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Abstract. Lattice Boltzmann simulations based on the Cahn-Hilliard diffuse interface
approach are performed for droplet dynamics in viscous fluid under shear flow, where
the degree of confinement between two parallel walls can play an important role. The
effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio
on droplet deformation and break-up in moderately and highly confined shear flows
are investigated.
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1 Introduction

The problem of deformation and break-up of an immiscible droplet in shear flows has
been studied extensively since the original experiments by Taylor [1]. This problem is of
great interest in many science and engineering applications such as emulsification pro-
cesses, e.g., food industry, polymer blending and oil recovery, and in deformation of
biological cells [2]. In these processes two immiscible fluids are mixed to obtain a distri-
bution of droplets of one of the liquids in the other. Therefore, many investigations have
been carried out from experimental, numerical, and theoretical points of view, and have
shown that droplet deformation in shear flows are governed by four dimensionless pa-
rameters, namely, the capillary number (Ca) based on matrix fluid, the Reynolds number
(Re) based on the matrix fluid, the viscosity ratio of the droplet viscosity to that of matrix
fluid (η) [3], and the confinement ratio defined as the ratio of droplet diameter to the wall
separation.
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Megias-Alguacil et al. [4] performed an experimental study of droplet deformation
under simple shear flow. They used the boundary integral method (BIM) as a numerical
tool for validation of the experiment and for measurement of droplet deformation for
a wide range of viscosity ratios. Several different values of the capillary number were
considered for each η under different experimental conditions. The results showed that
the major axes of a steady droplet fit the experimental ones, especially at lower capil-
lary numbers. Chang-Zhi et al. [5] performed a three-dimensional (3D) numerical study.
They investigated the deformation of a droplet in shear flow with unit viscosity ratio us-
ing diffuse interface method.They compared the values of deformation parameter with
the results obtained by the volume of fluid (VOF) method [6], and concluded that the de-
formation parameter increased with the capillary number. Janssen et al. [7] introduced a
new boundary integral method and applied it to study droplet deformation under shear
flow between two parallel walls for non-unit viscosity ratio systems. For this purpose,
the Green’s function was modified to obey the no-slip condition at the walls. It was found
that for moderate capillary numbers, the behavior of low-viscosity droplets are similar
to that of droplets with unit viscosity ratio. The results also showed that for high viscos-
ity ratio, as the confinement ratio increases the possibility of droplet rotation decreases,
leading to a larger deformation and less overshoot in the droplet axes.

Inamuro et al. [8] presented a lattice Boltzmann method (LBM) for multi-component
immiscible fluids for various values of viscosity ratios with density ratio of unity. They
used the method to investigate the deformation and break-up of a droplet in shear flows
with confinement ratio of 0.5. The simulation results showed that increasing the Reynolds
number leads to easier deformation and break-up. Wagner et al. [9] used the lattice Boltz-
mann method to investigate the effect of inertia on the deformation and breakdown of
stability of a 2D droplet surrounded by a fluid of equal viscosity in confined geometry.
They showed that the increase in inertia produced larger deformation. More recently,
van der Sman et al. [10] carried out a 2D numerical study to examine the effects of di-
mensionless parameters on deformation and break-up of an emulsion droplet in simple
shear flow for various capillary number and viscosity ratios up to 5. It was observed that
at increased viscosity ratios, the droplet deformation increases. A significant deviation
from the ellipsoidal shape was seen at high capillary numbers. They also showed that
the realistic physical behavior of droplet deformation could be obtained by using LBM,
as long as some dimensionless numerical parameters were within certain ranges. Oth-
erwise the droplet was either dissolved or did not deform to stable shapes at subcritical
capillary numbers.

The aim of the present paper is to apply a recently proposed LBM [11, 12], which is
based on the Cahn-Hilliard diffuse interface theory for binary fluids, to study droplet
deformation in linear shear flow. Compared with other two-phase LBMs based on [13,
14], the present LBM is capable of eliminating the parasitic currents and dealing with
higher density and viscosity ratios, but it could be more computationally expensive. The
effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio on
droplet deformation and break-up in moderately and highly confined shear flows will
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be investigated. The paper is organized as follows: In Section 2, the lattice Boltzmann
method used in this paper is briefly reviewed. Section 3 presents the validation of the
numerical method for a moderately confined droplet. In Section 4, the simulation of a
highly confined droplet will be carried out. Section 5 provides a summary of important
results obtained in this study.

