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Abstract. A surface based lattice Boltzmann impedance boundary condition (BC) us-
ing Ozyoruk’s model [J. Comput. Phys., 146 (1998), pp. 29-57] is proposed and imple-
mented in PowerFLOW. In Ozyoruk’s model, pressure fluctuation is directly linked to
normal velocity on an impedance surface. In the present study, the relation between
pressure and normal velocity is realized precisely by imposing a mass flux on the sur-
face. This impedance BC is generalized and can handle complex geometry. Combined
with the turbulence model in the lattice Boltzmann solver PowerFLOW, this BC can
be used to model the effect of a liner in presence of a complex 3D turbulent flow. Pre-
liminary simulations of the NASA Langley grazing flow tube and Kundt tube show
satisfying agreement with experimental results.
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1 Introduction

Sound absorbing materials are widely used in various industries to reduce noise emis-
sion. For example in modern turbofan engines, the inlet wall is treated with acoustic
liners. Highway and railway noise barriers often use acoustic treatments for reducing
community noise issues. These sound absorbing materials are composed of porous me-
dia allowing non-zero normal velocity at the surface. Considering the difficulty to model
the flow and the acoustic propagation inside porous media, an acoustic liners are usu-
ally handled with macroscopic boundary conditions imposed in the frequency domain,
consisting of a quantity called impedance, defined as

p̂(x,ω)=Z(ω)û(x,ω)·n(x), (1.1)
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where p̂ is the acoustic pressure, û is the acoustic velocity and n is the mean surface
normal. The impedance is a frequency-dependent complex quantity given by

Z(ω)=R(ω)+iX(ω), (1.2)

where R(ω) and X(ω) are the resistance and reactance, respectively, of the liner. These
are properties of the material and can be measured experimentally in a Kundt tube. The
impedance Z given by Eq. (1.1) provides a relation between acoustic pressure and veloc-
ity at the surface in the frequency domain. In order to be used as a boundary condition in
the physical domain of a time-explicit computational fluid dynamics (CFD) simulation,
this relation has to be transformed into time domain. Mathematically, the time-domain
equivalent of the frequency domain impedance condition can be derived by taking the
inverse Fourier transform. However, due to the convolution integral, long time history
of the acoustic velocity would be required. Ozyoruk et al. [1] proposed an efficient im-
plementation of the above impedance boundary condition in the time domain by using
the z-transform. Taking advantage of the time-shifting and convolution properties of
the z-transform, the implementation only needs to store values of pressure and velocity
at a few previous time steps. The simulations of the NASA Langley grazing flow tube
case using this model [1–3] showed good agreement with experimental data. Toutant et
al. [4] applied this scheme within a lattice Boltzmann method (LBM) flow solver and also
showed similarly good correlations to the experiment. However, this implementation of
the impedance boundary condition is limited to a wall boundary perfectly aligned with
the cell boundaries of the underlying LBM grid. Hence Toutant’s approach is not suitable
for treating complex geometries with inclined or curved boundaries.

In the present paper, we extend the previous work to provide a surface based
impedance BC for arbitrary wall boundary geometry which incorporates Ozyoruk’s
model in a generalized LBM flow solver PowerFLOW. The effective LB boundary treat-
ment in PowerFLOW provides the ability to impose desired boundary conditions, for
example frictionless BC, on complex geometries [5]. The advanced Very-Large-Eddy-
Simulation (VLES) turbulence model applied in PowerFLOW [6, 7] further enables accu-
rate simulations of high Reynolds number turbulent flows. Therefore realization of the
generalized time-domain impedance BC in PowerFLOW makes possible for the first time
quantitative analyzes of more realistic aero-acoustic problems besides acoustic liners rep-
resented by Ozyoruk’s model.

2 Impedance boundary condition

For the constant depth ceramic tubular liner (CT73) [8] the following impedance function
is proposed in [1] by curve fitting the experimental data:

Z(ω)

ρ0c0
= r1+

r2−r1

1+iωr3
+

iωr4

(1−ω2/r2
6)+iωr5

+iωr7, (2.1)
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where c0 is the speed of sound and the values for the ri constants are given in [1]. This
model satisfies all the fundamental conditions for a physically admissible impedance
model listed by Rienstra [9]: causality, reality, and passivity for Z(ω).

