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Abstract. Cancer spread is a dynamical process occurring not only in time but also
in space which, for solid tumors at least, can be modeled quantitatively by reaction
and diffusion equations with a bistable behavior: tumor cell colonization happens in
a portion of tissue and propagates, but in some cases the process is stopped. Such a
cancer proliferation/extintion dynamics is obtained in many mathematical models as
a limit of complicated interacting biological fields. In this article we present a very
basic model of cancer proliferation adopting the bistable equation for a single tumor
cell dynamics. The reaction-diffusion theory is numerically and analytically studied
and then extended in order to take into account dispersal effects in cancer progression
in analogy with ecological models based on the porous medium equation. Possible
implications of this approach for explanation and prediction of tumor development on
the lines of existing studies on brain cancer progression are discussed. The potential
role of continuum models in connecting the two predominant interpretative theories
about cancer, once formalized in appropriate mathematical terms, is discussed.
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1 Introduction

The quantitative description of the form development in living beings is a central prob-
lem in Biology. The process of animal growth, or morphogenesis, occurs in Nature in a
variety of shapes and patterns which seem to have typical regularities, as pointed out
one century ago by Darcy Thompson in his classical work ”On Growth and Form” [1].
Some biological populations of fungi and amoebae appear aggregated in complicated
structures which often have a spiralling shape, but spirals of action potential are exper-
imentally observed also in cardiac cell tissues and even in neural ones [2–5]. In plants
complicated morphogenetic processes occur in the developmental process of kinetic phyl-
lotaxis [6]. Finally it’s worthwhile to notice that spiral waves appear not only in biological
systems but also in unanimated ones as the chemical reactions of Zhabotinsky-Belousov
type or the gaseous eddies in the atmosphere [4]. All of these different phenomenologies
are seen as non-equilibrium thermodynamical processes which can be subject to compli-
cated bifurcations in their dissipative dynamics [7–9] and which can be mathematically
described, provided specific technical caveats regarding the validity of the continuum hy-
pothesis, by systems of equations of Reaction-Diffusion (RD) class [4]. This type of partial
differential equations have represented historically and still represents today a proper
tool to deal with non-equilibrium chemical dynamics in fact (in particular when phe-
nomena like oscillations, waves, pattern formation and turbulence occur). Alan Turing
in the Fifties formulated an elegant theory for animal coats and morphogenesis using RD
equations [10], so it appeared plausible to extend his successful theory to cancer growth
processes whose understanding represents still today a major challenge for Biology [11].
Cancer is commonly believed to be a disease that begins at the cellular level. Its develop-
ment is related with somatic mutations which are transferred from a cell to its progeny,
bypassing controls of the immune system and being responsible then for the neoplastic
phenotype. Therefore the initiation of cancer is mainly seen as a mutation that involves
a set of regulatory genes [12], which either enhance or inhibit malignant properties.

