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Abstract. Algorithms for adaptive mesh refinement using a residual error estimator
are proposed for fluid flow problems in a finite volume framework. The residual error
estimator, referred to as the ℜ-parameter is used to derive refinement and coarsening
criteria for the adaptive algorithms. An adaptive strategy based on the ℜ-parameter
is proposed for continuous flows, while a hybrid adaptive algorithm employing a
combination of error indicators and the ℜ-parameter is developed for discontinuous
flows. Numerical experiments for inviscid and viscous flows on different grid topolo-
gies demonstrate the effectiveness of the proposed algorithms on arbitrary polygonal
grids.
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1 Introduction

The primary focus in numerical simulations of practical engineering problems which
invariably involve complexities in both geometry and flow, is to obtain accurate numer-
ical solutions at shorter turnaround times. Unfortunately, the computational effort in
obtaining the solutions and the solution accuracy are at conflict: finer meshes lead to
accurate solutions at greater computational effort, while coarse meshes involve lower
computational effort but result in inaccurate solutions. Adaptive Mesh Refinement (AMR)
algorithms constitute a class of computational methods that strike the right balance be-
tween numerical solution accuracy and the associated computational effort and provide
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a viable and economical approach for simulation of complex flow problems. AMR algo-
rithms have been employed by several researchers for a variety of flow problems ranging
from shock hydrodynamics [1] and compressible flows [2] to multi-phase flows [3] and
astrophysical applications [4].

Sensors employed in the AMR algorithm can be broadly classified as Error Indica-
tors and Error Estimators. Several adaptive algorithms in the past have relied on error
indicators, mainly due to their ability to precisely detect flow phenomena. Some of the
popular error indicators include curl and divergence of velocity [5] and divided differ-
ences in density [6, 7] for shocked flows and vorticity gradient [8] for vortex dominated
flows. Error indicators, however, provide no information on error levels in the domain
which can result in a termination criterion for refinement. Consequently, all indicator
based adaptive refinement algorithms resort to heuristic considerations involving user-
defined parameters that are problem-dependent. Error estimators, on the other hand,
provide a reasonable estimate of some error distribution in the domain and can therefore
be exploited to derive a suitable termination criterion. Error estimators can be broadly
classified as global error based estimators, adjoint based estimators and residual estima-
tors. Since the focus of this work is on residual error estimation, we shall discuss only
this class of estimators in detail. For a review on other error estimators, refer to [9, 10]
and references therein.

Residual error estimation have been extensively studied in the finite element frame-
work [11], though only few studies in the context of finite volume framework are re-
ported in literature. Particularly in the context of finite volume computations, the resid-
ual error estimators provide an estimate of the local truncation error, which is the extent
to which the discrete algebraic equation differs from the partial differential equation it
models. Jasak and Gosman [12] proposed the element residual estimate for finite vol-
ume discretisations. Aftsomis and Berger [13] compute the local truncation error us-
ing an approximation of the exact solution. Hay and Visonneau [14] have proposed the
use of a higher order reconstruction operator to compute the residual, while Karni and
Kurganov [15] have introduced the concept of weak local residuals to compute the trun-
cation error. Roy and Sinclair [16] have developed an interesting approach where the an
analytical expression for the numerical solution obtained using curve-fitting techniques
is employed to estimate the truncation error. The authors in one of their earlier works
have also proposed an estimator called the ℜ-parameter which is a novel and generic
approach to residual estimation in a finite volume framework [17–20].

