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Abstract. In this paper, we propose a strong stability-preserving predictor-corrector
(SSPC) method based on an implicit Runge-Kutta method to solve the acoustic- and
elastic-wave equations. We first transform the wave equations into a system of ordi-
nary differential equations (ODEs) and apply the local extrapolation method to dis-
cretize the spatial high-order derivatives, resulting in a system of semi-discrete ODEs.
Then we use the SSPC method based on an implicit Runge-Kutta method to solve
the semi-discrete ODEs and introduce a weighting parameter into the SSPC method.
On top of such a structure, we develop a robust numerical algorithm to effectively
suppress the numerical dispersion, which is usually caused by the discretization of
wave equations when coarse grids are used or geological models have large velocity
contrasts between adjacent layers. Meanwhile, we investigate the performance of the
SSPC method including numerical errors and convergence rate, numerical dispersion,
and stability criteria with different choices of the weighting parameter to solve 1-D
and 2-D acoustic- and elastic-wave equations. When the SSPC is applied to seismic
simulations, the computational efficiency is also investigated by comparing the SSPC,
the fourth-order Lax-Wendroff correction (LWC) method, and the staggered-grid (SG)
finite difference method. Comparisons of synthetic waveforms computed by the SSPC
and analytic solutions for acoustic and elastic models are given to illustrate the accu-
racy and the validity of the SSPC method. Furthermore, several numerical experiments
are conducted for the geological models including a 2-D homogeneous transversely
isotropic (TI) medium, a two-layer elastic model, and the 2-D SEG/EAGE salt model.
The results show that the SSPC can be used as a practical tool for large-scale seismic
simulation because of its effectiveness in suppressing numerical dispersion even in the
situations such as coarse grids, strong interfaces, or high frequencies.
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1 Introduction

The development of good numerical methods is always important for both forward mod-
eling and inverse problems (e.g. reverse time migration in exploration geophysics). Many
numerical methods have been developed and widely applied in seismology. The Finite
difference (FD) method such as compact FD methods (e.g. [5, 9, 16, 24]) and staggered-
grid FD methods [8, 26] are widely used because of their fast speed and low computa-
tional memory for the same grid-point number, but they suffer from serious numerical
dispersion when too coarse grids are chosen or too few samples per wavelength are used.
The finite-element method (FEM) [4,21,25,27] is a variational method which can flexibly
handle variable boundary conditions with complex topography, but it requires solving
large-scale linear algebraic equations at each step of time advancing which leads to large
amounts of direct-access memory and computational time. The spectral method has a
good property of exponential convergence rate by introducing a global basis. How-
ever, it requires the fast Fourier transform (FFT) which is time consuming, and it is
also affected by numerical dispersion in time [13, 14, 29]. The spectral element method
(SEM) [13,14,17,18] solves the wave equations in a framework of variational method and
introduces a high accuracy of spectral techniques. The SEM inherits the advantages of
both the FEM and spectral method for its exponential convergence rate and high accu-
racy. Although the SEM uses some diagonalizing skills to reduce the bandwidth of its
mass matrix, it still needs to solve a system of linear algebraic equations at each time
step, resulting in costly calculation time.

Many researchers have concerned with reducing the numerical dispersion in wave-
field modeling especially when coarse grids are used or models have large velocity con-
trasts [2,7,20,28,33,34]. Roughly speaking, numerical dispersion is actually an unphysical
waves caused by the discretization of the wave equations in which the numerical wave-
velocity depends on spatial and time increments, and frequency. This unphysical wave
oscillation affects our recognition of seismic-wave propagation. In some extend, high-
order finite difference methods can reduce the numerical dispersion, but they usually
involve more grid points in a spatial direction, resulting in both the difficulty of artifi-
cial boundary treatments and reducing the efficiency for parallel calculations. The flux-
corrected transport (FCT) technique was proposed to eliminate the numerical dispersion,
but it cannot fully recover the lost resolution when too coarse grids are used [7,28]. To ef-
fectively suppress the numerical dispersion to solve acoustic- and elastic-wave equations,
the so-called ”nearly analytic discrete method (NADM)” and its improved versions have
been developed in recent years by Yang et al. (e.g. [3, 29–31]). Owing to the validity of
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these methods in decreasing the numerical dispersion even for coarse grids, these meth-
ods can greatly reduce computational time and save memory when the coarser grids are
used.

Improving the stability or the maximum Courant number of numerical methods is
also attractive as it can effectively save CPU time in seismic modeling especially for high
dimensional cases. The implicit methods are the natural choice for their promising the-
oretical stability. However, when implicit methods are used, we usually need to solve a
system of large-scale linear algebraic equations at each time step, resulting in requiring
memory space and computational time. In order to avoid solving the large-scale linear
algebraic equations, the explicit techniques such as the predictor-corrector skills are de-
veloped to change the implicit method into an explicit scheme, which may not only avoid
solving linear equations, but also inherit a good stability property of the implicit scheme.

In this paper we propose a strong stability-preserving predictor-corrector method
(SSPC) to suppress the numerical dispersion caused by discretizing wave equations. The
method follows the three steps: (1) the wave equation is transformed into a system of
ordinary differential equations (ODEs); (2) a local interpolation method is used to dis-
cretize the spatial differential operators on the right hand of the ODEs so that we obtain
a semi-discrete ODEs with respect to time, and (3) an implicit Runge-Kutta method asso-
ciated with a strong stability-preserving predictor-corrector method is used to solve the
semi-discrete ODEs. A systematic study of the theoretical and numerical aspects of the
SSPC is carried out to include the study of errors, stability criteria for different weights,
numerical dispersion, and computational efficiency. We also extend the SSPC method
to anisotropic media. Numerical results using the SEG/EAGE salt model show that the
SSPC can effectively suppress the numerical dispersion even for these cases of coarse
grids, high frequency, and large velocity contrasts between adjacent layers. In addition,
we show that the SSPC can significantly reduce the computational time and save mem-
ory.