Translation into the time domain is obtained via z-transform. Let f (t) be a continuous
function and F(z)=Z( f (t)) be corresponding z-transform. Let f (n∆t) represent the nth

time-discrete sample of f (t), then the time shifting property is given by

Z{ f ((n−1)∆t)}= z−1Z{ f (n∆t)}= z−1 F(z). (2.2)

The convolution property is:

Z{ f (n∆t)∗g(n∆t)}= F(z)G(z). (2.3)

Using the time-shifting property and a first order backward difference, the time deriva-
tive operator can be written as

iω≡ ∂

∂t
≡ 1−z−1

∆t
. (2.4)

Evaluating iω in (2.1) using (2.3), one obtains the impedance model in z-domain

Z(z)

ρ0c0
=

∑ 4
l=0alz

−l

−∑ 3
k=0bkz−k

, (2.5)

where b0=−1, a’s and b’s are constants determined by r’s in (2.1).
Myers [10] extended Eq. (1.1) to the impedance boundary condition in presence of

flow, assuming that the deformation of the soft wall is small in response to an incident
acoustic wave from the fluid, and that this acoustic field is a small perturbation to the
mean base flow:

iω p̂(x,ω)+u0(x)·∇ p̂(x,ω)−n·(n·∇u0(x)) p̂(x,ω)= iωZ(ω)û(x,ω)·n(x). (2.6)

This equation can be written in the z domain using the z-transform properties:

1−z−1

∆t
P(x,z)+u0(x)·∇P(x,z)−n·(n·∇u0(x))P(x,z)=

1−z−1

∆t
Z(z)U(x,z)·n(x). (2.7)

For flat-wall boundary with a uniform mean flow it simplifies to:

1−z−1

∆t
P(x,z)+u0 ·∇P(x,z)=

1−z−1

∆t
Z(z)U(x,z)·n(x). (2.8)

Substituting (2.5) in (2.8) for Z(z) and taking the inverse z-transform, the time-domain
impedance condition can be written:

pn+1−pn

∆t
+u0

∂pn+1

∂x
−

3

∑
k=1

bk

[

pn+1−k−pn−k

∆t
+u0

∂pn+1−k

∂x

]

=
4

∑
l=0

al

[

vn+1−l
n −vn−l

n

∆t

]

, (2.9)



760 C. Sun et al. / Commun. Comput. Phys., 13 (2013), pp. 757-768

where vn =u·n. The normal velocity can be written explicitly by rearranging this equa-
tion:

vn+1
n =

pn+1

a0
−

3

∑
k=0

pn−k

[

bk+1−bk

a0

]

−
4

∑
l=0

vn−l
n

[

al+1−al

a0

]

− u0∆t

a0

3

∑
k=0

bk

[

∂pn+1−k

∂x

]

, (2.10)

with a5 =0 and b4=0.
Eq. (2.10) is used herein to provide the impedance BC as follows: (1) the pressure at

the wall is determined in the usual way; (2) the normal velocity is computed from (2.10)
as a function of the current pressure and the previous four-time-step history of both the
pressure and the normal velocity at the wall; (3) the new normal velocity is then enforced
as the wall boundary condition at the next time step.

3 LBM model

The 3D 19-speed LBM (D3Q19) [14] used in current study is:

fi(x+ci,t+∆t)= fi(x,t)− 1

τ

(

fi(x,t)− f
eq
i (x,t)

)

. (3.1)

Here fi(x,t) is the particle density distribution function and τ is the single relaxation time.
The equilibrium distribution function f

eq
i (x,t) has the following 3rd order form:

f
eq
i (x,t)=ρwi

[

1+
ci ·u
T0

+
(ci ·u)2

2T2
0

− u2

2T0
+
(ci ·u)3

6T3
0

− (ci ·u)u2

2T2
0

]

, (3.2)

with w0 = 1/3 for stop state, wi = 1/18 for states in Cartesian directions and wi = 1/36
for states in bi-diagonal directions. Here T0 = 1/3 is the constant lattice temperature.
The hydrodynamic quantities ρ and ρu are the zeroth and first order moments of the
distribution functions respectively:

ρ(x,t)=∑
i

fi(x,t), ρ(x,t)u(x,t)=∑
i

ci fi(x,t). (3.3)

By Chapman-Enskog expansion, the evolution of Eq. (3.1) matches the Navier-Stokes
equations, with pressure and sound speed c0 given by:

p(x,t)= c2
0ρ(x,t), c0=

1√
3

∆x

∆t
. (3.4)