There are several merits to the use of ℜ-parameter in an adaptive strategy as amply
demonstrated in reference [17]: (i) The computation of ℜ-parameter is cheap and does
not require any approximation to the exact solution (in contrast to the estimators of the
global error). (ii) It is possible to obtain theoretically the rate of fall of the ℜ-parameter
with grid refinement and this is not so obvious in the case of global errors. (iii) Apart
from this, the ℜ-parameter marks the source of errors in problems involving error trans-
port and therefore offer better control over the global error (the ultimate objective of any
adaptive calculation) as compared to global error based mesh adaptation. (iv) One of the
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most important advantages resulting from the use of ℜ-parameter is that it is possible
to evolve length scales for adequately resolving the local flow features. This obviates
heuristic user defined inputs in order to effect mesh adaptation. Also, this provides an
automatic termination criterion to the adaptive process, at least in regions where the flow
is continuous. In order to realize this objective, in the earlier work, the authors have in-
troduced the concept of dissipation function, which is effectively made use of in arriving
at length scales required to resolve local flow features [17]. The present work can be con-
sidered as yet another way of exploiting the ℜ-parameter wherein the tools required for
computing the aforementioned length scales can be considerably simplified. Adaptive
algorithms based on this alternate methodology are developed for continuous and dis-
continuous flows and are investigated for inviscid and viscous fluid flow problems on
arbitrary polygonal meshes.

The organization of the paper is as follows. Section 2 discusses the basic solution
methodology. For sake of completeness, aspects of the ℜ-parameter are briefly discussed
in Section 3. The adaptive algorithm for continuous flows based on the ℜ-parameter
is presented in Section 4, while a hybrid adaptive algorithm for discontinuous flows is
discussed in Section 5. Numerical experiments using the proposed adaptive algorithms
and the efficiency of these algorithms constitute Section 6.

2 Solution methodology

The governing equations for two-dimensional unsteady compressible fluid flows in an
inertial frame of reference can be written as

Ut+ fx+gy =0,

where U= [ρ ρu ρv e]T is the vector of conserved variables and f and g are the flux vec-
tors in x and y directions respectively. The governing equations are complemented by the
ideal gas equation of state, p=ρR̄T, where R̄ is the gas constant. This system of non-linear,
coupled governing laws are solved in an unstructured data based finite volume frame-
work. In the present study, a cell-centered finite volume procedure [22] is employed to
obtain the numerical solutions. Inviscid flux computations are performed using the ap-
proximate Riemann solver of Roe [23] or the Flux Vector Splitting scheme of van Leer [24],
while the viscous fluxes are discretised using Green-Gauss procedure [21, 25, 26]. Linear
reconstruction [27, 28] is employed to enhance solution accuracy. A least squares based
reconstruction procedure is employed for inviscid computations [22, 27] and a diamond
path based reconstruction for the viscous computation [21]. Venkatakrishnan limiter is
used to enforce solution monotonicity [29] and an implicit scheme using the symmet-
ric Gauss-Seidel procedure [22] is employed for advancing the solution in time. No-
slip boundary condition is enforced on solid boundaries for viscous flows, while mirror
boundary condition is employed for inviscid flows [30]. Characteristic boundary condi-
tions [31] are enforced on the farfield boundaries. Supersonic inlet and outlet boundary
conditions [31] are made use of for internal supersonic flows.
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3 Residual error estimation

A new residual error estimator, referred to as ℜ-parameter, for hyperbolic conservation
laws in a finite volume framework was developed by the authors in an earlier work [17].
This error estimator is aposteriori and gives a measure of the local truncation error. In
this section, we briefly review the theory and computation of the ℜ-parameter as well as
its salient properties, for sake of completeness.

3.1 Theory of error estimation

Consider the governing partial differential equation be represented in operator form as

I [U]=0, (3.1)

where I represents the exact operator and U the exact solution. The discrete solution u
satisfies the discrete conservation law given by

δ1 [u]=0, (3.2)

where δ1 is the discrete operator. Evidently, the use of the exact operator on the numerical
solution would lead to an imbalance and then we have

I [u]=R1[u]. (3.3)

In Eq. (3.3), R1 represents the local truncation error (LTE). On a discretised domain, we
can obtain an estimate of this truncation error only by employing another discrete oper-
ator δ2 approximating I. This results in

δ2 [u]=R1[u]−R2[u]=ℜ[u]. (3.4)

The quantity R2[u] is the error due to the discretisation of the exact operator I while
R1[u] is the imbalance due to the use of the exact operator on the numerical solution. The
quantity δ2[u] or ℜ[u] is referred to as ℜ-parameter. If R1[u]∼O(hm) and R2[u]∼O(hn),
the ℜ-parameter is an estimate of the local truncation error for m< n. This implies that
the numerical operator δ2 should necessarily be of higher order accuracy as compared to
δ1.