2 Strong stability-preserving predictor-corrector method

2.1 Transform of wave equation

In 2-D heterogeneous media, the seismic wave equations can be written as

ρ
∂2U

∂t2
=∇·σ+ f , (2.1a)

σ=C : ε, (2.1b)

ε=
1

2
[∇U+(∇U)T], (2.1c)

where ρ denotes the density, U =(u1,u2,u3)
T

is the displacement vector, σ and ε are the
second-order symmetric stress and strain tensors, respectively, C is the fourth-order stiff-
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ness tensor, and f = ( f1, f2, f3)
T

is the external source force. We can rewrite Eq. (2.1) as
follows

ρ
∂2U

∂t2
=D ·U+ f , (2.2)

where D is a second-order partial differential operator. For example, for the 2-D homo-
geneous acoustic equation, the operator D is defined by

D= c2

(

∂2

∂x2
+

∂2

∂z2

)

,

in which c denotes the acoustic wave velocity. Let

W=
∂U

∂t
=

(

∂u1

∂t
,
∂u2

∂t
,
∂u3

∂t

)T

,

then Eq. (2.2) can be written as

∂U

∂t
=W, (2.3a)

∂W

∂t
=

1

ρ
D ·U+

1

ρ
f . (2.3b)

Let V=(U,W)T
, Eq. (2.3) is rewritten as

∂V

∂t
= L·V+F, (2.4)

where

L=

[

0 I
1
ρ D 0

]

, F=

(

0
1
ρ f

)

.

In homogeneous media, we can obtain the following equations from Eq. (2.4),

∂2V

∂t∂x
= L·Vx, (2.5a)

∂2V

∂t∂z
= L·Vz, (2.5b)

where Vx=∂V/∂x and Vz=∂V/∂z. Let

V=(V,Vx,Vz)
T

, F=(F,0,0)T
, L=diag(L,L,L),

then from Eqs. (2.4) and (2.5) we have the following equation

∂V

∂t
= L·V+F. (2.6)
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2.2 Formulation of the SSPC method

The first step towards solving Eq. (2.6) is to discretize the spatial operator L included
in the right-hand side of Eq. (2.6) so that a system of semi-discrete ordinary differential
equations (ODEs) with respect to time is obtained. Here, we apply the local interpolation
method [15, 30] to discretize the high-order spatial operator L, and the computational
formulae for these second- and third-order derivatives used in our present study are
listed in Appendix A. After the discretization of the spatial operator L, Eq. (2.6) becomes
a system of semi-discrete ODEs. We then use the following diagonal implicit Runge-
Kutta method [12] to solve the semi-discrete ODEs,

V
n+1

=V
n
+

∆t

2
(Kn+K

n
), (2.7a)

Kn= L(V
n
+r∆tKn)+F(tn+r∆t), (2.7b)

K
n
= L(V

n
+(1−2r)∆tKn+r∆tK

n
)+F(tn+(1−r)∆t), (2.7c)

where r=1/2−
√

3/6.

To obtain the value of V
n+1

in Eq. (2.7a), we need to compute Kn and K
n

included
in Eqs. (2.7b) and (2.7c) which are the slopes of the unknown function V at time tn+r∆t
and tn+(1−r)∆t, respectively. In another we have to sole two systems of linear alge-

braic equations of (2.7b) and (2.7c) to determine the two slopes of Kn and K
n
, which

will greatly increase the computational costs. To avoid solving two systems of linear
equations, we try to change the implicit Runge-Kutta schemes (2.7b) and (2.7c) into an
explicit algorithm using the idea of the strong stability-preserving m-step Runge-Kutta
method [22, 23] which is actually a m-step predictor-corrector method. The details are
described below. We can transform Eq. (2.7b) into the m-step explicit Runge-Kutta algo-
rithm or the so-called m-step predictor-corrector method as follows

K(0)= L V
(n)

, (2.8a)

K(i)=
i−1

∑
k=0

(

αi,jK
(k)+r∆tβi,j L(K

(k))
)

, αi,j ≥0, i=1,2,··· ,m, (2.8b)

Kn =K(m)+F(tn+r∆t), (2.8c)

where these parameters αi,j ≥0 satisfy the following consistency condition

i−1

∑
k=0

αi,j =1. (2.9)

Meanwhile, Gottlieb et al. [10] conclude that the m-step Runge-Kutta method is a strong
stability-preserving (SSP) scheme when the coefficients of the scheme satisfy the follow-
ing nonnegative conditions

βi,j ≥0 for all i, j.
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In the present study, we choose m=2 and other parameters in Eq. (2.8) are chosen as
α1,0 = 1, β1,0 = 1, α2,0 = η, α2,1 = 1−η, β2,0 = 0, β2,1 = 1 where η ∈ [0,1]. Under the case of
our consideration, the two-step predictor-corrector Runge-Kutta method (2.8) is a strong
stability-preserving (SSP) scheme to solve seismic wave equation (2.6). We will confirm
this statement in the later sections.

Obviously, the SSP predictor-corrector (SSPC) method (2.8) includes one prediction
step (2.8a) and two correction steps (2.8b). Using Eqs. (2.8a)-(2.8c), we can explicitly
compute the slope Kn

i,j in Eq. (2.7b).

Next, we transform Eq. (2.7c) into an explicit algorithm to compute another slope K
n
.

We first define W
n
=V

n
+(1−2r)∆tKn , then Eq. (2.7c) can be rewritten as

K
n
= L(W

n
+r∆tK

n
)+F(tn+(1−r)∆t). (2.10)

Similar to Eq. (2.7b), we can treat with the implicit equation (2.10) or (2.7c) to obtain the
two-step predictor-corrector scheme with a parameter η as follows

K
(0)

= LW
(n)

, (2.11a)

K
(i)
=

i−1

∑
m=0

(

αi,jK
(m)

+r∆tβi,j L(K
(m)

)
)

, αi,j ≥0, i=1,2, (2.11b)

K
n
=K

(2)
+F(tn+(1−r)∆t), (2.11c)

where the coefficients in Eq. (2.11) are the same as those in Eq. (2.8). Combining Eq. (2.7a)
with Eqs. (2.8) and (2.11), we obtain the explicit SSPC method and can compute the value

of V
n+1

at the (n+1) time step.
After the analysis of the structure of the SSPC method, we find that the SSPC degen-

erates to the IRK-DSM [31] when the parameter η = 1 in Eqs. (2.8) and (2.11). It means
that the IRK-DSM is a special case of the SSPC method. In other words, the SSPC is an
extension of the IRK-DSM. When the parameter η in Eqs. (2.8) and (2.11) varies between
0 and 1, the SSPC may have different stability properties which will be investigated in
the late sections.