In general, standard wall boundary conditions impose zero normal velocity for both
no-slip and slip impermeable walls. Please see [5] for details of the generalized volumet-
ric BCs used in PowerFLOW. As described above, the impedance BC requires a normal
velocity determined by Eq. (2.10) to be imposed at the surface. This is achieved by adding
a corresponding mass flux on the surface. The mass flux across a surface element (surfel)
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α is ρvα
nSα, where Sα is the area of the surfel. Such a surface mass flux is isotropically

distributed to the out-going particles from the surfel. That is to say, after realizing reg-
ular impermeable surfel BCs, an additional impedance dependent δ f is added to the
out-going particle distributions in each surfel α:

δ f α
i (x,t)=

ραvα
nSα

∑
j,cj·n>0

Vα
j

if ci ·n>0; δ f α
i (x,t)=0 otherwise, (3.5)

where n is the normal of the surfel α, vα
n is the solution of normal velocity from Eq. (2.10),

ρα is the density sampled from the surrounding cells which interact with the surfel, and
Vα

j is the ”pgram volume” defined as the volume of the domain of the parallelepiped

extruded from the surfel in the direction of cj, i.e. Vα
j = |ci ·n|Sα∆t (see details in [5]).

The volume of the overlapping domain of the parallelepiped and the cell x is defined as
Vα

j (x), and obviously,

∑
x

Vα
j (x)=Vα

j . (3.6)

It is straightforward to show that the total mass flux from the surfel α to fluid cells is

∑
i,x

δ f α
i (x,t)Vα

i (x)=ραvα
nSα. (3.7)

Therefore the desired mass flux is precisely achieved.

It is worth pointing out that such an impedance boundary treatment does not alter
surface tangential momentum flux. Its realization is independent of the existing fluid
flow boundary conditions. As long as the impedance induced surface mass flux could
be accurately controlled, this impedance BC is generally applicable to any LBM bound-
ary models. To our best knowledge, however, the surfel based volumetric BC [5] used
in PowerFLOW is the only approach achieving exact frictionless BC on arbitrary geome-
tries, which is essential to simulations of practical turbulent fluid flows. Based on this
generalized volumetric BC, our impedance BC is naturally generalized and applicable to
simulations of engineering problems.

4 Numerical results

Two validation studies are described in this section. First, the LBM surfel-based
impedance boundary is characterized in a virtual impedance tube to verify that under
pure acoustics (no flow) conditions, the present implementation recovers the normal
incidence impedance properties of the ceramic liner CT73. The second study uses the
well-known NASA Langley grazing incidence impedance tube case [8], which includes a
mean flow together with tangentially incident acoustics, and is a widely used validation
case in the open literature [1, 2, 4].
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4.1 Normal impedance tube

The complex surface impedance Zs of a material can be directly measured in a normal-
incidence impedance tube (also called a Kundt tube) [11–13] using a two-microphone
method. A schematic representation of a cylindrical impedance tube is given in Fig. 1.
On the left side of the tube, a broadband white noise source generates pressure waves
traveling toward the material to be acoustically characterized. At the interface between
the air and the material, the incident waves are either transmitted or reflected. The
reflected waves combine with the incident ones forming standing waves with ampli-
tude and phase variation along the length of the tube that is a function of the material
impedance. Due to continuity of the variables at the interface x=0, the complex surface
impedance is found by measuring the pressure p1(t)= p(x1,t) and p2(t)= p(x2,t) at two
points x1 and x2 inside the tube and using the following expression:

Zs

Z0
= i

¯̂h12sin(Kl)−sin[K(l−s)]

cos[K(l−s)]− ¯̂h12 cos(Kl)
, (4.1)

with s=x1−x2 and x2=l, Z0=ρ0c0 the air characteristic impedance, c0 the speed of sound,
ρ0 the air density, K=ω/c0 the wave number. The complex transfer function h12 between
p1 and p2 is given by the following expression for which the hatted variables correspond
to the frequency domain Fourier transform operation:

¯̂h12 =
1

K ∑
k

p̂2,k

p̂1,k
. (4.2)

The subscript k corresponds to the Fourier transform operation applied to kth subset time
interval of the complete signals (called time windows). In a discrete form, this leads to
pj,k = p(xj, Ik) with Ik = [N(k−1)+1,Nk], where N is the number of samples in the time
window and j=1 or j=2. The complex surface impedance Zs(ω) is commonly expressed
as a function of its real and imaginary parts, the resistance R(ω) and the reactance X(ω),
respectively. This work considers a passive material characterized by R(ω)>0 (i.e. posi-
tive resistance) [9]. The material absorption coefficient α(ω) is defined by:

α(ω)=1−
∣

∣

∣

∣

1−Zs

1+Zs

∣

∣

∣

∣

2

. (4.3)

To assess the effect of the surfel-based boundary condition impedance model on
acoustics propagation, a 3-D circular impedance tube (Fig. 1) is simulated using VLES.
Similarly to an experiment, a white noise signal is applied on the left face of the tube and
the boundary condition to be characterized imposed on the right one. Two simulations
using two boundary conditions are applied to the right face. First, a rigid wall is used
in order to verify the numerical dissipation of the system and to check that a near-zero
absorption coefficient is recovered (Setup A). Second, the CT73 surfel-based condition is
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Figure 1: Schematic representation of a cylindrical impedance tube.

used and compared to the expression (2.1) derived from a curve fitting of the measured
complex surface impedance [1] (Setup B).

The cylindrical wall of the tube is defined as a frictionless BC. The length of the tube
is L= 0.772 m and the diameter D= 0.0515 m. The frequency range for a valid usage
of this tube is then 100Hz to 3000Hz. A uniform grid resolution corresponding to one
hundred points per wavelength at f=3000 Hz, i.e. ∆x=1.1 mm, is used. The time step is
∆t=3.33×10−6 s and the simulations run for a physical time of T=2 s which is sufficient
for the results to evolve beyond the start-up transient period and provide meaningful
statistics. The complex Fourier transform is performed using a Fast Fourier transform
algorithm (FFTW) applied to time windows composed of N=29 samples and using N=
217 samples of the simulated signal. Pressure time histories are recorded inside the tube
at two virtual microphones p1(x1,t) and p2(x2,t).

As seen in Fig. 2, the absorption coefficient corresponding to Setup A (black dots)
is close to zero over the frequency range. This result shows that the dissipation of
the numerical setup is almost negligible and validates the implementation of the two-
microphone method. The comparison for Setup B between the experimental results in
red and the simulation results in blue presents a satisfying agreement. The shape and the
levels of the absorption coefficient are similar. The slight overestimation of the absorp-
tion in the simulation can be attributed to the residual dissipation of the system. Some
peaks in the simulation are observed at 400Hz and 2200Hz and are related to specific
tube modes captured in the impedance tube. Such a behavior is also observed when
performing real measurements and usually the absorption is represented with a wider
bandwidth in order to avoid this effect.

The real and imaginary parts of the complex surface impedance are represented in
Fig. 3 for Setup B. As expected, the real part is positive since the material is passive
both experimentally and numerically. The overall comparison between experiments and
prediction also highlight satisfying results showing that the correct effect of the boundary
conditions on the standing modes is recovered in the simulation.

4.2 NASA Langley flow-impedance tube

The NASA Langley flow-impedance tube [8] has been simulated using a 661×41 2D grid,
providing a number of points per wave-length NPPW=60 at 3000 Hz. The physical size
of the tube is 33×2 inches. The lower wall has a ceramic liner patch starting at 8.25”
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Figure 2: Absorption coefficient as a function of the frequency. Red: CT73 experiments; Blue: CT73 LBM
simulation; Black: Rigid wall simulation.

Figure 3: Real and Imaginary parts of the CT73 complex surface impedance. Red: experiments; Blue: LBM
simulation.

from the inlet and extending to 23.5” from the inlet (indicated by the pink area at the
lower wall in Fig. 4). Frictionless boundary conditions are imposed at the solid walls for
direct numerical simulations (DNS) and the impedance boundary condition is used for

Figure 4: Pressure snap shot for DNS simulations at Ma = 0. Comparison of lattice-aligned and 30deg inclined
channels.
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the ceramic liner. An acoustic plane wave is generated at the inlet:

pin = p0+ǫsin(ωt), uin=u0+
ǫ

ρ0c0
sin(ωt), vin =0, (4.4)

where p0 and ρ0 are ambient pressure and density, c0 is the speed of sound, and u0 =
Ma∗c0.

The sound pressure level (SPL) is calculated by:

SPL=20log

(

prms

pre f

)

, p2
rms=

1

t2−t1

t2
∫

t1

(p−p0)
2dt, pre f =2×10−5Pa. (4.5)

A sound level of SPL= 130 dB was set, for which ǫ= 89.44 Pa. Three types of cases
are tested: (1) DNS of lattice aligned channel, (2) DNS with the channel inclined by 30
deg, and (3) simulations of lattice aligned channel with the VLES turbulence model [6,7].
For the DNS cases, relaxation time τ is set to 0.504. For each type of case, simulations
are carried out at mean flow Mach numbers of 0.0, 0.1, and 0.3 (only at Mach number
0.3 for turbulence modeling) and for frequencies ranging from 0.5 to 3.0 kHz with 0.5
kHz increment. SPL is measured along the upper wall and compared with experimental
data [8].