On the other hand, tissues are relatively ordered complex structures which generate
forces due to the adhesion between cells, the adhesion between cells and the extracellular
matrix that surrounds them and the global property of the tissue itself. These interactions
together with biochemical and electrical signals, contribute to the shape of the tissue and
can even determine the cellular fate [3]. Cell-to-cell and/or tissue-to-tissue communi-
cation represent fundamental aspects which contribute to tissue organization then and
their failure can generate cancer [13, 14]. Specific substances (morphostats) analogous
to Turing morphogen fields drive this communication: their local concentrations in par-
ticular influence the phenotype of neighboring regions of tissue around the specific cell
taken in considerations. Some substances which have the properties of the morphostats
have been recently identified [15] but it is still unclear their hierarchy, and in particular
the way in which they promote carcinogenetic processes. One can interpret these results
using the most diffused paradigm in cancer dynamics, the Somatic Mutation Theory (or
SMT) which proposes that successive DNA mutations in a single cell cause cancer cell
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proliferation placing carcinogenesis at the cellular and subcellular hierarchical levels of
biological complexity [16] (a paradigm which in short sounds as ”the cell is all”). In some
sense this epistemological approach, transferred to the different scenario of Condensed
Matter Physics (or Chemistry) could read as ”single atoms are everything”, which clearly
is in contrast with the fact that matter is made by molecules which get organized in larger
spatial ordered or disordered structures accounting for very different (and at a first glance
unexpected) macroscopic properties. This analogy suggests that in cancer dynamics too
spatial organization must be considered. This point of view is taken into account in an-
other paradigm, the Tissue Organization Field Theory (or TOFT) of carcinogenesis and
neoplasia. Here in particular carcinogens would act initially by disrupting the normal
interactions that take place among cells in the parenchyma and stroma of an organ (the
equivalent of the ”morphogenetic fields” of developing organisms) [17]: perturbations
in a morphostat gradient could initiate then carcinogenesis without any requirement for
a mutation [18]. Nevertheless diffusive effects seem to be relevant, from a biological
point of view, also at sub-cellular level as recent studies on the telomere dynamics per-
formed in live human cancer cells have shown [19]. In this sense the reaction and diffu-
sion mathematical point of view adopted in this article can be seen as a tool to deal with
the same problem observed at different scales (a multiscale approach) for which a contin-
uum mathematical theory remains valid. TOFTs main contribution has been to put the
question about the right level of inquiry in experimental research and to have proposed
one (tissue organization) for the neoplastic phenomenon that seems to be consistent with
empirical data and evidences. In this scenario it is possible in any case the epistemologi-
cal contribution of SMT admitting that a discrete component is also present and active in
the dynamics of cancer spread, in this case cells.

We point out that such an idea of a field theory of cancer development is very ap-
pealing from the point of view of mathematical modeling. Solid tumor proliferation
can be seen in fact as an abnormal morphogenetic process a la Turing, consequently it
appears straightforward the idea of modeling this nonlinear diffusive biological phe-
nomenon with the RD mathematical theory. On the other hand however SMT view is
not absolutely ruled out by this choice when the challenge is to take into account the
whole phenomenology of such a complex natural phenomena as cancer is.

As it will appear clear in the following, a reaction-diffusion equation shall account for
both the diffusive gradients required by tissue organization previously discussed (clearly
evidenced by TOFT) and local reactive cellular dynamics both of genetic (evidenced by
SMT) and/or of environmental nature (again stressed by TOFT) performing an integra-
tion in this way of different existing theories on cancer [20]. In the simplest scenario a
mathematical cancer model should manifest bistability. This is a critical behavior for the
dynamics of a system which can choose in its evolution to settle down on one of two
possible states. In an elementary picture justifying this choice, there is a threshold of
cancer cells density (which should be patient dependent), which locally drives the nor-
mal tissue on a cancer cell regime or does not admit cancer to colonize the tissue so that
this remains tumor-free (this is, mathematically speaking, a ”reaction term”). A diffu-
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sive contribution makes cancer cells move around leading to a not only time but also
space dependent problem. While continuum models (ordinary, partial or integro-partial
differential equations or delay equations) can describe very well this cancer dynamics,
also discrete models (cellular automata) seem to lead to positive results towards a possi-
ble understanding of carcinogenesis [18]. This is not unexpected in fact because discrete
models (as cellular automata are) and continuum diffusion processes share many com-
mon features in modeling nonlinear chemical and biological media [21, 22]: in particular
continuum field theory can be seen as continuum limit of collective discrete behaviors.
Mathematical modeling of bistability in cancer dynamics dates back to Lefever and Hors-
themke work [23] although in the last thirty years many progresses have been done in
this area (see as an example [24] for a recent review on mathematical models). In exist-
ing models bistability results as a consequence of complicated non-polynomial reactive
terms.

In this article instead we shall introduce and discuss a very basic model of reaction-
diffusion bistability based on a cubic nonlinear diffusion equation only. This is inspired
by theoretical works calibrated on experimental data of brain tumor (see specifically [3,
25–30]) through a single linear or nonlinear diffusion equation for cancer cells. Assuming
a relatively simple mathematical form, these pre-existing studies have shown a great rele-
vance for surgery due to the unpleasant and dramatic recurrences of brain tumors. Given
a certain volume of brain tissue resection in fact, it is possible to predict the amount of
time required by the low density infiltrated tumor cells far afield from the gross tumor
site to cause a large cancer again. In this way the surgeon can perform a balanced pre-
diction optimizing the amount of tissue removed in union with the quality of life left to
the patient. We shall frame our work on the lines of this type of studies then. To this aim
however we shall need to introduce a short review of the mathematical aspects of RD
processes first, as done in the next section.