3 Numerical errors and convergence rate

To illustrate the convergence rate of the SSPC, we choose the following 2-D initial value
problem:

∂2u

∂x2
+

∂2u

∂z2
=

1

c2

∂2u

∂t2
, (3.1a)

u(0,x,z)=cos

(

−2π f0

c
xcosθ0−

2π f0

c
zsinθ0

)

, (3.1b)

∂u(0,x,z)

∂t
=−2π f0 sin

(

−2π f0

c
xcosθ0−

2π f0

c
zsinθ0

)

, (3.1c)
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where c is the velocity of the plane wave, θ0 the incident angle at time t=0, f0 the peak
frequency. The exact solution of this initial value problem (3.1) is:

u(t,x,z)=cos
[

2π f0

(

t− x

c
cosθ0−

z

c
sinθ0

)]

. (3.2)

In the following example, we choose the weighting parameter η = 0.7, the computa-
tional region of 0< x≤ 20 km and 0< z≤ 20 km, the frequency f0 = 15 Hz, the acoustic
wave velocity c = 4000 m/sec, the incident angle θ0 = π/4, and the wave propagation
time T=1sec. For the same Courant number α=0.1 (defined by α= c∆t/∆x), the errors
between the numerical solution uh computed by the SSPC and the exact solution u are
measured in the following L∞-norm [6]

EL∞ =‖uh−u‖L∞ =h2max
i,j

|un
i,j−u(tn,xi,zj)|, (3.3)

where un
i,j is the numerical solution and u(tn,xi,zj) is the analytic solution of the initial

value problem (3.1). The convergence rate [6] is defined as

OL∞ = log

(

Es
L∞

Es−1
L∞

)

/

log

(

hs

hs−1

)

. (3.4)

In Table 1, the first column is the spatial increment, the second column is the nu-
merical errors EL∞ in L∞-norm, and the third column shows the convergence rate OL∞

of the SSPC for different spatial and temporal increments. We see from Table 1 that the
numerical convergence rate of the SSPC increases as dx decreases and is about 3. The
convergence rate is dependent mainly on the choice of spatial interval dx or h as defined
in Eq. (3.4) (as well as on errors defined in Eq. (3.3)).

Table 1: Convergence rate of the SSPC for the weight parameter of η=0.7.

∆x EL∞ OL∞

8.00E-2 1.0509E-002 -
4.00E-2 1.6871E-003 2.6390
2.00E-2 2.3269E-004 2.8581
1.00E-2 2.9205E-005 2.9941

4 Stability criteria

The temporal increment, spatial increment, and the wave velocity must satisfy certain
relationship to keep numerical calculation stable, which is known as the C-F-L condition.
In this section, we derive the stability criteria of the SSPC for 1-D and 2-D cases following
the Fourier analysis method of Richtmyer and Morton [19], and Guan and Lu [11].
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Figure 1: The maximal Courant number of the SSPC for both 1-D and 2-D acoustic cases, which the weight
parameter varies from η=0.0 to η=1.0.

Through a series of mathematical operations (see Appendix B), we obtain the stability
conditions of the SSPC for 1-D and 2-D acoustic homogeneous cases as the weighting
parameter varies in [0,1], which are shown in Fig. 1. In Fig. 1, the Courant number α
defined by α= c∆t/∆x increases from 0.626 to 0.968 for the 1-D case and from 0.556 to
0.86 for the 2-D acoustic case as the parameter η changes from 0 to 1. Comparing Fig. 1
and Fig. 1 presented in Chen et al. [3] shows that the stability of the SSPC has stronger
stability than that of the weighted Runge-Kutta method recently suggested by Chen et
al. [3]. Table 2 gives different Courant numbers corresponding to different parameter
values of η. It illustrates that for different parameter values of η the SSPC has different
stability conditions. For example, when η = 0.7, the stability conditions of the SSPC for
the acoustic case under the condition of ∆x=∆z are

∆t≤αmax
∆x

c
≈0.775

∆x

c
(4.1)

for the 1-D acoustic case, and

∆t≤αmax
∆x

c
≈0.609

∆x

c
(4.2)

for the 2-D acoustic case, where c denotes the acoustic velocity, ∆t the time increment,
and ∆x and ∆z are the space increments in the x- and z-directions, respectively. The
maximum value αmax of the Courant number α is given in Appendix B.

Table 2: Approximate maximum Courant numbers of the SSPC for different weight parameters.

η 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1D 0.626 0.640 0.655 0.672 0.691 0.714 0.741 0.775 0.821 0.884 0.968
2D 0.556 0.568 0.582 0.597 0.614 0.634 0.658 0.689 0.729 0.786 0.860



1014 D. H. Yang, N. Wang and E. Liu / Commun. Comput. Phys., 12 (2012), pp. 1006-1032

The stability condition for heterogeneous media cannot be directly determined but
could be approximated using a local homogeneous method. Our conjecture is that Eqs. (4.1)
and (4.2) are approximately correct for heterogeneous media if the maximum value of the
wave velocity c is used.

For the 2-D elastic-wave case that the P- and S-waves couple together with each other,
it is difficult to analytically study the stability of the SSPC. However, using many numeri-
cal experiments we obtain the approximate stability condition of the SSPC ∆t≤0.609h/vp

with the P-wave velocity vpunder the condition of ∆x=∆z=h when the parameter η=0.7.
It should be mentioned that the quasi P-wave (qP-wave) velocity varies with elastic-wave
propagation directions in anisotropic media, so the velocity vp in the stability condition
should be equal to the maximum qP-wave velocity for the elastic anisotropic case.