2 Lattice Boltzmann method for binary fluids

Two particle distribution functions, gα and hα , are used in the present LBM for binary
fluids [12]. The function hα is used as a phase-field function for the transport of the com-
position C of one component, and the function gα is used for the calculation of pressure
and momentum of the two-component mixture. The discrete Boltzmann equations for
the phase-field advection equation and the pressure evolution and momentum equations
are, respectively:

∂hα

∂t
+eα ·∇hα =−hα−h

eq
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In the above equations, eα is the α direction microscopic particle velocity, u is the volume
averaged velocity, cs is the lattice speed of sound, ρ is the mixture density, p is the dy-
namic pressure, λ is the relaxation time, µ is the chemical potential, tα is the weighting
factor and M is the mobility in the Cahn-Hilliard diffusion. Γα is defined as

Γα= tα

[

1+(eα ·u)/c2
s +(eα ·u)2/2c4

s −(u·u)/2c2
s

]

. (2.5)

The composition, momentum and dynamic pressure can be obtained by taking the mo-
ments of hα and gα:

C=∑
α

hα, (2.6a)

ρu=
1

c2
s
∑
α

eαgα, (2.6b)

p=∑
α

gα. (2.6c)
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For detailed discretization of Eqs. (2.1)-(2.2) and boundary conditions, readers are re-
ferred to [12].

The mixture density ρ can be computed as ρ = ρhC+ρl (1−C), where ρh and ρl are
the bulk densities of two fluids. The mixing energy density for binary fluids can be writ-
ten as E0(C,∇C) = E0(C)+κ|∇C|2/2, where κ is the gradient parameter and E0(C) =

βC2(1−C)2 is the bulk energy density with constant β [15]. The equilibrium profile
is obtained by minimizing the mixing energy. The equilibrium interface profile is then
C(z)=1/2+tanh(2z/D)/2, where z is the coordinate normal to the plane interface and
D is the numerical interface thickness. Having D and interfacial tension σ, β and κ can
be determined as β=12σ/D and κ=βD2/8.

3 2D droplet deformation in moderately confined shear flow

3.1 Validation

In this section, the deformation of an equilibrium droplet in simple shear flow generated
by the motion of top and bottom walls with opposite velocities U =±Hγ̇/2 is studied,
where H is the distance between the two walls, and γ̇ is the shear rate. All simulations
are started with an initially circular droplet placed at the center of a channel, as shown in
Fig. 1. The height of the channel is four times the droplet radius following [10]. Simula-
tions are conducted until a steady-state shape is reached.

R

H

U

U

Figure 1: Schematic representation of a droplet with initial radius R in a matrix fluid located between two
parallel plates with a distance between the plates of H.

The dimensionless parameters that are related to the deformation of a droplet in shear
flow are the viscosity ratio η = µd/µm, confinement ratio 2R/H, capillary number Ca=
γ̇Rµm/σ, and Reynolds number Re= ργ̇R2/µm, where µd is the droplet viscosity, µm is
the matrix viscosity, and σ is the interfacial tension. The droplet deformation is expressed
by the Taylor deformation parameter,

D f =
a−b

a+b
, (3.1)
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where a and b are the major and minor axes of a deformed droplet, respectively. To
evaluate the Taylor deformation and the orientation angle θ, the method of moments is
used (see Appendix), but this method is applicable only for low capillary number, where
the droplet is nearly ellipsoidal [10].

To validate our results, first we compare the droplet deformation versus dimension-
less time with the simulations performed by Sheth and Pozrikidis [16]. They used a vari-
ation of the immersed boundary formulation [17] in conjunction with a finite-difference
method for solving the equations for 2D incompressible Newtonian flows. Our Lattice
Boltzmann simulations were carried out for Re= 1, λ= 1, and Ca= 0.4, and the channel
has a 128×128 grid with D2Q9 lattice. According to Fig. 2, the result of the current study
displays good agreement with that obtained by the immersed boundary formulation.

