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Abstract. We develop a framework for constructing mixed multiscale finite volume
methods for elliptic equations with multiple scales arising from flows in porous me-
dia. Some of the methods developed using the framework are already known [20];
others are new. New insight is gained for the known methods and extra flexibility
is provided by the new methods. We give as an example a mixed MsFV on uniform
mesh in 2-D. This method uses novel multiscale velocity basis functions that are suited
for using global information, which is often needed to improve the accuracy of the
multiscale simulations in the case of continuum scales with strong non-local features.
The method efficiently captures the small effects on a coarse grid. We analyze the new
mixed MsFV and apply it to solve two-phase flow equations in heterogeneous porous
media. Numerical examples demonstrate the accuracy and efficiency of the proposed
method for modeling the flows in porous media with non-separable and separable
scales.

AMS subject classifications: 65N30, 65N20, 34E13

Key words: Mixed multiscale finite volume methods, elliptic equations, two-phase flows, hetero-
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1 Introduction

Subsurface flows are often affected by heterogeneities in a wide range of length scales.
This causes significant challenges for subsurface flow modeling. Geological characteriza-
tions that capture these effects are typically developed at scales that are too fine for direct
flow simulations. Usually, upscaled or multiscale models are employed for such systems.
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In upscaling methods, the original model is coarsened by numerically homogenizing pa-
rameters (e.g., permeability). The simulation is performed using the coarsened model,
which may differ from the underlying fine-scale model. In multiscale methods, the fine-
scale information is carried throughout the simulation and the coarse-scale equations are
generally not expressed analytically, but rather formed and solved numerically.

Various numerical multiscale approaches for flows in porous media have been de-
veloped during the past decade. A multiscale finite element method (MsFEM) was intro-
duced in [18] and takes its origin from the pioneering work [5]. Its main idea is to incorpo-
rate the small-scale information into finite element basis functions and capture their effect
on the large scales via finite element computations. The MsFEM in [18] shares some simi-
larities with a number of multiscale numerical methods, such as residual free bubbles [6],
variational multiscale method [19], two-scale conservative subgrid approaches [3], het-
erogeneous multiscale method [15] and multiscale discontinuous Galerkin method [31].
Chen and Hou have applied the MsFEM idea in combination with a mixed finite element
formulation to propose a mixed MsFEM [8]. Recently, Arbogast et al. [4] used domain de-
composition approach and variational mixed formulation to develop a multiscale mortar
mixed MsFEM. Jenny et al. [20] have used the ideas in [18] and finite volume framework
to design a multiscale finite volume method (MsFV). The MsFV and its variants have
proved successful in reservoir simulations.

Here we develop a framework for constructing mixed MsFV methods, which uses
ideas from the mixed finite volume methods [24–26], multi-point flux approximations
(MPFA) [2, 16], and mixed MsFEM. The mixed MsFV are mass conservative methods,
which is an important property of the discretizations used in subsurface flow simula-
tions (see [11] for related discussion). The important feature of the mixed finite volume
methods is the direct approximation of the velocity, that is, specially constructed discrete
spaces are used to approximate the velocity unknowns. We propose a novel way to con-
struct multiscale velocity basis functions that are well suited for parallel computation.
Mixed MsFEM reduces the system of coupled equations for pressure and velocity to a
system only for the pressure. However, the reduction process is computational expen-
sive and has some restrictions when the global mass matrix in mixed MsFEM is large.
In the mixed MsFV, we compute the inverse of each local mass matrix instead of global
mass matrix and get effective coarse-scale transmissibilities. This computation is cheap
and efficient. In the MsFV proposed in [20], two sets of multiscale basis functions are
computed: the first set of basis functions is to approximate pressure and the second set of
basis functions is required to construct a conservative fine-scale velocity field. Only one
set of multiscale basis functions is constructed in the mixed MsFV and the span of the
basis functions are to approximate the velocity. Piecewise constant is used for pressure
basis in the mixed MsFV. Hence the computation for basis functions in the mixed MsFV
is less expensive than the MsFV. To the best of our knowledge, the mixed MsFV is a new
numerical multiscale method.