5 Numerical dispersion and efficiency

As we know, many numerical methods suffer from numerical dispersion when coarse
grids are used or too few samples per wavelength are used, resulting in the limitation
of their applications. Sei and Symes [20] observed that the higher the order of the FD
schemes, the less numerical dispersion is experienced. However merely by increasing
the accuracy of methods cannot effectively suppress the numerical dispersion when too
coarse grids are used or models have large velocity contrasts [29]. Another way to deal
with the numerical dispersion is to use fine grids, but it will definitely increase computa-
tional time and memory. Therefore, to investigate the effect of the numerical dispersion
on seismic propagation for different computational parameters is important when a new
numerical method is developed and applied to practical seismic wave modeling.

To understand the behavior of the SSPC in suppressing the numerical dispersion,
following the methods in the cited references [3,5,29], we derive the numerical dispersion
relationship of the SSPC for the 1-D case and compare its numerical results against those
of the high-order LWC methods. We also derive 2-D numerical dispersion relationships
of the SSPC for different propagation directions to investigate its numerical dispersion
anisotropy. The derivation of numerical dispersion relation of the SSPC for both 1-D and
2-D cases are given in detail in Appendix C.

Fig. 2 shows the numerical dispersion curves for the 1-D acoustic case, computed
by the SSPC with parameter η = 0.7 (Fig. 2(a)), fourth-order LWC (Fig. 2(b)), and the
eighth-order LWC method (Fig. 2(c)), respectively. From Fig. 2, we can see that for the
same Courant number, the SSPC has the least numerical dispersion error compared to
the high-order LWC methods. For example, when the Courant number α= c∆t/∆x=0.5,
the maximal deviation of the numerical velocity of the SSPC from the real wave velocity
is no greater than 3%, whereas the maximal numerical dispersion errors of the high-order
LWC methods are about 15% for the same Courant number.

Fig. 3 shows the numerical dispersion curves of the SSPC (Figs. 3(a) and 3(c)) and
the fourth-order staggered-grid FD method (SG) (Figs. 3(b) and 3(d)) for the 2-D case,
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kh

R 

(a)

kh

R

(b)

R

kh

(c)

Figure 2: The ratio R of the numerical ve-
locity to the phase velocity versus wave-
number θ = k∆x for (a) the SSPC with
the weight value η = 0.7, (b) the fourth-
order LWC method, and (c) the eighth-
order LWC method, where four lines cor-
respond to α= 0.1, 0.3, 0.5, and αmax, re-
spectively.

where four lines correspond to different propagation angles of υ= 0◦, 15◦, 30◦, and 45◦,
and Figs. 3(a)-3(b) and Figs. 3(c)-3(d) correspond to the Courant numbers α = 0.6 and
α=0.1, respectively. In Fig. 3, for the Courant number of α=0.6, the maximum dispersion
error of the SSPC with the weighting parameter η = 0.7 is no more than 10%, whereas
the maximum dispersion error of the SG method reaches about 20%. When α= 0.1, the
maximal deviation error for the SSPC with η=0.1 is no greater than 5% and the maximum
dispersion error of the SG method is about 25%. These numerical results demonstrate that
the SSPC has smaller numerical dispersion errors than the fourth-order SG method for
different weighting parameters and the Courant numbers. Meanwhile, from Figs. 3(a)
and 3(c) we can observe that the numerical dispersion curves of the SSPC in different
propagation directions are close to each other. It means that the SSPC has small numerical
dispersion anisotropy. In contrast, from Figs. 3(b) and 3(d) we can see that the difference
of numerical dispersion in different propagation directions is very large, implying that
fourth-order SG has larger numerical dispersion anisotropy than that of the SSPC.

In the following, we investigate the numerical dispersion and computational effi-
ciency of the SSPC through wave-field modeling, and compare our method with the
fourth-order LWC and the fourth-order SG method. Under this case of our considera-
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(a) (b)

(c) (d)

Figure 3: Grid-dispersion curves showing the dependence on the sampling rate Sp defined by Sp =∆x/λ, ∆x
being the grid spacing and λ the wavelength. The curves correspond to 2-D acoustic wave propagation in 4
azimuths of υ=0◦, 15◦, 30◦, 45◦. Figs. 3(a) and 3(b) show the curves for the Courant number α=0.1, computed
by the SSPC with weight parameter η=0.1 and the fourth-order SG, respectively. Analogously, Figures 3c and
3d show the curves computed by the SSPC with η=0.7 and the fourth-order SG for the Courant number α=0.6.

tion, we choose the following acoustic wave equation

∂2u

∂t2
= c0

2

(

∂2u

∂x2
+

∂2u

∂z2

)

+ f , (5.1)

where the force source f which is located at the center of the computational domain, is
a Ricker wavelet f = sin(2π f0)exp(−4π2 f0

2t2/16) [32] with a peak frequency of f0 = 20
Hz. The acoustic velocity is c0 =3000 m/sec and the computational domain is 0< x≤14
km and 0< z≤14 km.

Fig. 4 shows acoustic wave-field displacement snapshots at t= 2sec on a coarse grid
(∆x = ∆z = 70m) corresponding to the grid points of G = c0/( f0 ·∆x) = 2.14 per wave-
length, generated by the SSPC with η =0.7 (Fig. 4(a)), fourth-order LWC (Fig. 4(b)), and
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the fourth-order SG (Fig. 4(c)), respectively. Note that the source is an explosive source
and excites equal energy in all directions and also in all examples in this paper, wave-field
displacements are shown unless stated otherwise. In Fig. 4, the wave fronts of seismic
propagation simulated by the three methods at the same time are nearly identical. How-
ever, Fig. 4(a) generated by the SSPC shows no visible numerical dispersion on the coarse
grid (∆x=∆z=70m), whereas Figs. 4(b) and 4(c) generated by the fourth-order LWC and
fourth-order SG methods show serious numerical dispersion. To eliminate the numer-
ical dispersion caused by the fourth-order LWC and fourth-order SG methods, we use
the finer grids. For instance, for these parameters used in the numerical experiment we
have to use the fine grids of ∆x=∆z=10m (corresponding to G≈15) for the fourth-order
LWC and ∆x =∆z= 8m (G≈ 18.8) for the fourth-order SG method to eliminate the nu-
merical dispersion. Fig. 5 shows the wave-field snapshots at t=2sec on the fine grids for
the same courant number α= 0.21, generated by the fourth-order LWC (∆x=∆z= 10m,
G≈15, Fig. 5(a)) and the fourth-order SG (∆x=∆z=8m, G≈18.8, Fig. 5(b)).

