadric,
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then performing the projection, and finally applying the inverse transform over the pro-
jected point. This technique is based on roto-translations, which are numerically stable,
and on projections over quadrics in their reference system, which are rather simple (in
Appendix the full procedure is given) and allow for lowering the computational time.
We therefore opted for this approach, which avoids the eigendecomposition step. In or-
der to identify the interior and the exterior of the molecule an in/out test is needed: this
test can be performed by checking the sign of ŷtQŷ over the desired patch. To find the
nearest one, we search in a pool of patches created as follows: when the skin surface is
built, every atom is associated with a list of patches that it induces; to detect the nearest
patch we empirically found that it is sufficient to retrieve the 6 nearest atoms to the grid
point and then to collect all of the patches due to these atoms. Given this pool of patches,
we project the point over all of them and sort the point-to-patch distances in ascending
order. Then, scrolling through this list of distances, the first encountered projection that
is feasible (where feasibility means that the projected point lies inside the same mixed cell
of the patch) is set as the correct projection. The feasibility check consists in computing
nc inequalities where nc is the number of planes that defines the cell. In the case of the
reduced Voronoi cell the theoretical number of planes delimiting the cell can be as big
as the total number of atoms minus one; however, this is unlikely in real molecular ge-
ometries, where the number of atoms inducing a delimitation on the cell of another atom
is expected to be bounded: this observation is explicitly used in the construction of the
approximate Voronoi diagram in [29]. As a further computational note, it is worth men-
tioning that both the projection on skin patches and the inequality testing are procedures
that can be easily parallelized.

To navigate over the Finite Differences grid and to grow the VDW to the skin surface
we used the same strategy detailed in [6], where changing of inside/outside status prop-
agates to the nearest grid points until convergence. However, in contrast to the DelPhi
surface algorithm, in this case the surface construction is not semi-analytical but fully
analytical; the sampling of the so called Circles of Intersection (COI) [6] here is in fact not
performed.

Once the molecular skin surface is created, one has both the dielectric map and the
projections of the boundary grid points over the surface. One can use these projections as
sample points to mesh the surface: we did this for representation purposes by employing
the mesh reconstruction algorithm presented in [38].

3.1.3 Blobby: an implicit atom centered surface

The blobby surface [24, 25] is a simple model for the molecular surface; it is defined as:

S :=
{

x∈R3 : G(x)=1
}

, G(x)=
na

∑
i=1

e
B

(

‖x−ci‖
2

r2
i

−1

)

, (3.8)

where ri is the radius of the i-th atom, na is the number of atoms, x is a point belonging to
the surface, c(xi) is the i-th atom center and B is a parameter (the blobbyness) that controls
the surface roughness as the probe radius does in the Connolly surface [4].
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The blobby surface (see Fig. 4 for a comparison between various blobbyness values,
the skin surface at s = 0.5 and the Connolly surface with probe radius equal to 1.4Å) is
easy to implement because the main computation is simply the evaluation of a kernel
function. The surface is differentiable, and free of self-intersections and singularities.
Moreover, a Gaussian atomic density representation has some grounds also from the
physical point of view since it recalls the spherical atomic orbitals. However, it is not
clear if this surface is superior to the Connolly MS in solving electrostatics problems. One
of the main issues is the right setting of the blobbyness value B, which is a key parameter
in obtaining reliable energy estimations of molecular systems, since it is supposed to
account for the size of the solvent probe (experiments in section 4 will deal with this
issue). Moreover, as it was observed in [9], when used in solvation energy estimation for
globular proteins, atom centered molecular surfaces can lead to small crevices of solvent
that are not appropriate for the SES; this artifact leads to an overestimation of the reaction
field and consequently lowers the overall predicted energy. Another point is that the
surface can not be partitioned in analytical patches as the skin surface and the Connolly
MS and thus it is not immediately defined an analytical projection method of a point over
the surface. Despite these drawbacks, the implicit models are becoming rather used [22]
when dealing with biophysical problems, mainly due to the smooth nature of the surface,
which guarantees continuity and differentiability, and also because their computation can
be efficiently parallelized on GPU as shown in [31].

We implemented the blobby surface in Matlab in two steps: setting the scalar field and
using the marching cubes [20] to triangulate the surface. The first step was performed
by a compiled mex file and the second was obtained by adapting the marching cubes
algorithm in [20] to the Matlab environment. The OFF mesh format was used for further
processing.