Boundary effect is a great issue in many multiscale methods (e.g., [8, 18]). When we
construct the multiscale basis functions in the mixed MsFV, we can use constant bound-
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ary condition for basis equations and obtain local multiscale basis. We find that the local
multiscale basis in the mixed MsFV has the similar merit to the multiscale basis using
oversampling technique developed in [18] and they are able to reduce the boundary ef-
fect greatly. The mixed MsFV using local multiscale basis works well for most multiscale
problems and particularly for the case of separable scales (e.g., periodic media). Further-
more, we can employ global information for the multiscale basis functions of the mixed
MsFV. The global information usually represents long range features of flows and is used
to construct multiscale basis functions. The global information is needed in the case of
strong non-separable scales and renders much better accuracy than local multiscale ap-
proaches [1]. The proposed mixed MsFV in some extend inherits the advantages of the
mixed MsFEM and MsFV and alleviates the drawbacks of them without increase of the
computational cost. Moreover, this method and its generalizations are well suited for
computation on unstructured grids and can be easily incorporated in production reser-
voir simulators. For example, to construct the velocity basis no geometric information is
necessary. The pressure basis can be computed using only the local matrices if it consists
of discrete harmonic functions as demonstrated in [14]. Detailed description is provided
in [27].

The rest of the paper is organized as follows. Section 2 is devoted to formulating
a standard mixed finite volume method for a model elliptic equation. In Section 3, we
apply the methodology of the mixed finite volume method to develop a mixed MsFV
method. Here we design a new multiscale velocity basis function, analyze the proposed
mixed MsFV, and address some computational issues. In Section 4, we generalize the
approach applied in Section 3 to derive our first mixed MsFV method and show how
given a mixed FV method we can derived a corresponding mixed MsFV. Several exam-
ples are given to demonstrate how the framework can be used to develop new mixed
MsFV methods. In Section 5, we apply a mixed MsFV to incompressible two-phase flows
in porous media with continuum scales and separable scales. Finally, some comments
and conclusions are made.

2 Mixed finite volume method formulation for a model

problem

We first define notations for function spaces used in the paper.

L2(Ω)=
{

f (x)
∣∣∣
∫

Ω
| f (x)|2dx<∞

}
,

H1(Ω)=
{

f (x)| f (x)∈L2(Ω) and ∇ f (x)∈ [L2(Ω)]d
}

,

H(div,Ω)=
{

f (x)| f (x)∈ [L2(Ω)]d and div( f (x))∈L2(Ω)
}

.
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We consider the following model elliptic equation,




−div
(
k(x)∇p

)
= f (x), in Ω,

k(x)∇p·n=0, on ∂Ω,∫

Ω
pdx=0,

(2.1)

where Ω is a domain in R
d, d=2 or 3 and f∈L2(Ω). Eq. (2.1) is used to model many phys-

ical processes, for example, fluid flow in porous media. The coefficient k(x) represents
the permeability and is often heterogeneous. Here p represents pressure.

We define velocity u(x)=−k(x)∇p. To simplify presentation, we shall not write the
spatial variables x for functions when no ambiguity occurs. Then (2.1) can be rewritten
as a first order system

{
k−1u+∇p=0,

div(u)= f .
(2.2)

The weak mixed formulation for (2.2) is: find {u,p}∈U×P such that




∫

Ω
k−1u·vdx+

∫

Ω
∇p·vdx=0, ∀v∈V ,

∫

Ω
div(u)qdx=

∫

Ω
f qdx, ∀q∈Q,

(2.3)

where U = H(div,Ω), P = H1(Ω), V =(L2(Ω))d and Q= L2(Ω).
There are different ways to construct a discretization of Eq. (2.3). One can try to find

the approximations such that {uh,ph}∈H(div,Ω)×H1(Ω) (see [30]). Unfortunately these
discretizations are computationally expensive and are only applicable on very restrictive
grids. Frequently dual mixed finite element methods are used [7, 29] to construct the
discretization {uh,ph}∈ H(div,Ω)×L2(Ω). We will consider a class of methods that are
related to the primal mixed finite element methods [29], i.e., the discretizations we seek

are {uh,ph}∈Uh×Ph, Uh ⊂
(

L2(Ω)
)d

, Ph ⊂H1(Ω) with additional conservation enforced
on particular volumes. These methods are close related to the standard cell-centered
finite volume method and several multi-point flux approximation (MPFA) methods that
generalize it. We will refer such approximations as mixed finite volume methods.