Comparing Fig. 4(a) with Fig. 5, we can see that the SSPC on the coarse grid (∆x =
∆z = 70m) can provide the same numerical accuracy as those of the fourth-order LWC
and the fourth-order SG method on the fine grids. Therefore, the computational cost of
the SSPC on the coarse grid is much less than those of the other two methods on the fine
grids. For example, it took the SSPC about 1.65 min to generate Fig. 4(a), whereas fourth-
order LWC method and the fourth-order SG method took about 116.2 min and 47.3 min
to generate Figs. 5(a) and 5(b), respectively. It means that the computational speed of the
SSPC is roughly 70 times of the fourth-order LWC and about 29 times of the fourth-order
SG method to achieve the same accuracy of the SSPC. The computations of Figs. 4 and 5
were performed on a PC with 2GB memory and 2.66 GHz CPU.

Meanwhile, the memory required for computation in the SSPC is also different from
those of the fourth-order LWC and the fourth-order SG. The SSPC needs twenty-four
arrays to store wave displacements un+1

i,j and un
i,j, the particle-velocity wn+1

ij and wn
ij, and

their gradients at each spatial grid point, and the number of grid points for each array
is 201×201 on a coarse grid for generating Fig. 4(a). The fourth-order LWC needs only
three arrays to store the wave displacements un−1

i,j , un
i,j, and un+1

i,j at each grid point, and

the fourth-order SG method needs five arrays to store both the velocity and two stresses
at each grid point, but the number of grid points on the fine grid for generating Figs. 5(a)
and 5(b) increases to 1401×1401 for the fourth-order LWC method and to 1751×1751 for
the fourth-order SG, respectively. It indicates that the memory of the SSPC requires about
16% of the fourth-order LWC and 6% of the fourth-order SG.

To further demonstrate the computational accuracy and the validity of the SSPC, we
compare the waveforms generated by the SSPC with the weighting parameter η = 0.7
and the Cagniard-de Hoop method in Aki and Richards [1] for acoustic wave modeling.
In the numerical experiment, we choose the wave velocity c = 4000 m/sec, the spatial
increment is ∆x=∆z=60m, and the source time function is

f =−5.76 f0
2[1−16(0.6 f0t−1)2]exp[−8(0.6 f0t−1)2]. (5.2)
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(a) (b)
 

(c)

Figure 4: Comparison of snapshots of seis-
mic wave-fields at time 2 sec on the coarse
grid (∆x=∆z=70m), generated by (a) the
SSPC, (b) the fourth-order LWC, and (c)
the fourth-order SG, respectively.

(a) (b)

Figure 5: Snapshots of seismic wave fields at time 2 sec on the fine grids, generated by (a) the fourth-order
LWC (∆x=∆z=10m) and (b) the fourth-order SG (∆x=∆z=8m), respectively.

The source is located at the center of the computational domain with a central frequency
f0=15 Hz. The receiver is 3km away from the source along the z-axis.

Fig. 6 shows the waveforms of the analytic solution (solid lines) and the numerical
solutions on the coarse grid (∆x=∆z=60m), generated by the SSPC, fourth-order LWC,
and the fourth-order SG, respectively. Fig 6(a) shows that the waveforms calculated by
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(a) (b)

(c)

Figure 6: Comparison of numerical wave-
forms on the coarse grid (∆x=∆z=60m)
with the analytic solution (solid line) for
the homogenous medium case, generated
by (a) the SSPC, (b) the fourth-order
LWC method, and (c) the fourth-order
SG. Especially, Fig. 6(a) shows the ex-
cellent coincidence between the numeri-
cal solution (dotted line) and the exact
analytic solution (solid line).

the SSPC (dotted line) and the Cagniard-de Hoop method (solid line) are in good overall
agreement even on the coarse grid (∆x=∆z= 60m). In contrast, the results in Figs. 6(b)
and 6(c), calculated by the fourth-order LWC and the SG methods, respectively, show se-
rious numerical dispersion following the peak wave as contrasted to the analytic solution
(solid line). It illustrates that the SSPC is accurate in wave-field modeling for the acoustic
propagation modeling and it can provide very accurate results even when coarse grids
are chosen.

To test the validity of the SSPC for multi-layer medium models with large velocity
contrasts in seismic propagation modeling, we first choose a two-layer acoustic model
with the velocity 2.5 km/sec in the upper layer medium and 4.5 km/sec in the lower
layer medium. The computational region is 0< x≤4 km and 0< z≤4 km, and the depth
of the horizontal inner interface is at z=2.2 km. The source is the same as that used in the
acoustic model, located at the coordinate (2 km, 1.6 km) with a peak frequency of f0=40
Hz. A receiver is located at R(2.4 km, 1.2 km). The spatial increment is 10 m and the
time step is ∆t=1×10−4sec. Fig. 7 shows the comparison of waveforms computed by the
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Figure 7: Comparison of the numerical result (dotted line) computed by the SSPC for the higher frequency
( f0=40Hz) on the medium grid (∆x=∆z=10m) with the analytic solution (solid line) for the two-layer acoustic
model with a strong interface.

SSPC with the weighting parameter η = 0.7 and the analytic solution computed by the
Cagniard-de Hoop method [1]. From Fig. 7 we can see that the waveform (dotted line)
generated by the SSPC is nearly the same as the analytic solution (solid line).

6 Numerical examples

To test the accuracy and validity of the SSPC in modeling wave propagation for complex
geological cases, in this section, we use the SSPC to model seismic wave propagating in
three different media including a transversely isotropic medium with the vertical symme-
try axis (VTI), two-layer elastic medium, and a heterogeneous medium. For comparison,
we present these wavefield results of the high-order LWC methods such as fourth-order
and eighth-order LWC methods. Meanwhile, in order to confirm that the SSPC is an im-
proved version of our previous method, we also show wavefield snapshots computed by
the IRK-DSK [31].