2 Reaction-Diffusion systems

Reaction-Diffusion equations are mathematical models of parabolic type which describe
the nonlinear concentration dynamics of one or more chemical substances. Differently as
in standard global chemical kinetic problems, here the model allows the chemical species
not only to locally react but also to spatially diffuse one through the others. In a biological
context instead RD systems describe fields of activators and inhibitors (in the language
introduced by Alan Turing in [10]) which compete to give peculiar patterns (the animal
coat pattern theory) or even forms for the living beings (in Turing’s original article the
problem of gastrulation or of the form of an hydra). Here we present the prototype of
reaction-diffusion equations which assumes two variables only together with homoge-
neous and isotropic diffusion. The equations in this case result in:

∂u

∂t
= D1∇2u+ f (u,v),

∂v

∂t
= D2∇2v+h(u,v), (2.1)
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where f and h can have polynomial form in u and v, although more complicated func-
tional dependencies (even on space and time) are allowed. Here D1 and D2 are the
diffusion coefficients and ∇ is the gradient operator while ∇2 represents the Laplacian
one. In general, models with two species only represent a simplification of more realis-
tic situations in which several diffusing and reacting species can interact. Moreover by
coupling these models with temperature [31, 32] and mechanical deformations [33, 34]
one can match even more the simulations with realistic biological problems. In the past,
Turing showed that RD systems can be affected by the so called diffusion-driven insta-
bility (or Turing instability) which means that if the homogeneous state is stable against
small perturbations in absence of diffusion, it may become unstable if the possibility
of diffusion is introduced. This dynamical mechanism generates quasi-stationary spa-
tial patterns although this type of equations can also lead to morphogenetic, chemical
or electrophysiological waves [3]. Coming back to the model, an even simpler reaction-
diffusion model can be obtained suppressing one of the two species in Eq. (2.1) (say field
v) and assuming a simple cubic polynomial form for the function f (u) which could be
seen as a Taylor expansion of more complicated functional dependencies, in analogy with
FitzHugh-Nagumo type models of electrophysiology and physical chemistry [3, 35]: this
is the well-known bistable equation discussed in detail in the following.

3 A bistable model for cancer cell waves

The most generic one species reaction-diffusion equation is

∂tc= F(c)
︸︷︷︸

Reaction

+∇·
(

D̂∇c
)

︸ ︷︷ ︸

Diffusion

, (3.1)

where we identify for our purposes the field c with the tumor cell punctual concentration
embedded in a pre-existing normal tissue and D̂ is the diffusion tensor which in the most
general scenario can depend by time and space (anisotropic and inhomogeneous diffu-
sion). In this article however we shall assume for the sake of simplicity homogeneous
and isotropic time independent diffusion first so that we can rewrite