γt

D
f

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Current Study
Sheth and Pozrikidis

Re = 1, Ca = 0.4, η = 1

Figure 2: Comparison of droplet deformation with the result obtained by Sheth and Pozrikidis [16].

Grid dependency of the results is tested by repeating the calculations using system-
atically refined grids with four different grid resolutions; 64×32, 128×64, 256×128, and
512×256, corresponding to a droplet radius of 8, 16, 32, and 64, respectively. Fig. 3 shows
steady state droplet shapes for these four grid sizes by contour lines for C=0.5. From the
figure it is concluded that the result on the 128×64 grid does not exhibit any noticeable
difference from the results on finer grids. Thus the channel with the grid size of 128×64
will be used in the following sections for droplet simulation subjected to shear flow.

The present LBM conserves global mass by incorporating the potential form of the
intermolecular forces for binary fluids and the bounce-back rule, and also by eliminating
the parasitic currents around the interface and wall regions [11, 12]. If m0 is the initial
mass of the system and m is the transient mass of the system at each time step, the ratio
of m/m0 versus the time step is shown in Fig. 4. The droplet radius, capillary number,
Reynolds number, and viscosity ratio are R = 32, Ca = 0.1, Re = 6, and η = 1, respec-
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Figure 3: Droplet steady shapes depicted by contour lines of C=0.5 for various grid resolutions.
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Figure 4: The time evolution of mass of the system to initial mass of the system.

tively. The computational domain has a 256×128 grid. The figure shows that m/m0

ratio slightly increases with time, and eventually approaches a constant value, when the
system reaches equilibrium.

3.2 Droplet deformation in shear flow for moderate confinement ratio

According to Janssen et al. [18], there exist three distinct flow regimes based on the con-
finement ratio 2R/H. For 2R/H < 0.3, the effect of confinement is insignificant. The
droplet is located far enough from the confining walls, and the flow field can be taken
as unconfined. For 0.3< 2R/H < 0.5, where the degree of confinement is moderate, the
droplet is aligned more in the flow direction and the steady state droplet deformation
increases with increasing confinement ratio at a given capillary number. At this confine-
ment ratio, one cannot expect that the walls have a significant stabilizing effect on flow
behavior around the droplet. Finally, for 2R/H > 0.5, the flow field is characterized by
high degree of confinement. Due to the large confinement ratio in this regime, the droplet
deformation and its orientation are limited by the presence of the walls.
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Figure 5: (a) Deformation and (b) orientation angle of droplet versus rescaled time for Re=0.1, Ca=0.1, and
various η : 2,··· ,10,100.

Simulations are performed for confinement ratio of 0.5, which is at the upper limit
of moderate confinement ratio. Various viscosity ratios are considered in order to in-
vestigate its effects on droplet deformation. There are several theoretical relations for
drop deformation. Among them, the Taylor relation for small capillary number is given
as D f = Ca(16+19λ)/(16+16λ), which shows negligible impact of the viscosity ratio.
Therefore for all viscosity ratios, as long as Ca < 1, the droplet shape will be approxi-
mately spherical [19]. Fig. 5 illustrates the deformation and orientation angle of a droplet
for η=2,··· ,10,100, Re=0.1, and Ca=0.1. As the viscosity ratio is increased, the droplet
deformation decreases. As this ratio reaches 100, the final steady shapes of the droplet are
not very different from its initial shape. According to Fig. 5(b), the droplet orients more
in the flow direction with increasing η. Steady state droplet shapes for various viscosity
ratios are shown in Fig. 6. It can be seen from the figure that although the viscosity ratio is
important in determining the rate of drop deformation, the variation of drop deformation

η = 2
η = 10
η = 100

Figure 6: Contour lines of C=0.5 for Re=0.1, Ca=0.1, and various η: 2, 10, 100.
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Figure 7: (a) Deformation and (b) orientation angle of droplet versus rescaled time for η = 1, Ca= 0.1, and
various Re : 1,··· ,6.
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Figure 8: (a) Deformation and (b) orientation angle of droplet versus Re around critical Ca.

is not significantly changed by increasing η.