2D homogeneous VTI model

In this example, we consider the following elastic wave equation in a 2D homogeneous
VTI medium:































ρ
∂2u1

∂t2
= c11

∂2u1

∂x2
+(c13+c44)

∂2u3

∂x∂z
+c44

∂2u1

∂z2
+ f1,

ρ
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∂2u2
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(6.1)
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where u1, u2, and u3 denote the displacements in the x-, y-, and z-directions, respectively.
c11, c13, c33, c44, and c66 are elastic constants, ρ the medium density, f1, f2, and f3 the force
source components in the x-, y-, and z-directions, respectively.

In this experiment, We choose the elastic constants c11 =32.5GPa, c13 =7.5GPa, c33 =
19.5GPa, c44 =6.5GPa, and c66 =9.75GPa, the density ρ=2 g/cm3. The explosive source
is a Ricker wavelet with a peak frequency of f0=15Hz and is located at the center of the

(a)

(b)

(c)

Figure 8: Wave-field snapshots for the three com-
ponents of the displacement at time t = 2.5sec in
the VTI medium, generated by the SSPC, for (a)
u1 component, (b) u2 component, and (c) u3 com-
ponent.

(a)

(b)

(c)

Figure 9: Wave-field snapshots for the three com-
ponents at time t=2.5sec in the VTI medium, gen-
erated by the fourth-order LWC, for (a) u1 compo-
nent, (b) u2 component, and (c) u3 component.
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computational domain. The source function is the same as in Eq. (5.2). The spatial incre-
ments are ∆x=∆z=60m, resulting in the number of grid points per minimal wavelength
is about G = 2, which is a minimal spatial sampling point number in a wavelength in
numerical simulations. The grid points is 301×301, corresponding to the computational
domain of 0< x≤18km and 0< z≤18km.

Figs. 8 and 9 are the wave-field snapshots for the three displacement-components
at the time t = 2.5sec, generated by the SSPC with the weight value of η = 0.1 (Fig. 8)
and the fourth-order LWC (Fig. 9), respectively. From Figs. 8 and 9, we can see that
the snapshots generated by the SSPC are very clear and no visible numerical disper-
sion, whereas the fourth-order LWC suffers from serious numerical dispersion on the
coarse grids (∆x=∆z=60m) (see Fig. 9). We can also see the difference of arrival time of
the quasi-SV (qSV) wave and quasi-SH (qSH) wave through the comparison of the qSV
waves shown in Figs. 8(a) or 8(c) and the qSH wave shown in Fig. 8(b). To observe more
clearly the difference of arrival time of the shear waves shown in different components of
the wave displacement, we present a snapshot shown in Fig. 10, which is actually a stack
of Fig. 8(b) and Fig. 8(c). From Fig. 10 we see clear shear wave splitting — differences in
wave speeds between qSH and qSV waves.

Figure 10: A stack snapshot of the quasi-SH wave-field shown in Fig. 8(b) and the quasi-SV wave-field shown
in Fig. 8(c). Clear shear-wave splitting in the 2-D VTI medium is observed from Fig. 10 through using the stack
of two wave fields of u2 and u3 components.

Two-layer elastic model

In this experiment, we first choose a two-layer medium model with a strong interface to
test the validity of the SSPC for the elastic case through comparing the waveforms com-
puted by the SSPC and the eighth-order LWC used widely in seismic simulations. The
computational region is 0< x≤20 km and 0< z≤20 km, and the depth of the horizontal
inner interface is z = 10.8 km. The P- and S-wave velocities are 4.014 km/s and 2.472
km/s in the upper layer, and 5.06 km/s and 3.162 km/s in the lower layer, respectively.
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(a) (b)

Figure 11: Comparison of waveforms in the two-layer elastic medium, generated by the SSPC and the eighth-
order LWC on the fine grid (∆x=∆z=10m) for (a) the horizontal component u1 and (b) the vertical component
u3.

The source is located at the coordinate (10 km, 9.2km) and its time variable function is
the same as in Eq. (5.2).

Fig. 11 are the waveforms of the horizontal component (u1) (Fig. 11(a)) and vertical
component (u3) (Fig. 11(b)) at receiver R(7.6 km, 9.2km), generated by the SSPC and the
eighth-order LWC method on the fine grid (∆x=∆z=10m). Fig. 11 shows that the wave-
forms calculated by the SSPC and the eighth-order LWC method are in good agreement.
Because Dablain [5] in his study has demonstrated that the eighth-order LWC on fine
grids can provide accurate numerical results which are similar to the analytic solution
and equivalent with the pseudospectral method. It implies that the SSPC can provide
accurate seismic modeling result for the two-layer elastic case. In the experiment, the
absorbing boundary condition presented by Yang et al. [28] is used.

Next, we investigate the effectiveness of the SSPC in suppressing the numerical dis-
persion for the two-layer elastic model with large velocity contrasts between adjacent
layers when using large space steps, and compare SSPC against the high-order LWC [5]
and the IRK-DSM [31]. In this example, the Lamé constants and density in the upper
layer medium are λ1 = 5.0GPa, µ1 = 8.0GPa, and ρ1 = 1.8g/cm3, resulting in the P- and
S-wave velocities of 3.73 km/s and 2.11 km/s, and the Lamé constants and density in the
lower layer medium are λ2=15.0GPa, µ2=25.0GPa, and ρ2=2.0g/cm3, corresponding to
the P- and S-wave velocities of 5.70 km/s and 3.54 km/s. The spatial increments and the
time step are ∆x=∆z=40m and ∆t=2×10−3sec, respectively. The source function is the
same as in Eq. (5.2) and a peak frequency of the source is f0=18Hz. The other parameters
such as the computational region and locations of source and horizontal inner interface
are the same as those used in the previous two-layer elastic model.

Figs. 12 to 14 show the wave-field snapshots for the horizontal displacements (u1)
(Figs. 12(a), 13(a), 14(a)) and the vertical displacements (u3) (Figs. 12(b), 13(b), 14(b)) at
time t=2 sec for the two-layer elastic medium model with velocity contrasts of 1.68 times
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(a) (b)
 

Figure 12: Snapshots of elastic-wave fields at time 2 sec on a coarse gird (∆x=∆z= 40m) for the two-layer
elastic model, generated by the SSPC for (a) the horizontal component u1 and (b) the vertical component u3.