∇·D̂∇c≡D∇2c,

where D is the diffusion constant. The term F(c) on the other hand takes into account
the local dynamical properties of the system (reaction term) although one may extend
the treatment assuming F=F(c,t,~x), which gives heterogeneities of different physical na-
ture (chemical, biological, physical). Finally one may could have easily added on this
reactive term of Eq. (3.1) an external time and space dependent stimulus which in our
specific biological problem can account for possible external actions (chemotherapy as an
example). We have under-braced explicitly in Eq. (3.1) the reactive and diffusive terms
respectively. While the diffusive part can be seen as a typical TOFT quantity, the reactive
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one, in the most general heterogeneous externally perturbed scenario, can contain both a
genetically driven dynamics and an environmental factor: this modelization meets then
both TOFT and SMT points of view about cancer origin. In mathematical terms, in ab-
sence of diffusion we have a dynamical system with one degree of freedom (an Ordinary
Differential Equation), while the introduction of diffusion leads immediately to an infi-
nite degrees of freedom problem (this is a Partial Differential Equation problem in fact)
where the nonlinear parabolic character of the problem accounts for spatial communica-
tion and then possible global organization. We are ready now to specialize Eq. (3.1) to a
particular case, i.e., the bistable one, which requires for this equation a functional form
F(c)= k(c−c1)(c−c2)(c3−c), where k is a model constant and c1, c2 and c3 are constant
concentrations which may be genetically determined but also environmentally affected.
We assume that a cancer-free tissue must have no cancer cells so we select c1 =0. Quan-
tity c2 instead represents the cancer generation threshold while c3 is the maximum value
of cancer cells which a tissue can support (possible necrosis effects lowering the tumor
cell population are not taken into account here for the sake of simplicity). This equation
must be cast now in non-dimensional form: this step is crucial because removes from the
model the specifications of the particular tissue and cancer leading to a more general for-
mulation. Following standard Literature [35], we introduce a typical length scale L of the
process in consideration (working for the sake of simplicity in one spatial dimension first)
and we define the non-dimensional quantities T= tD/L2 and X=x/L. We use moreover
the scaling c2 =αc3 with 0<α<1, adopting a dimensionless concentration C = c/c3 then
and defining the quantity a= c2

3L2k/D. The resulting equation is:

∂C

∂T
=

∂2C

∂X2
+F(C), (3.2)

with the functional form

F(C)= aC(1−C)(C−α) (3.3)

with C = 0 and C = 1 being sinks and C = α being a source [36]. The process of adi-
mensionalization performed has a great advantage that one can study now the dynamics
of the problem forgetting about the physical context we started from. The result ob-
tained with the new compact equations can be later re-converted then to dimensional
quantities recovering the contact with experiments. This is a well known point of view
adopted both in chemistry and in electrophysiology. In the latter case, as an example, the
FitzHugh-Nagumo equation (which is an extension in a two dimensional phase-space of
the bistable equation just described), once solved in a specific dimensionless case can be
differently framed in the context of heart, nerves or even intestine dynamics [35] through
specific dimensional mappings of space, time and action potential. We point out that,
all of these examples have different time, space and action potential scales. For this rea-
son, in this article we shall present mainly the general outcomes expected studying the
non-dimensional theory, leaving to future studies the accurate analysis of mapping the
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Figure 1: Bistable dynamics of the zero dimensional model with three different initial conditions: i) C0≡C(0)=
0.11 (above the threshold α which implies cancer development); ii) C0 = 0.1 (on the threshold which implies
a (metastable) constant in time dynamics) and finally iii) C0 =0.09 (below the threshold which implies cancer
rejection by tissue).

parameters with specific tumor growth processes and for different tissues. Higher dimen-
sional spatial cases require the addition to this equation of the second derivative terms
with respect to Y and Z. We point out that our treatment is quite different with respect to
the standard Verhulst logistic behavior commonly used to model cell growth [3,24,35,36]:
here in fact we have a cubic behavior while in that case a quadratic one is adopted, miss-
ing completely the threshold effect. Locally, i.e., neglecting the spatial variations, we
obtain the ordinary differential equation dC/dT = F(C) which is, in the language of dy-
namical systems, a flow on a line. Such a type of equation cannot have periodic solu-
tions (unless the domain is topologically bent to form a circle [36]) and once integrated
(we assume here and in the rest of the paper a = 1 and α = 0.1 which is a typical choice
found in the literature of bistable equation simulations [35] ) results in three type of pos-
sible solutions shown in Fig. 1: i) a solution which starting over the threshold α reaches
asymptotically the maximum value C = 1, ii) a solution starting on the threshold which
is stationary in time and iii) a solution starting below the threshold which asymptotically
goes to zero.