3.2 Molecular surfaces comparison methodology

Goal of our evaluation is to compare the behavior of skin, blobby and Connolly surfaces. In
order to make this comparison possible, we use a triangulated version of the three so that
surface area continuity and geometric dissimilarities can be easily computed. At the same
time, we modified the DelPhi code so that it can output the boundary grid points (and
the corresponding normals) after their projection on the Connolly surface, which can be
then triangulated and visualized by a proper algorithm [38]. We adopted this strategy for
several reasons; first of all, triangle meshes are widely used both as interpolation and ap-
proximation schemes for analytical and implicit surfaces in a wide range of applications.
Moreover, the ease and robustness of computation of several geometric and differential
properties on meshes make them a good choice for our case [39]. An important aspect
to consider here is that we regularly sample the original surfaces at a spatial frequency
which is smaller than the local feature size of the surfaces: this guarantees that our trian-
gle meshes provide a good estimate of the original surfaces [40]. Considering that MSs,
whatever definition one can think of, are defined starting from collections of atoms, we
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Figure 4: Blobby surface of a dialanine for respectively B=−0.5, −1.0, −1.5, −2.0, −2.5, −3.0, the skin surface
for s=0.5 and the Connolly surface with 1.4Å probe radius.
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can safely take as the local feature size of our MSs the minimum value between the probe
radius and the minimum atomic radius of the molecule under study. If the sampling of
the MSs is denser than the local feature size, then we may say that the triangle mesh is
a good approximation of the original surface for successive processing. Finally, surface
areas are calculated by employing the JMeshLib package [41] and the measure of dissimi-
larity is calculated as the Hausdorff distance between two triangle meshes and computed
by the tool Metro [42]. In particular, the Hausdorff distance is defined as follows: given
a point p and a surface S, we define the distance e(p,S) as:

e(p,S)=min
p̂∈S

d(p, p̂). (3.9)

The one-sided distance between two surfaces S1,S2 is defined as:

E(S1,S2)=max
p∈S1

e(p,S2). (3.10)

Finally the Hausdorff distance is :

H(S1,S2)=max(E(S1,S2),E(S2,S1)). (3.11)

3.3 The alanine dipeptide system

As a reference for comparing the surface area of different MSs, we used a trajectory of
alanine dipeptide, a widely used benchmark for molecular methods. The trajectory was
obtained by means of an enhanced sampling molecular dynamics run, obtained using the
NAMD code incorporating the PLUMED plugin [43]. Thanks to this procedure, φ and ψ

torsional angles sampling was accelerated so that trajectory samples are representative
of the whole configurational space.

3.4 Poisson-Boltzmann calculations

Aminoacid side chain conformations were generated using Maestro software (Shrödinger),
and minimized using the constraints indicated in [8] by means of the Macromodel mod-
ule and using the OPLS2001 force field. Electrostatic calculations over the set of confor-
mations were performed by means of the DelPhi PBE solver, using a filling of 80%, a grid
spacing of 0.33Å , zero ionic strength, coulombic boundary conditions, ε in = 2, εout = 80,
prbrad=1.4, and maxc=0.00001, corresponding to a convergence criterion of 10−5 in the
maximum potential change throughout the grid.

4 Results and discussion

In this section, we first assess the validity of the characteristic parameters of the analyzed
surfaces over a prototypical molecular system, a given conformation of alanine dipep-
tide; then we compare the regularity of the blobby and the skin surfaces, as defined in 2.2
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against the Connolly MS as built by the DelPhi solver. Finally, we compare the skin and
Connolly surfaces with respect to the agreement with explicit solvent results on simple
molecular systems. The computations were carried out in double precision on a 64 bit,
AMD Opteron architecture mounting Linux OS.