(a) (b)

Figure 13: Snapshots of elastic-wave fields at time 2 sec on a coarse gird (∆x=∆z=40m) for the two-layer elastic
model, generated by the IRK-DSM [31] for (a) the horizontal component u1 and (b) the vertical component
u3.

(a) (b)

Figure 14: Snapshots of elastic-wave fields at time 2 sec on a coarse gird (∆x=∆z= 40m) for the two-layer
elastic model, generated by the fourth-order LWC [5] for (a) the horizontal component u1 and (b) the vertical
component u3.
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between upper and lower layers, generated by the SSPC with the weight value of η=0.7,
IRK-DSM, and the fourth-order LWC on the grids of ∆x=∆z= 40m. From Fig. 12 com-
puted by the SSPC, we can observe that numerous phases such as direct P-wave, direct
S-wave, and their reflected, transmitted, and converted phases from the inner interface
are very clear, and shows no visible numerical dispersions. However, the snapshots gen-
erated by the IRK-DSM (Fig. 13) show small numerical dispersion, and the fourth-order
LWC method suffers from serious numerical dispersion (Fig. 14). It demonstrates that the
SSPC method is very effective in suppressing numerical dispersion for two-layer elastic
model with large velocity contrasts even on the grids (∆x=∆z=40m). The comparison
of Figs. 12 and 13 also shows that the SSPC further increases the ability of suppressing
the numerical dispersion as compared with the original IRK-DSM [31]. In other words, it
confirms that the SSPC is in fact an improved version or an extension of the IRK-DSM.

Figure 15: The SEG/EAGE salt model with the minimum acoustic velocity of 1500 m/s and maximum velocity
of 4482 m/s.

2-D SEG/EAGE salt-dome model

As a last example we choose the 2-D standard SEG/EAGE salt model shown in Fig. 15 for
the case of the spatial steps ∆x=∆z= 10m, which shows the acoustic-velocity structure
and the velocity varies from 1500 m/s to 4482 m/s. The number of grid points is 401×201,
different spatial and time increments, given in Table 3, are chosen to test the efficiency
of the SSPC with the weight value η = 0.1 for the SEG model. The source with a peak
frequency of f0 = 20Hz is located on the surface, and the time variation of the source
function is the same as in Eq. (5.2).

Table 3: CPU time of the SSPC for different spatial and temporal increments (∆x = ∆z = h), and different
computational domains. Synthetic seismograms are shown in Fig. 16.

h (m) ∆t(sec) Computational domain Record length (sec) CPU time (min)
20 0.0024 0≤∆x≤8km, 0≤∆z≤4km 4 13
50 0.005 0≤∆x≤20km, 0≤∆z≤10km 9 14

200 0.024 0≤∆x≤80km, 0≤∆z≤40km 35 11.7
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(a) ∆x=∆z=20m and ∆t=0.0024 sec (b) ∆x=∆z=50m and ∆t=0.005 sec

(c) ∆x=∆z=200m and ∆t=0.024 sec

Figure 16: Synthetic seismograms for
different spatial increments and dif-
ferent spatial and temporal steps for
the SEG/EAGE salt model, generated
by the SSPC with the weight value
of η = 0.1. The spatial parameters
used in this example and computa-
tional CPU time are listed in Table 2.

Fig. 16 shows the synthetic records on the surface, generated by the SSPC for different
model sizes and grid intervals (Table 3), using the decoupling 2-time absorbing boundary
condition of Yang et al. [28]. The seismograms are all clean and have no visible numerical
dispersion even for coarser grid spacing of up to 200 m, thus confirming that the SSPC
produces no visible numerical dispersion for large spatial intervals and time increments
in heterogeneous media. The numerical results from the SEG/EAGE salt model also
show that the SSPC has good performance even if the velocity varies from 1500 m/s to
4482 m/s. On a PC with 2GB memory and 2.66 GHz CPU, Figs. 16(a), 16(b), and 16(c)
generated by the SSPC, which correspond to computational domains of 8 km×4 km, 20
km×10 km and 80 km×40 km (Table 3), consume rough times of 13 min, 14 min and
11.7 min, respectively, so that the proposed method can be used to simulate large-scale
seismic modeling using large spatial and time steps.

Besides, in the experiment for the SEG/EAGE salt model with strong interfaces, we
find that the SSPC performs better in suppressing the numerical dispersion when the
weight parameter η is relatively small. For example, when the parameter η is equal to or
smaller than 0.1 the SSPC is quite effective.
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7 Discussion and conclusions

In this paper, we propose a strong stability-preserving predictor-corrector method (SSPC)
to solve the acoustic- and elastic- wave equations, which is based on both the implicit
Runge-Kutta method and a strong stability-preserving explicit scheme. Computations of
numerical errors for different spatial steps illustrate that the convergence rate of SSPC is
about 3. The accuracy and validity of the SSPC are confirmed through comparisons of nu-
merical results computed by the SSPC and the analytic results computed by the Cagniard-
de Hoop method for the acoustic-wave model and the two-layer acoustic model with a
strong interface. Meanwhile, the comparison of the elastic waveforms, computed by the
SSPC and the eighth-order LWC on fine grids, shows that the SSPC method can provide
accurate wavefield results for the complex elastic medium case.

Through applying the idea of the strong stability-preserving m-step Runge-Kutta
method [22, 23] to the implicit equations (2.7b) and (2.7c), we can explicitly compute

the slopes Kn
i,j and K

n
i,j using Eqs. (2.8) and (2.11). In other words, we introduce a weight

parameter η into the m-step predictor-corrector method to compute the slopes Kn
i,j and

K
n
i,j at time tn and the grid point (i, j). The introduction of the weight parameter η im-

proves the ability of suppressing the numerical dispersion as compared with the so-called
IRK-DSM [31], which is confirmed in several numerical experiments (see Figs. 12, 13).
Meanwhile, numerical dispersion analyses for 1-D and 2-D acoustic cases show that the
numerical dispersion error of the SSPC is smaller than those of the fourth-order LWC,
eighth-order LWC, and the fourth-order staggered-grid (SG) methods. Seismic model-
ing results for homogeneous and heterogeneous cases further demonstrate that the new
SSPC method has more strong ability of suppressing numerical dispersion than the high-
order FD methods such as high-order LWC and fourth-order SG methods. The SSPC can
also provide clean wave fields in anisotropic media and the difference of arrival times of
qSH- and qSV-waves in the VTI medium (see Figs. 8, 10).