Reintroducing diffusion we have a partial differential equation which as discussed
before, has infinite degrees of freedom and can lead in fact to more involved situations
in which diffusion plays a central role. Manipulations of the one-dimensional diffusing
case in Eq. (3.2) lead to the analytical travelling wave solution for the bistable equation
associated with specific initial data and boundary conditions (well known in the litera-
ture) [35]

C(T,X)=
1

2
+

1

2
tanh

[√a(X+VT)

2
√

2

]

, V =

√
a√
2
(1−2α). (3.4)

It is clear the wave type behavior of this solution which travels at constant speed (de-
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Figure 2: Spatial cancer progression in time on a linear tissue domain (dimensionless units). For the fixed
threshold and initial data (see text) cancer front blows down but then recovers and colonizes the entire tissue.

pending by parameters a and α) transferring cancer to not invaded tissue regions. In
more general situations associated with complicated initial data and boundary condi-
tions however analytical solutions cannot be found anymore and the equations must be
numerically integrated, leading to even more interesting scenarios. To this aim, we have
performed an integration of the 1D bistable equation (3.2) on the domain X ∈ [−20,20]
(dimensionless units) with Neuman zero flux boundary conditions, α=0.1, a=1 together
with initial data C(0,X) = 0.7exp(−x2) first. In all the simulations performed we have
adopted a finite element scheme using quadratic Lagrange elements with size δx=0.005
together with a direct solver (UMFPACK) running on a parallelized Comsol Multiphysics
engine with relative and absolute errors of 10−6. Simulations have been tested also for
finer spatial meshing in order to ensure convergence and stability.

In Fig. 2 we show superimposed at different times the behavior of the tumor cell
concentration on the line of tissue. At T = 10 the concentration apparently gets lowered
but at time T =20 it starts to rise again. At T =30 the central part reaches the maximum
value of tumor cells and at late times the entire tissue domain gets invaded.

On the other hand starting with a lower initial cancer cell concentration, i.e., C(0,X)=
0.3exp(−x2), the cancer colonization fails (see Fig. 3). It appears clear that such a diffu-
sion driven mechanism is quite delicate in generating a tumor scenario or not, depend-
ing in fact on the total (non-dimensional) tumor mass amount M =

∫
CdX evaluated on

the whole tissue domain at the initial time. The initial conditions which can generate
a full tumor outcome represent then a delicate problem to be addressed requiring ad-
vanced mathematical methods of dynamical systems (for a specific discussion of this
point see [35] on pp. 275). In this article on the other hand we have preferred to study
this point by performing selected ad hoc numerical simulations which can give us some
hint on the role of cancer cells density peaks and in particular of their distance. To this
aim we have extended our study to a two dimensional squared domain of 20×20 area
(in dimensionless units). The code uses similar settings as the one dimensional case but
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Figure 3: Spatial cancer no-progression in time on a linear tissue domain (dimensionless units). For the fixed
threshold and initial data (see text) cancer front blows down and tissue remains cancer cell free.

regarding the meshing we have adopted squared sized (side length δx =0.25) Lagrange
cubic elements.

Results of the simulations are shown in Fig. 4. We have taken an initial data adding
several distorted Gaussian functions centered at different points. In this approach, for a
fixed choice of model constants α and a, there are clearly three critical parameters which
can affect the entire dynamics: the Gaussian peak amplitudes, their widths and finally
their distance. In our case we have chosen specifically:

C0 =0.8e−0.1(x−1)2−0.3(y−3)2
+0.75e−0.25(x−10)2−0.15(y+9)2

+0.6e−0.2(x+3)2−0.5(y+4)2
+0.5e−0.25(x+5)2−0.3(y−1)2

(3.5)

and left it free to evolve. The remaining panels of Fig. 4 show the cancer spread and
finally a large scale invasion dynamics. We have performed also a more simplified study
in order to understand if two over-threshold cell colonies of Gaussian form may lead to a
tumor progression or extinction scenario depending on the distances of their peaks only.
To this aim we have taken as initial data

C0 =0.61e−0.1(x−4)2−0.3y2
+0.61e−0.1(x+4)2−0.3y2

, (3.6)

which has lead to a final tumor progression as shown in Fig. 5.
On the other hand the initial data

C0 =0.61e−0.1(x−6)2−0.3y2
+0.61e−0.1(x+6)2−0.3y2

(3.7)

has not given any tumor progression as shown in Fig. 6. These results suggest that the
nonlinear interaction of the two waves leads to a critical configuration which has cancer
as an outcome, while if the two distorted Gaussian colonies are slightly more distant,
the nonlinear mechanism is not sufficient to maintain the developmental process and the
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Figure 4: Spatial cancer progression at different times on a two-dimensional tissue domain (dimensionless
units). Labels a) to f) stand for snapshot times of T = (0,2,6,15,21,27). Starting from a relatively irregular
inhomogeneous initial data (see text), some cancer regions tend to blow down, but at the end one of the peaked
populations is able to colonize the entire tissue.