3.2 Computation of the ℜ-parameter

The theory of the ℜ-parameter presented above is generic and can be applied to any
system of conservation laws. For the Euler/Navier-Stokes equations in a finite volume
framework the computation of the ℜ-parameter reduces to the computation of the flux
imbalance (also known as the residual) given by

ℜi =
1

Ωi
∑

k

[

∑
l

wl
~Fk,l ·n̂k

]

∆sk, (3.5)
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where l is the number of Gaussian points used in the flux quadrature, wl are the Gaussian
weights and n̂k and ∆sk are the unit normal and edge length of the face k of volume Ωi.
A least squares based quadratic polynomial reconstruction procedure is used to estimate
the ℜ-parameter while the solution is obtained using a linear reconstruction procedure
as discussed in Section 2. While the linear reconstruction procedure offers formal first
order accuracy on irregular grids, the quadratic reconstruction procedure offers second
order accuracy [17, 27, 28]. This ensures that the errors due to discretisation of the exact
operator does not dominate the error due to the imbalance. It must be emphasized that
the same stencil of points are employed for the reconstruction associated with the state
update and higher order reconstruction associated with the ℜ-parameter.

3.3 Properties of the ℜ-parameter

The ℜ-parameter satisfies certain properties which makes it an attractive choice for driv-
ing mesh refinement algorithms. These properties are summarized here for sake of com-
pleteness and the interested reader is referred to [17] for a detailed discussion on the
same.

1. The ℜ-parameter is consistent in smooth flow regions which are free of limiters but
is rendered inconsistent in limiter-active and discontinuous flow regions.

2. The ℜ-parameter is a measure of “Cell error” and therefore detects the sources of er-
ror. This property renders the ℜ-parameter based adaptive strategies with excellent
global error control.

3. The ℜ-parameter works equally well on structured and unstructured meshes and
is inexpensive to compute. It requires no additional information than what is re-
quired by the solution procedure itself and the effort to compute the ℜ-parameter
is comparable to one explicit iteration of the flow solver.

4 Residual Adaptive Strategy (RAS) for continuous flows

Adaptive refinement algorithms for fluid flow problems are critically influenced by the
refinement/derefinement criteria, which in turn depend on the choice of sensors em-
ployed in the algorithm. It has already been established that the ℜ-parameter is consis-
tent everywhere for smooth and continuous flows devoid of limiting. For such flows, it
is possible to employ the ℜ-parameter itself to derive refinement/derefinement criteria,
leading to a purely-residual based adaptive strategy referred to as RAS algorithm.

Resolution of flow features are linked to the error levels on the mesh on which they
are resolved. Sufficient resolution of flow features on a given mesh results in error levels
lesser than some specified threshold value. It is therefore possible to define a threshold
value for the error and then determine a length scale based on this threshold that resolves
the flow phenomena to the desired extent on a given mesh. As in the previous work of
the authors [17], the design of refinement (or derefinement) criterion involves defining
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a threshold value of the ℜ-parameter, ℜ∗ and recovering a threshold length scale h∗c for
every volume using ℜ∗, for adequately resolving the local flow features. The decision to
refine or derefine a given volume is taken by comparing h∗c with the length scale associ-
ated with the volume. The RAS algorithm hinges on the following hypothesis.

Hypothesis. For a grid lp at any level p (p≥ 1), the volumes which continue to remain at the
base level (p=0), have the lowest values of the ℜ-parameter.

Define

||ℜ||1=
∑c∈l0 |ℜc|

Nl0

, ||ℜ||∞=max
c∈l0

|ℜc|, (4.1)

where l0 refers to the set of cells at the initial (or base) level, Nl0 is the number of undi-
vided volumes at the base level and ||ℜ||1 and ||ℜ||∞ denote the L1 and L∞ norms of the
ℜ-parameter respectively. We then define a global threshold value of the ℜ-parameter as

ℜ∗=
1

2
(||ℜ||1+||ℜ||∞).