4.1 Identification of the smoothness parameters

Preliminary to further analyses, we need to select the most suitable values for the param-
eter B for the blobby and s for the skin. To perform this assessment, we adopted two quan-
titative criteria, namely the difference of the total surface area and the Hausdorff distance
between the triangulated versions of the MSs, and finally we also visually inspected the
different results. We generate the triangulated meshes for the MSs as follows: we use the
boundary grid points (grid spacing 0.33Å), generated respectively by DelPhi and the skin
module, as a point cloud to be fed to a mesh reconstruction routine [38]. For the blobby
surface we rather consider a finer grid, produced by the same algorithm that builds the
blobby using the marching cubes algorithm. Given these grid size and point density, the
maximum edge length of the triangulation resulting from the grid-based sampling is of
the order of 0.57Å , which is less than the local feature size based on the values of the
probe radius (1.4Å) and the smallest radius in the alanine dipeptide, i.e. 1.0Å . This fact
assures us that computed areas and distances are compatible with the overall numeri-
cal framework of the DelPhi solver. The results obtained for our reference system are
shown in Fig. 5. For the skin surface both the Hausdorff distance and the surface area dis-
crepancy indicate that the range s∈ [0.4,0.5] provides quite a good geometric agreement
between the Connolly and the skin surface; a similar conclusion can be drawn from the
Hausdorff distance between Connolly and blobby surfaces in the range B∈ [−2.0,−3.0].
A substantially different behavior can be seen concerning the surface area, though; while
the skin exhibits a clear behavior with a pronounced minimum, in the case of the blobby
surface no minimum is attained. This fact has already been observed, although qualita-
tively in [17], and indicates that the blobbyness parameter can hardly be tuned to fit the
SES concept. A possible interpretation resides in the non local nature of the Gaussian
function: as the width increases, the sum of the tails expands both the convex and the
concave regions, making a real fine tuning impossible. Visual inspection of the blobby at
different B values, sketched in Fig. 4, supports this explanation. A more extended com-
parison was then made by using sample configurations taken from an alanine dipeptide
molecular dynamics trajectory obtained via an enhanced sampling run [43]. For such
comparison we fixed the s parameter of the skin surface to 0.5 and the B parameter to
−3.0 of the blobby surface. Fig. 6 shows that the blobby surface is systematically over-
weight whereas the skin surface tracks well the original Connolly surface area generated
by DelPhi; quantitatively, it can be noted that the skin surface on average underestimates
the Connolly surface area of a 0.19% while the blobby surface overestimates it by a 5.25%.
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Figure 5: Hausdorff distance and surface area discrepancy for dialanine: blobby and skin VS Connolly.

Figure 6: Comparison of surface area of skin and blobby surfaces versus Connolly MS for a dialanine trajectory:
the percentage difference is reported.

4.2 Irregularity

Neither the skin nor the blobby surface presents self-intersections and consequent irregu-
larities. However, it can be observed that there can still be very specific configurations
where the normal vector to the skin is not defined. As shown in Fig. 7, if compared to
the Connolly surface, the singularity region is extremely limited, only one point, and it
occurs only in a very specific conformation. For the blobby case non tangent continuity
can also occur, due to a similarly pathological situation and to marching cubes artifacts.
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Figure 7: Pathological configurations for skin and blobby surface.

4.3 Cavities and voids

In a third experiment, we analyze the presence of cavities and voids and assess the conti-
nuity of the surface area with respect to atomic positions. It is possible to observe, see for
instance Fig. 8 and the first panel of Fig. 3, that both skin and blobby surfaces can generate
internal spurious voids.

It is possible to find a very interesting relationship between the presence of superficial
voids, reflecting the non connectedness of the surface, and the continuity of the surface
area with respect to atom center positions. In order to probe this hypothesis, we created
an ad hoc geometric configuration, a sort of a ”molecular basket”, where the non conti-
nuity of the Connolly surface area is evident; this model is the 3D counterpart of the 2D
model described in [17]. The system is composed of 24 atoms organized on three par-
allel levels; each of them consists of 8 atoms of unitary radius whose radial distance is
θ=π/4. The final result is a ”basket” that can emulate the presence of an opening/closing
cavity on the molecular surface. The x and z values for the first layer are computed as
x= 1.5cos(θ) and z= 1.5sin(θ). The three layers are at a distance of 1.25Å . For the sec-
ond and third layer one has x = βcos(θ) and z = βsin(θ) where β controls the opening
of the cavity. For the Connolly surface the probe penetrates when β is around 2.4 while
in the case of skin and blobby the basket opens when atoms are closer, for β around 1.45
and 1.35, respectively (in Fig. 9 the opening process is shown while Fig. 10 contains the
surface area plots).

Figure 8: Skin internal void (atoms patches were removed) and blobby internal void.
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Figure 9: Surface opening for the Connolly, skin and blobby.