Figure 5: Spatial cancer progression at different times on a two-dimensional tissue domain (dimensionless
units) for two distorted Gaussian populations with close peaks. Labels a) to f) stand for snapshot times of
T = (0,3,6,11,23,30): in this scenario cancer cells are able to colonize the entire tissue due to their nonlinear
interaction.

Figure 6: Spatial cancer progression at different times on a two-dimensional tissue domain (dimensionless
units) for two distorted Gaussian initial populations with distant peaks. Labels a) to c) stand for snapshot
times of T =(0,2,8): in this scenario cancer colonization fails and the tumor cells decay very fast towards null
concentration.
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total cancer cells density vanishes in time. This model generalized in three dimensions
(blocks of tissue) has to be calibrated on experiments, in order to estimate a realistic initial
data, the diffusion coefficient and the physiological threshold α which could be patient
dependent and possibly genetically and/or environmentally ruled [37].

Clearly stochastically induced mutations as well as instabilities driven by diffusion,
angiogenesis and so on must play an important role in cancer development (see [24] and
the more recent [38] for a discussion on the role of field theories in carcinogenesis). On the
other hand, as anticipated already, an active field of research in tumor modeling adopts a
single reaction-diffusion equation (see [3,25–30] for details) to model solid cancer growth
in anatomically correct 3D brain geometry (as already analyzed in [39] by some of the
authors).

4 Bistable dynamics with ecological dispersal effects

We can now extend in a novel way the theory previously introduced, borrowing from
the ecological models the possibility to have population dispersal. Discrete models [40]
have been proposed to reproduce these properties. In this work we propose a continuum
approach instead. The starting point of such a formulation is the experimental evidence
that populations of animals in a territory diffuse with a certain (mean) speed depending
by the density of animals in that region. Stated in a more straight way, if there are too
many individuals in certain region, they tend to exhaust rapidly the local food supplies
so that they should abandon the area as soon as possible. If their concentration is not so
high on the other hand, they could spread around more slowly. Clearly such a point of
view should work correctly also for bacteria, viruses and other microorganisms as well as
for solid cancer cells, which in this simplified scenario would migrate because of the eco-
logical pressure. Clearly this is a very basic starting point for more refined modelizations
which should take into account also the role of chemotaxis and angiogenesis [3] together
with advective effects for oxygen and nutrients and the importance of the immune sys-
tem in these matters. Anyway this simplified point of view makes the formulation non-
trivial because it requires mathematically to have a diffusion coefficient which depends
by the local concentration of the diffusing field, i.e., in our case D̂ = D̂(c). Borrowing
again from ecological models the theoretical formulation, we assume the isotropic power
law functional dependence D̂=D ·

[
c(t,~x)/cre f

]m
Î, where D is the diffusion constant, cre f

is a reference constant concentration, here introduced for dimensional analysis reasons,
m is a non negative real number and Î is the identity matrix. Rewriting cre f = σc3 with
σ>0, and adopting the same non-dimensional quantities previously discussed, we finally
arrive to the dimensionless equation

∂C

∂T
=σ−m∇·

(
Cm∇C

)
+F(C), (4.1)

which in the limit m→0 reduces to the standard bistable equation previously discussed
(in 1D Eq. (3.2)) while if F(C) = 0, becomes the porous media equation which has an-
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alytical solutions in one dimensions [3]. Eq. (4.1) in 1D can be studied with the usual
procedure adopted to find travelling wave solutions. Requiring C = C(X+VT)≡C(ξ)
(here V is the constant velocity of the pulse), it becomes