We assume that two grids are defined: primary grid Th and dual grid Dh. Usually the
primary grid is used to approximate the scaler variable p, and the dual mesh is used to
construct the discretization of the velocity. Different examples of primary and dual grids
can be found in [2, 16, 24–26]. Consider the discrete problem: find {uh,ph}∈Uh×Ph such
that





∫

Ω
k−1uh ·vhdx+

∫

Ω
∇h ph ·vhdx=0, ∀vh ∈Vh,

∫

Ω
divh(uh)qdx=

∫

Ω
f qhdx, ∀qh ∈Qh.

(2.4)
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A particular mixed finite volume method will be fully described if we define the grids, the
approximation spaces and the operators ∇h and divh. The operator divh can be defined
in the following way:

∫

Ω
divh(uh)qhdx := ∑

V∈Th

∑
E∈∂V

∫

E
uh ·nEqhds, (2.5)

with Qh the space of piece-wise constants on the volumes V from the primary grid and E
is an edge in 2-D or face in 3-D in ∂V. Here nE denotes the outward normal vector to E.

In the paper, we focus on 2-D case. The 3-D case is a straightforward extension of 2-D
case.

We give an example of mixed finite volume methods as following.

Example 2.1. [Mixed FV 1] We assume that the primary grid Th consists of rectangles,
and the dual grid Dh is also rectangular, but with vertexes the cell centers. The discrete
space for the scalar variable, Ph = Qh, consists of piecewise constants and is defined
on the primary grid, The approximation space for the vector variable, Uh = Vh, is the
space of piece-wise constants vector constants with continuous normal components and
is defined on the dual mesh. Consider one dual cell D= Di∪Dj∪Dk∪Dl (see Fig. 1). The
four functions, eij, eik, ejl and ekl are defined with the relations

∫

lrt

epq ·nrt dx=δpq,rt,

where pq and rt can be any element of the set ID = {ij, ik, jl, jk}. It is easy to see that
{epq}, pq∈ ID are linearly independent and therefore form a basis of Uh|D. The degrees of

freedom are the integrals of the flux, i.e., the numbers vpq =
∫

lpq
v·npq dx, pq∈ ID . Then for

any v∈Uh, v|D =∑pq∈ID
vpqepq. The operator ∇h is given by:

∫

Ω
∇h ph ·vh dx= ∑

V∈Th

∑
E∈∂V

∫

E
vh ·nE [ph]Edx, (2.6)

where

[p]E = lim
t→0
t>0

(
p(x+tnE)−p(x−tnE)

)

and the direction of nE is from left to right or from bottom to top in 2-D. Note that from
the first equation of (2.4) we can express

M~u=~p, (2.7)

with
~uT =[uij,uik,ujl,ukl ]

T, ~p=[pi−pj,pi−pk,pj−pl ,pk−pl ]
T

and M a 4×4 matrix. We solve for ~u and plug the result in the second equation of (2.4) to
get the final discretization.
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Figure 1: A dual cell D.

For Example 2.1, we can rewrite Eq. (2.5) as

∑
V∈Th

∑
E∈V

∫

E
uh ·nE[qh]E =−

∫

Ω
f qhdx,

which shows that the matrix of the discretization is symmetric. We note that Ph in Exam-
ple 2.1 is not subspace of H1(Ω). Our approximation of ∇p is nonconforming.

Example 2.1 is a straightforward generalization of the standard cell-centered finite
volume method on structured rectangular meshes [25]. In fact, if the coefficient k(x) in
(2.1) is a scalar function, then this method coincides with the standard cell-centered finite
volume method.