These experiments show that skin and blobby surface areas are continuous with re-
spect to atom positions only if they include the areas of the internal voids and cavities.
Since physical consistency requires filling these voids, the ”corrected” versions would
present a similar discontinuity to that found in the Connolly surface. Results on this
simple model show, however, that the discontinuity of the Connolly surface is more pro-
nounced. This aspect should be seriously considered and further analyzed when deal-
ing with such surfaces. The correction step may become crucial when several voids are
present: their ultimate effect, as observed by [9] for the blobby, is in fact to decrease the
total energy due to an increase of the reaction field contribution. We further tested this
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Figure 10: Surface areas for the Connolly, skin and blobby vs position.

phenomenon on a more realistic system, namely the crambin protein (PDB code 1CRN),
using the OPLS2001 force field. We found that the total energy difference between the
description based on the Connolly surface and the skin is around 6% due to a different
shape and, more importantly, to the presence of artifactual voids arising from the skin
definition. Unfortunately, this way of correcting physical inconsistencies leads to the loss
of the desirable property represented by surface area continuity with respect to atomic
positions.

Summarizing this first analysis, we can conclude that the skin surface seems to be
better suited for a good description of the SES than the blobby; reasonable suggestions for
the parameter values are s=0.5 for the skin and the range B∈ [−2.0,−3.0] for the blobby;
the precise value for the latter depends on the desired level of smoothness.

4.4 Comparison with explicit solvent simulations

The aim of this section is to understand the behavior of skin and Connolly surfaces when
they are used in the Finite Differences Poisson-Boltzmann based estimation of the elec-
trostatic interaction energy in aqueous solvent as a function of the distance between pro-
totypical charged moieties; similar experiments on the blobby surface were skipped, due
to the results of the geometric observations made previously, which point to the intrinsic
criticality of choosing a suitable B parameter and the consequent possible alteration of
convex regions.

We focus on amino acid side chains already considered in [8] and in [9] and compare
our results with the Potential of Mean Force calculated in these works. We therefore con-
sider specific mutual orientations and different distances for the residue pairs indicated
in Table 1, truncated at the Cβ. For each configuration, we calculated the PBE electro-
static energy with the DelPhi solver and compared it to the PMF profile, neglecting the
repulsive van der Waals contribution and focusing our attention on the distance at which
maxima and minima are located; more detailed calculations should be done and a new
PMF should be calculated in order to get more quantitative numbers concerning the en-
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Table 1: Summary of the residue configurations: the first column contains the names of the residue pair and
the corresponding figure, the second indicates the atoms used as reference when computing the distance r,
the third column gives the approaching configuration while the last column reports the reference figure in [8]
and [9]. Aminoacid superscripts indicate the charge state of the titratable residues.

Residues Interface Atoms Configuration Reference
Arg+Glu− Fig. 11 NH1−Oǫ2 Coplanar double H-bond Fig. 3 in [8]
Lys+Glu− Fig. 12 Nz−Cδ Collinear Fig. 4a in [8]
Lys+Glu− Fig. 12 Nz−Oǫ2 Side-to-Side Fig. 4b in [8]
His0Glu− Fig. 13 Nδ1−Oǫ2 Collinear H-bond Fig. 5b in [8]
His0 His0 Fig. 14 Nǫ2−Hδ1 Collinear Fig. 2 in [9]
Lys+Lys+ Fig. 15 Nz−Nz Collinear Fig. 16 in [8]
Arg+Arg+ Fig. 16 Cz−Cz Stacking Fig. 6a in [8]
Arg+Arg+ Fig. 16 NH1−NH2 Collinear Fig. 6b in [8]

ergy values corresponding to these critical points. Table 1 summarizes the geometric
mutual positioning of the residue pairs according to [8] and [9]. For any pair we com-
puted the energy component derived from the electrostatic potential using two different
force fields, namely OPLS2001 and CHARMM22. The s parameter of the skin surface was
always set to 0.5 and the distance increment was set to 0.1Å , leading to 60/80 snapshots
per pair.

In Fig. 11 the Arginine-Glutamate pair is presented: the position of the first maximum
of the explicit solvent is well tracked while the second minimum is not captured, regard-
less the used force field. Skin and Connolly surfaces produce a similar behavior, where
the discrepancy in kcal/mol is never larger than 0.5. The spurious oscillations in the tail
of the energy profile located in the right panel of Fig. 11 are due to the smallest atomic
radius for Arginine in the CHARMM parameter set, which is about 0.22Å for some hy-
drogens and would require a computationally unviable grid spacing around 0.07Å.