σ−m d

dξ

(

Cm d

dξ
C

)

−V
dC

dξ
+F(C)=0, (4.2)

which could be possibly studied in search of analytical solutions or numerically as a
boundary value problem for the allowed values of the constant V, again. Although this
would lead to an interesting mathematical problem, from the physical point of view, such
travelling waves of constant velocity V should be regarded in the best case as asymp-
totic states in time of more complicated solutions which already in the 1D case do not
travel always at constant speed. The reason for this is that the dimensionless velocity
of the standard bistable pulse in Eq. (3.4), once rewritten in dimensional variables, gives
a velocity which grows linearly with the (constant) diffusion coefficient. The addition
of dispersal implies a non constant diffusion coefficient (monotonically increasing with
field concentration) so that, if one assumes a very slow growth of the density, the speed
of the pulse too should change analogously and a constant speed travelling wave would
not be possible. However, once the system reaches its highest asymptotic concentration
value due to the bistable dynamics, practically a constant diffusion coefficient occurs so
that constant speed travelling wave appears. In order to prove this scenario and have
a complete view of the real dynamics of this extended model, we have studied Eq. (4.1)
adopting the same codes for the numerical simulation previously discussed in the simple
bistable case, requiring for the sake of simplicity σ = 1 and m = 1 (a linear growth for
diffusion in function of concentration which is in agreement with the literature [3]).

In Fig. 7 (to be compared with Fig. 2) we show the evolution of the tumor at differ-
ent times with initial data C(0,x)=0.7exp(−x2) again. Notice the sharp interface of the
cell front with the zero tumor region, which is totally absent in the simple diffusive case.
The inclusion of the porous medium term in fact leads to a quasilinear partial differen-
tial equation, eliminating the unpleasant regularizing effect of the heat operator which
generates a nonzero concentration in the entire domain (infinite propagation velocity).

In Fig. 8 (to be compared with Fig. 3) we can see that, differently than in the diffusive
case, the smaller initial data C(0,x) = 0.3exp(−x2) leads in any case to tumor cell pro-
gression which has a different propagation velocity in time. In fact by focusing on the
X-axis, one can see that at equidistant time intervals, the interface covers different spaces
manifesting the expected concentration-dependent velocity of propagation which, once
the upper concentration limit is reached, becomes approximately constant, confirming
the physical scenario previously hypothesized.

A space-time diagram of the latter simulation shows this effect quantitatively as shown
in Fig. 9 where there is a strong change in the slope (so in speed) due to the change of con-
centration. In Fig. 10 we present instead the space-time diagram for the interaction of the
two initial data just discussed by assuming C(0,X)=0.7exp(−(x−10)2)+0.3exp(−(x+
10)2). We point out the change in slopes of the smaller distorted Gaussian in comparison
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Figure 7: Spatial cancer progression in time on a linear tissue domain (dimensionless units) in the case of
population dispersal for initial data C(0,x)=0.7exp(−x2).

Figure 8: Spatial cancer progression in time on a linear tissue domain (dimensionless units) in the case of

population dispersal for initial data C(0,x) = 0.3exp(−x2). Differently as in the simpler reaction-diffusion
theory, here even smaller initial data can lead to tumor progression.

with the higher one and the nonlinear interaction on the collision area.
We can now analyze the dynamics in higher dimensional cases. In three dimensions,

assuming a purely radial dynamics, one starts from cartesian coordinates, adopts the
same non-dimensional notations as in the one-dimensional case, and passing to dimen-
sionless spherical coordinates (R,θ,φ), finally obtains:

∂C

∂T
=

σ−m

R2

d

dR

(

CmR2 d

dR
C

)

+F(C). (4.3)

This spherical scheme shall have relevance for realistic NMR imported 3D brain geome-
tries, on the lines of precedent studies of some of the authors [39], performing a fine
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Figure 9: Space-time diagram of cancer progression in time on a linear tissue domain (dimensionless units) in

the case of population dispersal for initial data C(0,x)= 0.3exp(−x2). Notice the change of slope meaning a
change of tumor progression speed.