It is important to note that this definition of ℜ∗ is not unique; this is merely a pragmatic
approach resulting in a balanced refinement and derefinement strategy. In order to derive
the threshold length scale h∗c , we begin by rewriting the relationship† between the ℜ-
parameter and the characteristic length scale as ℜc =Ch

q
c . Defining a threshold value for

the ℜ-parameter, ℜ∗ as described earlier, we also have ℜ∗=Ch
∗q
c . It follows that

h∗c =hc

(

ℜ∗

ℜc

)
1
q

. (4.2)

The important distinction between the present methodology and that in [13] among
others, is that the exponent ‘q’ is non-integral in nature. The functional form of h∗c in
Eq. (4.2) accounts for the non-integral nature of the exponent, while the dissipation func-
tion accounts for the same. The threshold length scale can be determined if the value
of the exponent ‘q’ is known. However, computing the value of ‘q’ numerically at a
cell-level is complicated by the fact that the grid undergoes both refinement and dere-
finement simultaneously. Therefore, rather than determining the exponent ‘q’ explicitly
in each cell, we employ its approximate limits to estimate the threshold length scale. The
ℜ-parameter being an estimate of the local truncation error merely mimics the behaviour
of the leading truncation term. Therefore the approximate limiting values of the expo-
nent q are 1 in case of irregular grids and 2 in case of the regular grids, for a solution
procedure employing a linear reconstruction. The following three different possibilities
are now analysed to evolve a threshold length scale.

†It should be noted that this representation of ℜc is different from our earlier representation [17], ℜc=X(h)h
where X(h) is the dissipation function.
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Case 1. ℜ∗>ℜc This is the case with volumes that are candidates for derefinement, since
the levels of local truncation error are lower than the threshold ℜ-parameter. It
follows from Eq. (4.2) that for a given volume ‘c’, the minimum and maximum
values of h∗c occur when q=2 and q=1 respectively.

Case 2. ℜ∗<ℜc This condition arises in volumes which are to be refined, since the trun-
cation error levels are more than the threshold ℜ-parameter. From Eq. (4.2) it is
easy to see that the minimum and maximum values of h∗c for a given volume ‘c’
occur when q=1 and q=2 respectively.

Case 3. ℜ∗ ∼ℜc This condition arises when the cell is neither to be refined nor dere-
fined. We then have h∗c ∼hc, which is not surprising and the exponent q becomes
insignificant.

In order that flow features of disparate strengths are equally resolved, a conservative
adaptive strategy should encourage more refinement and discourage derefinement. This
in turn means that h∗c should be kept minimum in order to result in “maximal” refine-
ment and “minimal” derefinement. It follows that the threshold length scale h∗c can be
computed as

h∗c =min

(

hc

(

ℜ∗

ℜc

)

, hc

√

ℜ∗

ℜc

)

. (4.3)

The refinement and derefinement criteria for the RAS algorithm are given below.

Refinement criterion. A volume c on a grid lp (p≥1) is flagged for refinement iff the charac-
teristic length scale hc associated with the volume satisfies hc >h∗c .

Derefinement criterion. A volume c on a grid lp (p ≥ 1) is flagged for derefinement iff the
characteristic length scale hc associated with the volume satisfies 2×hc ≤h∗c .

A different refinement criterion is necessary on the initial level mesh. This is achieved
by flagging a fixed percentage of cells where the ℜ-parameter is maximum. Additional
cells are flagged to ensure good grid quality and are based on considerations as out-
lined in [32]. Mesh refinement is based on h-refinement strategy which involves cell divi-
sion/agglomeration. In particular, quadrilateral cells are isotropically divided into four
quads and triangular cells into four triangles. The h-refinement algorithm is implemented
using a unstructured data framework akin to the flow solver [32].

The proposed algorithm automatically evolves a threshold length scale and termina-
tion criteria for refinement/derefinement, is free of heuristic (user-defined and tunable)
parameters and is easy to implement.