In the first Lys+Glu− pair (upper panels in Fig. 12) for CHARMM22 skin and Connolly
surfaces are again very similar; instead using the OPLS2001 force field not only both skin
and Connolly present a second minimum but in the case of the skin it is better positioned
with respect to that obtained by the Connolly surface; in this respect it is interesting
to observe that s = 0.5 leads to a skin surface whose area is usually smaller than that
given by the Connolly MS with probe radius 1.4Å; this fact may in turn suggest that
energy estimation in this case might benefit from a smaller probe radius. Incidentally,
in [34] a probe radius of 0.8Å was used, leading to a good correspondence between
RISM calculations [44] and Poisson-Boltzmann results for the cases K+Cl−,Na+Cl− and
Li+Cl−, where also the second minima were recovered. For the second orientation of the
pair Lys+Glu− (lower panels in Fig. 12) a second minimum is obtained but its positioning
is not adequate with respect to explicit solvent results.

For the case His0Glu− (Fig. 13) both surfaces and both forcefields give qualitatively
similar results, where the second minimum is not captured. For the case His0His0 (Fig. 14)
results are in accordance with that obtained in [9] and do not detect the second minimum
structure. However, in contrast to what observed by Swanson et al. in [9], high dielectric
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Figure 11: Energy profiles for Arg-Glu pair, OPLS2001 and CHARMM22 force fields.

Figure 12: Energy profile for the Lys-Glu pair in two different mutual orientations, OPLS2001 and CHARMM22
force fields.

interstices do not occur in this experiment with the skin surface.

The last tested cases consider repulsive pairs. All of them show agreement between
skin and Connolly based results and additionally it is confirmed that they fail in capturing
the two minima present in the PMF; this has already been observed, for instance, by
Rashin et al. [34]. To verify that using a more accurate grid spacing does not affect the
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Figure 13: Electrostatic potential for His-Glu pair, OPLS2001 and CHARMM22 force fields.

Figure 14: Energy profile for the His-His pair, OPLS2001 and CHARMM22 force fields.

Figure 15: Energy profile for the Lys-Lys pair, OPLS2001 and CHARMM22 force fields.

output, we tested a grid spacing of 0.17Å (DelPhi scale = 6.0); the results are shown
in Fig. 15. As already seen before, in the Arginine-Arginine pair (whose energy profiles
are shown in Fig. 16) we found that the skin surface produces a little interstice in some
configurations.
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Figure 16: Energy profile for Arg-Arg pair, OPLS2001 and CHARMM22 force fields.

5 Conclusions

In this work, we analyzed some putative deficiencies of the Connolly-Richards [3, 4]
molecular surface in the estimation of the electrostatic energy of biomolecular systems
as mentioned in the literature as well as some possible alternative molecular surface def-
initions originating from the Computer Graphics scientific community. Our attention
focused on the presence of regions where the normal is not defined, in a continuous de-
pendence of the surface area on the atomic location and on the agreement with the upper
level of theory in the simulation, represented by the explicit solvent models. During our
analysis, we observed that adding a term in the Connolly model that mimics thermal
motion can lead to a smoother surface with a well defined normal everywhere.