The effect of inertia on droplet deformation in shear flow is also investigated. The
simulations are performed at Ca= 0.1 and η = 1. The Reynolds number is varied in the
range 1< Re < 6. Fig. 7 shows the evolution of D f and the orientation angle θ. As the
Reynolds number increases, inertial force starts to play an important role in determining
the equilibrium droplet shape, and thus the droplet becomes increasingly elongated. As
shown in Fig. 7(b), the droplet orients more in the flow direction with increasing Re, but
the orientation angle still remains smaller than π/4 for all values of Re at Ca= 0.1. To
investigate the effect of inertia on droplet deformation near and below critical capillary
number, the simulations are conducted on 128×64 grid. The initial radius of droplet has
16 lattice units. It can be seen from Fig. 8 that for large Reynolds numbers, the deforma-
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Figure 9: The evolution of droplet deformation in dimensionless time for η=1, and (a) Re=1, (b) Re=10, (c)
Re=50, and (d) Re=100.

tion and orientation angle are approximately constant. This behavior of a droplet can be
explained by the fact that the droplet approached the inviscid limit for large Reynolds
numbers [20].

Now different combinations of viscosity ratio, Ca, and Re for a droplet with 32 lattice
units are studied. We consider four different cases, whose Reynolds number ranges from
zero to 100 with different values of capillary number. According to Fig. 9, for a fixed
value of viscosity ratio and Reynolds number, increasing the capillary number, i.e. de-
creasing the interface tension, increases droplet deformation. The droplet deformation is
also increased with increasing Reynolds number, while keeping all other parameters con-
stant. In Fig. 9, for all cases there is a critical capillary number, below which the droplet
deforms and obtains a stationary shape, but above which the droplet does not reach a
steady shape and continues to deform and elongate under the action of the shearing flow
generated by the motion of the walls. By increasing the inertia effect this critical value
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Figure 10: The evolution of droplet deformation in dimensionless time for η=10, and (a) Re=1, (b) Re=10,
(c) Re=50, and (d) Re=100.

decreases, which is in agreement with the results of Sheth and Pozrikidis [16]. For in-
stance, the critical value of capillary number for Fig. 9(b) (Re= 10, η = 1) is around 0.9,
while the critical capillary number for Fig. 9(d) (Re=100, η =1) is around 0.4. It should
be noted that although the abrupt termination for cases with Re = 50 and Re = 100 at
Ca= 0.4 indicates instability of the droplet, all other cases with sharp termination need
longer simulation time to reach the steady state shape.

The results for relatively high values of viscosity ratio are shown in Fig. 10. By com-
paring the corresponding deformation curves in Figs. 9 and 10, it is concluded that the
droplet deformation decreases as the viscosity ratio increases, which is an expected prop-
erty of the deformation of a viscous droplet. Accordingly, the critical value of capillary
number increases with increasing viscosity ratio. To show the effect of inertia on droplet
deformation more clearly, interfacial shapes of droplet for different values of Reynolds
number are depicted in Figs. 11(a) to 11(d), while keeping other parameters constant. In
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Figure 11: Steady state droplet shapes for (a) η=1 and Ca=0.2, (b) η=1 and Ca=0.4, (c) η=10 and Ca=0.2,
and (d) η=10 and Ca=0.4.

each figure, the solid, dot-dashed, dashed and dot-dot-dashed lines correspond to steady
state shapes for Re= 1, Re= 10, Re= 50, and Re= 100. As can be seen for Re= 50, and
Re=100 at Ca=0.4 and η=1, the droplet does not reach steady state. Therefore, for the
moderately confined droplet the final steady shape of mildly deformed droplets is nearly
elliptical, while highly deformed droplets have sigmoidal shapes.

To illustrate the effect of inertia on the structure of the flow inside the droplet, in
Fig. 12 we present streamline patterns for three different Reynolds numbers (Re=1, 10, 50)
corresponding to the shapes shown in Fig. 11(a). The figures confirm that the effect of in-
ertia is not only on the shape of the droplets (Fig. 11(a)), but also on the structure of the
flow inside and around the droplets. The reversing flow seen in the middle of the chan-
nel to either side of the droplet results from both the interaction with the walls and the
inertia [21–23]. In all three cases, the droplet interfaces are tangential to the streamlines
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λ = 1, Re = 1, Ca = 0.2

(a) Re=1
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Figure 12: Streamline patterns of flow structure inside and around the droplet for η=1, Ca=0.2, and (a) Re=1,
(b) Re=10, (c) Re=50.

meaning that the droplets have reached steady-state shapes. As the Reynolds number is
increased, the inclination of streamlines inside the droplets decrease, which corresponds
to the reduction of the orientation angle of droplets shown in Fig. 11(a).