Our dispersion analyses and several numerical examples, including the 2-D homo-
geneous VTI model, two-layer acoustic and elastic models, and the 2-D SEG/EAGE salt
model, show that the main advantage of the SSPC is its powerful ability in suppressing
numerical dispersion in heterogeneous and anisotropic media even when very coarse
grids are used or models have large velocity contrasts between adjacent layers. It im-
plies that the SSPC can decrease the CPU costs and reduce memory using larger spatial
grid steps and further resulting in using larger time increments under the condition of
keeping the numerical calculation stable. As shown in the acoustic wave-field model-
ing, the computational speed of the SSPC is roughly 70 times of the fourth-order LWC
and about 29 times of the fourth-order staggered-grid FD method computed on a fine
grid under the same Courant number to achieve the same accuracy of the SSPC, and the
memory of the SSPC requires only roughly 16% of the fourth-order LWC method and
about 6% of the fourth-order staggered-grid method, respectively. For its effectiveness
of suppressing numerical dispersion in anisotropic and heterogeneous media, we initiate
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complicated applications of the SSPC including large-scale wave propagation modeling,
reverse time migration, and inversion based on the wave equations.
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A Approximations of spatial differential operators

To solve Eq. (2.6), we first need to discretize the spatial differential operator L included in
Eq. (2.6) through using a difference operator. In our present study, we apply the nearly-
analytic discrete operators suggested by Yang et al. [30, 31] to approximate L. For conve-
nience, we list these approximation formulae used in the SSPC method as follows
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where the vector V is defined by V =(U,W)T
, with U and W are the displacement and

the particle-velocity, respectively. The difference operators included in Eqs. (A.1)-(A.7)
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are defined by δ2
zVn
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i,j, respectively.

B Derivation of stability criteria

1-D homogeneous case

For the 1-D case, these approximate formulae for computing high-order space derivatives
(A.1) and (A.4) can be degenerated into the following formulae
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To obtain the stability condition of the SSPC, we consider the harmonic solution of
Eq. (2.7a) with Eqs. (2.8) and (2.11) for the 1-D case. Substituting the following solution
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un

wn

∂xun

∂xwn









exp(i(kjh)), (B.3)

into Eqs. (2.7a), (2.8) and (2.11) with relations (B.1) and (B.2), we can obtain the following
equation

V
n+1

=GV
n
, (B.4)

where G is the amplification matrix.
Let G∗ denote the conjugate transpose matrix of G, following the Fourier analyses

[11, 19], we know that the SSPC with the amplification matrix G is stable if ρ(G∗ ·G)≤ 1
is satisfied. For a fixed weight parameter η = 0.7, we can obtain the following stability
condition, deriving from the condition of ρ(G∗ ·G)≤1,

α≤αmax ≤0.775, (B.5)

or

∆t≤αmax
h

c0
≈0.775

h

c0
, (B.6)

where αmax denotes the maximum Courant number that keeps the numerical calculation
stable.
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2-D homogeneous case

For the 2-D problem, we consider the case of ∆x = ∆z = h. Following the same steps
as discussed in the 1-D case, we can obtain the stability condition of the SSPC with the
weight value of η=0.7 as follows

∆t≤αmax
h

c0
≈0.609

h

c0
.

For other weight parameter (η) values, we also present some stability conditions of
the SSPC, listed in Table 2.

C Numerical dispersion relations

1-D homogeneous case

To investigate the numerical dispersion error of the SSPC, we derive the numerical dis-
persion relation of the SSPC for the 1-D case. Following the dispersion analysis meth-
ods presented in Dablain [5] and Yang et al. [29], we consider the harmonic solution of
Eq. (2.7a) with Eqs. (2.8) and (2.11) and substitute the solution

V
n
j =









u0

w0

∂xu0

∂xw0









exp[i(ωnumn∆t+kjh)] (C.1)

into Eqs. (2.7a), (2.8) and (2.11) with relations (B.1) and (B.2) to obtain the following dis-
persion equation

Det(M)=0. (C.2)

Owing to the complexity of elements of the matrix M, here we omit the detail expressions
of the matrix M.

From the dispersion relation (C.2), we can obtain the ratio of the numerical velocity
to the phase velocity c0 as follows

R=
cnum

c0
=

ωnum∆t

αθ
=

γ

αθ
, (C.3)

where α is the Courant number, θ=kh, in which k is the wave number and h=∆x, and γ=
ωnum∆t is a nonlinear function of space grid step h, seismic frequency, weight parameter
η, and the Courant number, and satisfies the dispersion equation (C.2).

2-D homogeneous case

For the 2-D case, we can obtain the dispersion equation of the SSPC under the case of
∆x=∆z= h through similar steps as in the 1-D case. Speaking in detail, considering the
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harmonic solution of Eq. (2.7a), we substitute the solution

Un
j,l =







U0

∂xU0

∂zU0






exp[i(ωnumn∆t+(kcosυ)jh)+(ksinυ)lh)] (C.4)

into Eqs. (2.7a), (2.8), and (2.11) with relations (A.1) to (A.7) to obtain the 2-D dispersion
equation. The dispersion equation for the 2-D case includes an independent variable υ
which is the angle of the plane-wave propagation with respect to the x-axis. The detail
derivation for the 2-D the dispersion equation are omitted here, and we only show the
ratio of the numerical velocity to the phase velocity R (R= cnum/c0) by solving the 2-D
dispersion equation. The dispersion curves of the SSPC are shown in Fig. 3, and we also
present the dispersion relation curves of the fourth-order SG method for comparison.
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