The considered alternative surfaces were the blobby surface [25], an example of im-
plicit atom centered surface, and the skin surface [23]. In the first case we observed that,
for any choice of the B parameter, it is far from trivial to match the expected shape of
a solvent excluded surface for a given probe radius. In fact, due to its additive nature,
modifying the parameter in order to fit reentrant regions can also alter solvent exposed
convex patches resulting in unphysical shapes. In addition, the blobby surface can present
some high dielectric interstices that can seriously affect the electrostatic energy estima-
tion.
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In the case of the skin surface, we found several attractive features, such as its analyt-
ical expression and the absence of self-intersections. Nevertheless, also the skin surface
can lead to unwanted voids in the solute even in simple cases such as two interacting
side chains. While it is true from its mathematical definition that the surface area of the
skin is continuous with respect to atomic positions, we however observed that this prop-
erty requires including the surface area of any internal cavity or void that might occur.
Since assigning high dielectric to voids is unjustified from the physical viewpoint, this
supposed value needs to be reconsidered. In terms of electrostatic energy estimation, we
found that skin and Connolly provide comparable results with respect to explicit solvent
based PMF. These results indicate that different MS definitions are unlikely to allow the
reproduction of the behavior of structured solvent molecules occurring when the dis-
tance between the interacting moieties is larger than twice the probe radius. However, it
is also plausible that tuning that definition can improve the description of the solvent be-
havior at closer distances. Choosing the correct molecular surface representation is a non
trivial task and it depends on the problem at hand. Indeed, for continuum implicit sol-
vent models, molecular surfaces should be endowed with some useful geometric features
such as those characterizing the blobby and the skin; nevertheless, a physically sound be-
havior ought to be maintained. The skin surface seems to perform better than the blobby in
this respect although this latter is characterized by an intrinsically parallel nature and its
computation can be ported proficiently on common GPUs [31], leading to a particularly
fast implementation. On the numerical side, the skin surface involves the computation
of the Voronoi diagram and of the mixed complex; both could be parallelized (in [29]
the first step has already been implemented) but, despite these efforts, the skin computa-
tion will probably always be slower than the Connolly counterpart, as suggested in [29].
Additionally, if the skin surface is used analytically in the DelPhi solver, several demand-
ing (although parallelizable) point-to-surface projections should be performed. Further
analysis is currently in progress in order to transfer the advantages shown by these two
definitions to a new model.

Acknowledgments

This work was supported by NIGMS, NIH, grant number, 1R01GM093937-01. We would
like to thank Dr. Davide Branduardi, Theoretical Molecular Biophysics Group Max Planck
Institute for Biophysics, Frankfurt, for insightful discussion.

Appendix

This appendix gives some details on skin surface definition and the projection technique
employed.

In R
3 the mixed cell can be only of four types whereas in R

2 only three types are
allowed. For the R

3 case here we indicate by νl a Voronoi l-cell, by δk a Delaunay k-cell
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and by µs
l,k the mixed cell given by the sum of the previous two:

1. µs
3,0= s·ν3⊕(1−s)·δ0.

2. µs
2,1= s·ν2⊕(1−s)·δ1.

3. µs
1,2= s·ν1⊕(1−s)·δ2.

4. µs
0,3= s·ν0⊕(1−s)·δ3.

These cells correspond informally to:

1. µs
3,0= s (Voronoi Cell) ⊕(1−s) (Delaunay Tetrahedron Vertex).

2. µs
2,1= s (Voronoi Facet) ⊕(1−s) (Delaunay Tetrahedron Edge).

3. µs
1,2= s (Voronoi Edge) ⊕(1−s) (Delaunay Tetrahedron Facet).

4. µs
0,3= s (Voronoi Vertex) ⊕(1−s) (Delaunay Tetrahedron).

Note that the Minkowsky sum is simple in all these cases: the first solid is a convex
polyedron, the second is a prism with arbitrary base, the third is a prism with triangular
base and the last is a tetrahedron.

Every mixed cell uniquely defines a patch over the surface; so there is a one-to-one
correspondence between patches and mixed cells. The general surface equation corre-
sponding to the cell µs

l,k is:

Sµs
l,k
(x)=

1

s−1

k

∑
i=1

x2
i +

1

s

3

∑
i=k+1

x2
i −∆=0. (A.1)

The signed square distance ∆ is defined as the power product between a vertex of the
Delaunay tetraedrization (p(x,w)) (a weighted atom center) and the ”focus” of the cell f

associated to that cell:
∆=w−‖x−f‖2. (A.2)

The focus f of the cell is defined as:

1. For µs
3,0 the focus is the Delaunay Tetrahedron Vertex.

2. For µs
2,1 the focus is the intersection between the Voronoi Facet and Delaunay Tetra-

hedron Edge.

3. For µs
1,2 the focus is the intersection between the Voronoi Edge and Delaunay Tetra-

hedron Facet.

4. For µs
0,3 the focus is the Voronoi Vertex.

Depending on k (and thus l), each mixed cell is associated to the following surface equa-
tions up to proper roto-translations (these are detailed below):

1. Sµs
3,0
(x) : x2

1+x2
2+x3

3 = s∆.
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2. Sµs
2,1
(x) : 1

s−1 x2
1+

1
s x2

2+
1
s x3

3=∆.

3. Sµs
1,2
(x) : 1

s−1 x2
1+

1
s−1 x2

2+
1
s x3

3=∆.