3.3 Droplet break-up in moderately confined shear flow

In this section, we show break-up of a droplet in simple shear flow. The prediction of
the critical conditions beyond which steady droplet shape cannot be observed has been
investigated in the literature. If an initially circular droplet is placed in a shear flow,
the droplet deforms, and finally reaches a stationary shape. When the capillary number
exceeds a critical value, the transient elongation of droplet is started, and the droplet
cannot maintain a steady shape, which ends with break-up. Although most of the break-
up has a binary nature, ternary break-up can occur if the droplet length is larger than six
undeformed drop radii i.e. 6R [18]. Depending on the confinement ratio, ternary break-
up may also occur. It has been shown that there is a critical confinement ratio at which the
break-up changes from binary to ternary or multiple break-ups [18]. We considered three
different values of Reynolds number with their critical Ca at η=1. The critical capillary
number is the lowest value of Ca at which an initially circular droplet breaks up.

Figs. 13-15 show snapshots of the break-up process for various Reynolds numbers.
It is observed that as the droplet is stretched, it first becomes ellipsoidal in shape. The
minor axis shrinks while the major axis lengthens, which leads to the formation of a
waist near the center of the droplet. Consequently, the droplet changes from ellipsoidal
shape to dumbbell shape. The bulbs at the end of the droplet achieve a stable shape and
the center of the droplet becomes even thinner. Eventually a neck emerges between the
central portion of the droplet and bulbs. From the figures it can be concluded that by
increasing the Reynolds number, the critical value of capillary number, at which break-
up occurs, decreases. Fig. 16 compares the evolution of droplet vs. time for two values
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(a) t=0 (b) t=15

(c) t=25 (d) t=100

Figure 13: Snapshots of droplet break-up for η=1, Cacrit=0.8, and Re=2.

(a) t=0 (b) t=15

(c) t=30 (d) t=91

Figure 14: Snapshots of droplet break-up for η=1, Cacrit=0.2, and Re=10.

of Reynolds number. The droplet at Re= 10 has an overshoot that takes the droplet to
significant enough deformation that it breaks at t = 21.7. The case with Re = 2 has an
overshoot that is not high enough to cause break-up.
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(a) t=0 (b) t=15

(c) t=20 (d) t=83

Figure 15: Snapshots of droplet break-up for η=1, Cacrit=0.03, and Re=100.
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Figure 16: Droplet evolution versus time for 2D droplet.

4 Droplet deformation in highly confined shear flow in 3D

Most of the literature on shear flow-induced droplet deformation is devoted to the flow
in an unconfined situation, in which the droplet is located far from the confining walls. If
this condition is not satisfied, wall effects are expected to influence the flow behavior of a
nearby droplet. Therefore, droplet-wall interactions could play an important role and af-
fect the dynamics of droplet deformation. In this section, an investigation of the effects of
viscosity ratio and degree of confinement on the dynamics of a single 3D droplet has been
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Figure 17: Steady state droplet shapes at Ca=0.1, 0.2, and 0.25 (from top to bottom) for 2R/H=0.8.

performed. The steady state shapes of a confined droplet with a degree of confinement
of 2R/H = 0.8 at different capillary numbers are shown in Fig. 17. The computational
domain is divided into a 200×62×100 cubic D3Q27 lattice. In the first column, the ex-
perimentally observed shapes are recorded in the velocity-velocity gradient plane [24]
are depicted. The corresponding shapes calculated from BIM and LBM are shown in the
second and third columns, respectively. A good agreement between the results of LBM,
BIM and experimental images is found for all three capillary numbers. The images show
a decrease in orientation angle and thus more orientation toward the flow direction, with
increasing capillary number. Fig. 18 shows the dimensionless axes (L/2R, and B/2R)
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Figure 18: Comparison between experimental data and numerical simulations for 2R/H=0.8 as a function of
capillary number: (a) Dimensionless droplet axes and (b) orientation angle.
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Figure 19: Effect of confinement ratio on droplet deformation as a function of Ca.