Fig. 4 shows snapshots of pressure for the DNS lattice-aligned and inclined channels
at Ma = 0. Good agreement indicates the grid orientation independence of the approach.

Fig. 5 shows the comparison of the upper wall SPL results of lattice-aligned and in-
clined DNS simulations with experimental data for zero mean flow (Ma= 0). The sym-
bols indicate the experimental SPL on the upper wall. The difference between the lattice
aligned and inclined channel simulations is small, and both agree well with measurement
data.

Same comparison as Fig. 5 but with mean flow (Ma= 0.1) is shown in Fig. 6. Again,
both the lattice-aligned and inclined simulations have good agreement with experimental
data.

For Ma=0.3, lattice-aligned DNS and turbulence simulations are compared with ex-
perimental data in Fig. 7. In turbulence simulations, the so-called slip wall boundary con-
dition described in [5], together with turbulent wall function, are applied on solid walls
to solve under-resolved turbulent boundary layer. The Reynolds number is Re=2×105.
The difference between DNS and turbulence results is insignificant and both agree well
with experiment.

5 Discussions

A generalized surfel-based algorithm is proposed to realize the impedance boundary
condition for arbitrary geometry. The algorithm relies on the precise control of mass flux
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Figure 5: Ma=0. Comparison of lattice-aligned and
inclined DNS simulations with experiment data.
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Figure 6: Ma= 0.1. Comparison of lattice-aligned
and inclined DNS simulations with experiment
data.
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Figure 7: Ma=0.3. Comparison of DNS and turbulence simulations of lattice-aligned channel with experiment
data.

through the impedance wall. After computing the local normal surface fluid velocity de-
termined by the impedance equation (2.10), the impedance BC is achieved by introducing
the necessary additional mass flux according to the normal velocity on impedance sur-
face. It is demonstrated that the approach is capable of treating complex geometries and
providing lattice orientation independent solutions.
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The numerical measurement of real part and imaginary part of the complex
impedance, as well as the absorption coefficient, in normal impedance tube are in
very good agreement with experimental data, which verifies the accuracy of Ozyoruk’s
impedance model as well as our numerical scheme and corresponding implementation.
Simulations of The NASA Langley flow-impedance tube correlate well with experiment,
as shown for Mach numbers up to 0.3. Due to the Mach limitation of the standard 19s
LB model used in our study, our simulations with Ma= 0.5 encounter numerical insta-
bility. This issue certainly could be addressed by using higher order LB models such as
39-speed LBM [15, 16].

Since our impedance BC is generalized with no dependence on fluid model nor
impedance material, it should work in simulations with more general flow situations,
such as turbulent flow. Our turbulent simulation results of the NASA Langley flow-
impedance tube demonstrated its applicability. More rigorous validations will be per-
formed when realistic turbulence impedance experimental data is available.

In principal, our impedance model works for any impedance material as long as it can
be properly formulated as fractional polynomials (2.5) in z domain as proposed in [1].
However, fitting the measurement data into this fractional polynomials might be chal-
lenging because causality, reality, and passivity listed by Rienstra [9] can not be always
satisfied. Violation of these constrains could result in unphysical behavior or numerical
instability. For an impedance material which cannot be expressed in this way, a different
scheme is then required.
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[13] G. A. Brès, F. Pérot, and D. Freed, Properties of the lattice-Boltzmann method for acoustics,
13th AIAA/CEAS aeroacoustics conference, Miami, Florida, AIAA 2009-3395 (2009).

[14] Y. H. Qian, D. d’Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equa-
tion, Europhys. Lett., 17 (1992), 479-484.

[15] X. Nie, X. Shan, and H. Chen, Lattice-Boltzmann/Finite-Difference hybrid simulation of
transonic flow, 47th AIAA Aerospace Science Meeting Including The Horizons Forum and
Aerospace Exposition, Orlando, Florida, AIAA 2009-139 (2009).

[16] X. Shan, X.-F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: A way
beyond the Navier-Stokes equation, J. Fluid Mech., 550 (2006), 413-441.