Figure 10: Space-time diagram of cancer interaction for the initial data C(0,X) = 0.7exp(−(x−10)2)+
0.3exp(−(x+10)2). Due to the dispersal term the various populations interact nonlinearly with different
speeds.

Figure 11: Space-time development of cancer growth in the cylindrical (planar radial) self-diffusing case for

initial data C(0,ρ)=0.3e−0.1ρ2
.

tuning of the model parameters with radiological data taken at different times. Another
possible field of application of this modelization is in the context of cancerous cell cul-
tures. In circular dimensionless cylindrical coordinates (ρ,φ,Z), assuming purely radial
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Figure 12: Mean value of tumor radius versus time in the case of Fig. 11.

diffusion (typical of cell cultures situations which are almost planar) we obtain instead

∂C

∂T
=

σ−m

ρ

d

dρ

(

Cmρ
d

dρ
C

)

+F(C). (4.4)

Taking as initial data C(0,ρ)=0.3e−0.1ρ2
and zero flux again as boundary conditions [41],

we obtain the spacetime diagram in Fig. 11.
In Fig. 12 we have plotted instead the mean radial distance of the cancer population

from the origin versus time (see [3] pp. 553 for this definition), i.e.,

〈ρ〉=
∫ ρo

0 ρ2C(ρ,T)dρ
∫ ρo

0
ρC(ρ,T)dρ

, (4.5)

where ρo represent the outer boundary of the Petri dish which in our case has value
twenty space dimensionless units. On page 555 of [3], based on experimental results
by [42], an estimate, in vitro, of an (approximate) value of the mean radius versus time
for an anaplastic astrocytoma, a mixed glioma and a glioblastoma multiforme cultures
growing can be found. More in detail it is approximated by

〈ρ〉≃
∫ ρo

λ ρ(ρ−λ)C(ρ,T)dρ
∫ ρo

λ ρC(ρ,T)dρ
, (4.6)

where λ2 represents the uniform steady state of the cell distribution. Scaling the variables
it is possible to obtain a growing trend for the tumor mean radius in qualitative agree-
ment with some of these experiments, in particular in the case of the mixed glioma. The
two other types of tumors on the other hand manifest a different regime so our model
should be fine tuned also in the functional form of D(c) in order to fit these data. A set
of parametric simulations in which (m,σ,a,α) are varied shall improve the agreement of
the model with experiments, especially for values of m close to zero (i.e., standard diffu-
sion). We plan to perform all of these works in future studies in union with additional
experimental data [37].
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5 Conclusions

In this article we have introduced and discussed a very basic model of cancer spread
which grasps the main feature of solid cancer progression in tissues, i.e., the possibility
for the tumoral cell colonization to occur or the blocking action of this process due to
different biological reactions of the organism. The model is based on the bistable equa-
tion, which can be seen as a polynomial approximation [36] for many different more
complicated biological scenarios making the formulation very general. The inclusion of
dispersal effects makes the formulation absolutely nontrivial but much more interesting
because of the possibility to have different propagation speed in association with differ-
ent cancer cells densities in the tissue. It is important to remark also that this modelization
could play a central role not only in the field of cell growth modeling but also in the field
of computational electrophysiology where reaction-diffusion theory with simple diffu-
sion (and not with porous medium term) is commonly adopted to study electrochemical
waves in biological media.

This article is a starting point for a field theoretical approach of cancer progression
formulated in terms of very basic but at the same time very general equations aiming
to extend in future the successful experimental and theoretical works regarding brain
cancer [3, 25–30] with the techniques on real brain geometries developed by some of the
authors in the past. The hope is to find, through mathematical modeling, some gen-
eral behaviors which could be extrapolated from the patient dependent specific scenario,
in analogy with other branches of Theoretical Physics in which apparently different sys-
tems simplify towards a common description once well expressed in mathematical terms.
Such a formalization of cancer spread can bridge the requirements of the major exist-
ing interpretative theories. Nevertheless, any methodological approach needs a greater
awareness of the complexity of the organism, which appears nowadays more and more
evident, in order to develop consistent mathematical tools for modeling.
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