and the orientation angle as a function of Ca for a highly confined droplet. It is clear
that confinement affects the deformation of a droplet at a given Ca. In Fig. 19, the steady
state deformation of a droplet is shown for two confinement ratios as a function of Ca for
a viscosity ratio of 1. The droplet with 2R/H =0.5 is only weakly confined whereas the
droplet with 2R/H=0.8 has a relatively high degree of confinement. In a highly confined
channel, not only the magnitude of the deformation, but also the shape of the deformed
droplet is changed due to the proximity of the walls. Instead of an ellipsoid, which is the
characteristic shape for droplets in a bulk shear flow, a sigmoidal deformation is present
in a confined shear flow. Fig. 20 shows the deformation of confined droplets for two
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Figure 20: (a) Dimensionless droplet axes and (b) orientation angle of confined droplets for two viscosity ratios
as a function of Ca.
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viscosity ratios as a function of Ca. The square symbols represent the major and minor
dimensionless axes and the orientation angle of droplet for the viscosity ratio of η=1, and
the triangle symbols are the results for the viscosity ratio of η =2. From Fig. 20(a) it can
be seen that droplet deformation increases when viscosity ratio increases, but in turn the
droplet orients more in the flow direction. On the other hand, drops with high-viscosity
are hindered from rotating in shear flow, which results in a larger deformation.

5 Summary

Droplet deformation and break-up in confined shear flow were investigated by chang-
ing viscosity ratio, Reynolds number and capillary number using the lattice Boltzmann
method (LBM) based on the Cahn-Hilliard diffuse interface approach. To describe con-
fined droplets the effect of the confinement ratio was taken into account. As the viscosity
ratio is increased, the droplet deformation decreases and the droplet orients more in the
flow direction. It was also concluded that the variation of drop deformation is not signif-
icantly affected by increasing η. To illustrate the effect of inertia in determining the equi-
librium droplet shape, the effect of Reynolds number was investigated. By increasing
Re, the droplet becomes increasingly elongated and aligns more toward the flow direc-
tion. It was also shown that for large Reynolds numbers, the deformation and orientation
angle of a moderately confined droplet near critical capillary number are approximately
constant, which is in agreement with the 3D results obtained by Renardy [20]. The de-
pendency of the critical capillary number, above which the final steady state shape of a
droplet cannot be found and break-up may possibly occur, on the viscosity and inertia
was shown. It was concluded that by increasing the Reynolds number, the critical value
of capillary number decreases. Increasing the confinement ratio leads to enhanced defor-
mation that results in a non-ellipsoidal (sigmoidal) droplet shape. These effects are more
pronounced at high Ca. In highly confined channels, droplets are prevented from rotat-
ing in shear flow by increasing the viscosity ratio, which leads to a further deformation.

Appendix: Method of moments

Since the order parameter in this simulation is composition C, the moments are the fol-
lowing

M0=
∫∫

Cdxdx, (A.1a)

M1α=
1

M0

∫∫

Cxα dxdx, (A.1b)

M2αβ =
∫∫

C(xα− x̄α)
(

xβ− x̄β

)

dxdx, (A.1c)

where xα and xβ are the grid points and x̄α and x̄β are the centers of gravity, which are
equal to the second moment of inertia. It should be noted that the order parameter is
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equal to C if it is positive and is zero if it is negative. In the cases that the droplet takes
the ellipsoidal shape and has an orientation angle of θ the Mohr circle scheme is used to
compute a, b and θ.

a=2
√

D1, (A.2a)

b=2
√

D2, (A.2b)

θ=
1

2
arctan

(

2M2xy

M2yy−M2xx

)

, (A.2c)

where

D1=

(

M2yy(cosθ)2−M2xx (sinθ)2
)

cos(2θ)
, (A.3a)

D2=

(

M2xx (cosθ)2−M2yy(sinθ)2
)

cos(2θ)
. (A.3b)
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