5 Hybrid Adaptive Strategy (HAS) for compressible flows

Compressible flows involve discontinuities such as shocks and contacts where limiters
are inevitably operational leading to inconsistency of the ℜ-parameter. The error in-
dicators like curl and divergence of velocity, precisely mark these regions, where the
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ℜ-parameter loses its consistency. It is therefore natural to develop an algorithm that
employs error indicators for refinement and ℜ-parameter for derefinement. This leads
to a “hybrid” algorithm which effectively exploits the mutual exclusivity of regions of
validity of the error indicators and the ℜ-parameter [17].

A major drawback that plagues error indicator-based algorithms is the lack of a “ter-
mination criterion” for refinement. In the absence of a stopping criterion, stronger flow
features would get repeatedly refined, while the weaker flow features are not resolved.
Fortunately, for cells flagged for refinement based on the indicators and where limiters
are not operational, a threshold length scale can be derived based on the ℜ-parameter
itself. However, the termination criterion for cells marked for refinement where limiters
are operational must be based on some heuristic considerations. For cells flagged for re-
finement by divergence of velocity and where limiters are operational, an explicit length
scale based on the geometry is defined; e.g. 10−3 times the chord length could be useful
for shocked flow past airfoils. For turbulent flow computations, empirical evidence sug-
gest that the cells in the wall cells are limiter-operational; the y+ values itself can serve as
a termination parameter.

The computation of the threshold length scales using the ℜ-parameter for the HAS
algorithm is similar to that of the RAS algorithm (discussed in Section 4) with the no-
table exception that the hypothesis is modified to exclude cells at the initial level (cells
constituting l0) where limiters are operational. Also, in order to promote refinement of
weaker flow features, a conservative estimate for the threshold value of the ℜ-parameter
is employed for refinement only. Consequently, the definition of the threshold value of
the ℜ-parameter, ℜ∗, for the HAS algorithm is defined as

ℜ∗=

{

||ℜ||1, for refinement,

(||ℜ||1+||ℜ||∞)/2, for derefinement.
(5.1)

This definition of the ℜ-parameter is employed to recover the threshold length scales
employed in the termination criterion for refinement and derefinement. Derefinement
criterion is based on the residual error estimator as explained for the RAS algorithm. A
h-refinement strategy is used to effect mesh refinement and coarsening, as in the case of
the RAS algorithm.

6 Numerical simulations and AMR efficiency

6.1 AMR efficiency

The success of any adaptive algorithm is primarily gauged by its ability to obtain physi-
cally accurate solutions to fluid flow problems at a lower computational effort. Solution
contours, aerodynamic coefficients and surface pressure and shear distributions provide
a qualitative assessment of the adaptive algorithm. The AMR efficiency [38] is a quantita-
tive measure of the computational efficiency of the AMR algorithm. The AMR efficiency
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is defined as

ηAMR =1−
N

Nu
, (6.1)

where N is the number of volumes in the adapted grid (at any given level) and Nu is the
number of volumes on a uniformly adapted grid (at the same level). A higher value of the
AMR efficiency points to an efficient adaptive algorithm. It must however be emphasized
that both the AMR efficiency and solution quality are equally important to the success of
the adaptive algorithm.

6.2 Numerical simulations using the RAS algorithm

The efficacy of the RAS algorithm is tested on inviscid and viscous flows devoid of dis-
continuities and limiters. The details pertaining to the test cases and the mesh are given
in Table 1.

Table 1: Grid details and AMR efficiencies for test cases using the adaptive algorithms.