4. Sµs
0,3
(x) : x2

1+x2
2+x3

3 =(s−1)∆.

For the constructions of the skin surface it is convenient to write down the quadric
surface as a quadratic form such that:

Sµs
l,k
(x̂)= x̂tQx̂=0 (A.3)

where x̂=[x, 1]. In general, given a rotation matrix R, a translation matrix T and a surface
matrix M such that the roto-translate surface satisfies x̂tMx̂=0 one has:

Q=(T−1)t ·(R−1)t ·M·R−1 ·T−1. (A.4)

Then one has:

Qµs
3,0
=









1 0 0 − f1

0 1 0 − f2

0 0 1 − f3

− f1 − f2 − f3 r2
i +‖ f‖2









, (A.5a)

Qµs
0,3
=









1 0 0 − f1

0 1 0 − f2

0 0 1 − f3

− f1 − f2 − f3 (1−s)∆+‖ f‖2









. (A.5b)

For hyperboloids instead proper roto-translations must be performed. The translation/rotation
matrices are:

T=









1 0 0 f1

0 1 0 f2

0 0 1 f3

0 0 0 1









, R=









v1 u1 w1 0
v2 u2 w2 0
v3 u3 w3 0
0 0 0 1









. (A.6)

For the cell µs
1,2 one sets w as the normalized vector that connects the two Voronoi vertices

of the Voronoi edge, v is a normalized vector that lies on the plane of the Delaunay facet;
and u is the vector product of the previous two.

For the cell µs
2,1 one sets v as the normalized vector that connects the two Delaunay

vertices of the Delaunay edge, w is a normalized vector that lies on the plane of the
Voronoi facet; and u is the vector product of the previous two. These specifications allow
to build the skin surface analytically.

In order to perform the projection to the quadric, one can see that the problem can be
formalized as a quadratically constrained quadratic programming minimization prob-
lem:

{

min
x̂

‖ŷ− x̂‖2,

x̂tAx̂+2at x̂+a0=0.
(A.7)
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If we assume that the reference system is given by the quadric, then a vanishes and A

is diagonal with elements A1,A2,A3. Thus, we are assuming that the point y is roto-
translated as per ŷ=(TR)−1y. One can proceed [45] by using a Lagrangian whose La-
grange multiplier is α, thus getting as a first optimality condition:

x̂=(I+αA)−1y. (A.8)

Substituting this last equation in the quadric equation provides the searched polynomial.
It can be shown after some algebraic manipulations that the polynomial to be solved in α

is given by the following coefficients in decreasing degree order:






































































































c6= a0 A2
1A2

2A2
3,

c5=2a0 A1A2A3(A2A3+A1A3+A1A2),

c4= ŷ2
1 A1A2

2A2
3+a0 A2

2A2
3+ ŷ2

2 A2
1A2A2

3+4a0 A1A2A2
3+a0 A2

1A2
3
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3 A2

1A2
2A3+4a0 A1A2
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2 A1A2A2

3+ ŷ2
1 A1A2A2

3+a0 A2A2
3+a0 A1A2

3+ ŷ2
3 A1A2

2A3

+ ŷ2
1 A1A2

2A3+a0 A2
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3 A2
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2 A2
1A2A3+4a0 A1A2A3

+a0 A2
1A3+a0 A1A2

2+a0 A2
1A2),

c2= ŷ2
2 A2A2

3+ ŷ2
1 A1A2

3+a0 A2
3+ ŷ2

3 A2
2A3+4ŷ2

3 A1A2A3

+4ŷ2
2 A1A2A3+4ŷ2

1 A1A2A3+4a0 A2A3+ ŷ2
3 A2

1A3+4a0 A1A3

+ ŷ2
1 A1A2

2+a0 A2
2+ ŷ2

2 A2
1A2+4a0 A1A2+a0 A2

1,

c1=2(ŷ2
3 A2A3+ ŷ2

2 A2A3+ ŷ2
3 A1A3

+ ŷ2
1 A1A3+a0 A3+ ŷ2

2 A1A2+ ŷ2
1 A1A2+a0 A2+a0 A1),

c0= ŷ2
3 A3+ ŷ2

2 A2+ ŷ2
1 A1+a0.

(A.9)

After finding the sixth roots of the previous polynomial one recovers the sixth candidate
points by (3.6) and keeps the point with minimum distance with respect to ŷ. Finally, the
projected point is x=TRx̂.
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