Test Case Grid Type Number of cells Number of cells AMR efficiency
at initial level at final level ηAMR

Inviscid flow past Structured grid 2450 22946 0.964
NACA0012 airfoil
Laminar flow past Structured grid 2450 20537 0.869
NACA0012 airfoil
Inviscid flow past Structured grid 7230 81921 0.823

scramjet intake
Laminar flow past Hybrid grid 2299 51778 0.912
bump in a channel

6.2.1 Case 1: Inviscid subsonic flow past NACA0012 airfoil M∞=0.63, α=2o

The inviscid subsonic flow past a symmetric airfoil is investigated. Starting from an
initial coarse grid, four levels of refinement and derefinement are performed. The ini-
tial, intermediate and final meshes along with the mach contours are shown in Fig. 1.
The adaptive algorithm initially refines a larger region of the computational domain but
eventually concentrates more points in the stagnation regions while coarsening the mesh
in other regions of the domain. This manifests as a reduction in numerical entropy gen-
eration which is evident in the mach contours (see Fig. 1). The good agreement of the
lift coefficient prediction with the AGARD data [33] and previous computations [34] also
reflects the efficacy of the adaptive strategy (see Table 2).

Table 2: Comparison of lift coefficient for subsonic inviscid flow past NACA 0012 airfoil.

AGARD data [33] Previous computation [34] RAS algorithm
CL 0.3335 0.3047 0.3142
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Figure 1: Grids (left) and Mach contours (right) with grid adaptation for subsonic inviscid flow past NACA0012
airfoil. Contour levels are 0:0.05:1.0

6.2.2 Case 2: Laminar subsonic flow past NACA0012 airfoil, M∞ = 0.5, Re∞ = 5000,

α=0o

The RAS algorithm is applied to the viscous flow past NACA0012 airfoil to study its abil-
ity to predict the boundary layer separation. Three levels of refinement-derefinement are
performed starting from a coarse O-grid. The sequence of meshes and the correspond-
ing mach contours are shown in Fig. 2. The pressure and skin friction distribution on
the final adapted mesh shown in Fig. 3 indicate that the peak in suction pressure as well
as the point of flow separation are accurately predicted. Comparisons of the predicted
drag coefficient and separation point (Table 3) are in favourable agreement with previous
computations [35], demonstrating the success of the adaptive algorithm.

Table 3: Comparison of aerodynamic coefficients for subsonic laminar flow past NACA 0012 airfoil.

Venkatakrishnan [35] Present method
CD 0.0554 0.0560
Separation point 81.0 81.4
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Figure 2: Grids (left) and Mach contours (right) with grid adaptation for subsonic laminar flow past NACA0012
airfoil. Contour levels are 0:0.03:0.6.

Figure 3: Pressure distribution (left) and Skin friction distribution (right) for the laminar flow past NACA airfoil.
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6.3 Numerical simulations using the HAS algorithm

The effectiveness of the hybrid adaptive algorithm is studied using two representative
test problems. These problems involve complex flow phenomena and provide the op-
portunity to judge the performance of the algorithm in handling compressible flows on
arbitrary polygonal grids. The details of the grid are given in Table 1, while Table 4 pro-
vides the information on grid refinement.

Table 4: Grid refinement details for test cases using the hybrid adaptive algorithms.

Test Case Error indicator(s) Fraction marked Total percentage of

by divergence† cells divided§

Case 1 Divergence and curl 0.7,0.7,0.7 60,40,30

Case 2 Divergence and curl 0.5,0.5,0.5,0.5 70,45,30,20
† The fraction of cells marked by divergence for case where curl and divergence are employed

as indicators, in each level of refinement.
§ The total percentage of cells divided in the domain in each level of refinement.

6.3.1 Case 1: Inviscid hypersonic flow through a scramjet intake

The first test case is the inviscid hypersonic flow (M∞=5) through a two-dimensional
scramjet intake [37]. The geometry for this case is shown in Fig. 4 and the flow is char-
acterized by a complex pattern of shocks (and shock reflections), expansions and contact
discontinuities. Starting from a structured mesh, three levels of refinement-derefinement
are performed.

Figure 4: Geometry of two-dimensional scramjet intake (from [37]).

Fig. 5 shows the initial, intermediate and final meshes and the corresponding density
contours. A zoomed view of the mesh and corresponding density contours on the final
level mesh are shown in Fig. 6. The shock reflections are smeared on the unadapted mesh,
while on the final level adapted mesh the incident shock and multiple shock reflections
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Figure 5: Grids (left) and Density contours (right) with grid adaptation for inviscid hypersonic flow past scramjet
intake. Contour levels are 0.35:0.25:5.54.

Figure 6: Zoomed view of the final level adapted mesh (left) and density contours (right). Contour levels are
0.35:0.25:5.54.

are captured accurately. Expansion fans and their interactions with shocks as well as
the slipstreams are also well resolved. It is observed that the adaptation preserves mesh
symmetry, which is in line with the associated symmetry of this problem.
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6.3.2 Case 2: Supersonic laminar flow past bump in a channel

Supersonic laminar flow (M∞=1.4, Re∞=8000) past a 4% thick circular arc bump in a chan-
nel is investigated. This test case [36] is a challenging problem because of the presence of
disparate flow features. A schematic view of the geometry with the relevant boundary
conditions is shown in Fig. 7. The attached shock at the nose of the bump reflects from the
top wall, forming a small mach stem. The reflected shock from the upper wall induces
boundary layer separation and reflects as expansion waves. The boundary layer “lift-
off” results in an effective compression corner from where compression waves emanate
before coalescing into a shock and reflecting again from the upper wall. This reflected
shock interacts with the expansion waves from the shock-boundary layer interaction re-
gion. The slip line emanating at the triple point near the upper wall, which interacts with
the compression and expansion waves.

Figure 7: Schematic figure (not to scale) showing the geometry and boundary conditions for supersonic laminar
flow past bump.

In order to study the ability of the HAS algorithm to handle mixed elements for
viscous flows, a hybrid mesh is employed for this test case. Four levels of refinement-
derefinement are performed starting from a coarse initial mesh. The initial, intermediate
and final meshes and the corresponding mach contours are shown in Fig. 8. The shock
emanating at the bump nose and its reflection as well as the mach stem are well captured
by both the algorithms. The adaptive algorithms also do well to capture the boundary
layer “lift-off” as also the compression waves generated from the “lift-off” region and
its subsequent reflection from the upper wall. Both algorithms also detect the expansion
waves and the recirculation zone at the rear of the bump. Fig. 9(a) shows a close-up view
of the recirculation zone on the final level mesh. The slip discontinuity emanating from
the triple point is comparatively a weaker feature, but the adaptive algorithm is success-
ful even in resolving this flow feature. The skin friction distribution on the lower wall
is shown in Fig. 9(b) indicate that the separation and reattachment points are in good
agreement with the previous computations [36]. The ability of the adaptive algorithm to
resolve the detailed flow physics in the presence of multiple flow phenomena of disparate
strengths, is a testimonial to the fact that the proposed HAS algorithm is a powerful tool
to obtain fast and accurate solutions for complex flow problems.

The AMR efficiencies on the final level mesh for all the test cases are shown in Table 1.
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Figure 8: Grids (left) and Mach contours (right) with grid adaptation for supersonic laminar flow past bump in
a channel. Contour levels are 0:0.2:1.4.

(a) (b)

Figure 9: (a) Close-up of shock/boundary layer interaction. (b) Wall skin friction distribution.
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The AMR efficiency is high for RAS and HAS adaptive algorithms for the test cases con-
sidered in this paper. In addition, these algorithms have been able to accurately resolve
flow phenomena for internal and external fluid flow problems on arbitrary polygonal
meshes. The high AMR efficiency and accurate solutions are clear indications that the
proposed adaptive algorithms are effective and efficient for inviscid and viscous fluid
flows.

7 Conclusions and future work

Adaptive algorithms based on a residual error estimator known as ℜ-parameter have
been proposed for inviscid and viscous compressible fluid flows. For smooth flows de-
void of limiters, the RAS adaptive algorithm based purely on the residual estimator has
been proposed. The hybrid HAS algorithm employing error indicators in conjunction
with the ℜ-parameter has been employed for compressible flows with discontinuities and
limiting. Numerical simulations on complex fluid flow problems on arbitrary polygonal
grids are indicative of effectiveness of the proposed adaptive strategies. The proposed
adaptive algorithms can be extended to three-dimensional and unsteady fluid flows in
the future.
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