We need the matrix M in Eq. (2.7) to have the appropriate dimensions and to be in-
vertible in order to have a well defined discretization in Example 2.1. We state these
condition for future reference:

1. dim(Ph)+dim(Uh)=dim(Qh)+dim(Vh).

2. Matrix M is invertible.

We will follow Example 2.1 to derive a new mixed MsFV method in the next section.

3 A new mixed multiscale finite volume method

In order to describe the multiscale finite element method, we assume that the grids TH

and DH are coarse grids and that there exist an underlying fine grid containing the fine-
scale information. Fig. 2 depicts the rectangle primary coarse grid and dual coarse grid.
The velocity u is discretized on the interfaces EH of primary grid, e.g., Eij in Fig. 2, and
the pressure p is discretized on cell-centers of the primary mesh/the vertices of the dual
grid, e.g., vertex i, j,k,l in Fig. 2.

Define the discrete space for pressure to be PH =QH, the space of piecewise constants
on TH, and for velocity to be UH =VH, a multiscale finite element space with continuous
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Figure 2: Rectangle primary grid and dual grid.

normal on EH that will be defined in Subsection 3.1. Then the mixed multiscale finite
volume formulation for Eq. (2.3) reads: find {uH,pH}∈UH×PH such that





∫

Ω
k−1uH ·vHdx+ ∑

E∈EH

∫

E
vH ·nE[pH ]Edx=0, ∀vH ∈UH ,

∑
V∈TH

∫

∂Ki

uH ·nqHdx=
∫

Ω
f qHdx, ∀qH ∈PH,

(3.1)

where [pH ]E is the jump of pH across the interface E and defined in Example 2.1. It is
clear from Eq. (3.1) that the operators divH and ∇H are defines as follows:

∫

Ω
∇H pH ·vH dx= ∑

E∈EH

∫

E
vH ·nE [pH ]E dx, (3.2a)

∫

Ω
divh(uh)qh dx= ∑

V∈Th

∑
E∈∂V

∫

E
uh ·nEqh ds. (3.2b)

Clearly uH∈L2(Ω) and pH∈L2(Ω). By a similar argument as in Example 2.1, the discrete
system of (3.1) is symmetric.

3.1 A new multiscale velocity basis function

In order to complete the derivation of the method from (3.1), we need to define velocity
basis functions. In this subsection we design multiscale velocity basis functions associ-
ated with interfaces of EH.

Let Eij ∈ EH be any interface and Ωij (green part in Fig. 2) be an open set bounded

by edges el
ij, er

ij, eb
ij and et

ij. We construct a multiscale basis function φij associated to the
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Figure 3: Vector field of a velocity basis function for homogeneous permeability (left) and vector field of a
velocity basis function for heterogeneous permeability (right).

interface Eij as following:





−div(k∇φij)=0, in Ωij,

−k∇φij ·n=





−
v(x)·n∫

el
ij
v(x)·ndx

, on el
ij,

v(x)·n∫
el

ij
v(x)·ndx

, on er
ij,

0, on eb
ij∪et

ij,

(3.3)

where v(x) is a vector function and has some options depending on the multiscale fea-
tures (e.g., separable scales or non-separable scales). We will address the options for v(x)
later. Here n is the unit normal vector pointing out of Ωij. We would like to note that the
basis equation (3.3) is defined for a horizontal flux. By switching the no-flow boundary
condition and flow boundary condition, we can similarly define the basis equation pre-
senting a vertical flux. We define the velocity basis function ψij =−k∇φij and the finite
dimension space for velocity as

UH =
⊕

Eij∈EH

ψij.

Fig. 3 depicts the vector fields of velocity basis functions (horizontal flux) for homoge-
neous permeability and heterogeneous permeability (SPE 10, layer 85), respectively. The
figure confirms that the multiscale basis defined in (3.3) reflects the properties of the me-
dia/permeability. The multiscale basis functions are pre-computed and suited for paral-
lel computation.

For many multiscale problems, in particular, the problems with separable scales, we
can simply take v(x) = (1,1). No global information is used in this case, we call this
case the local multiscale method. If the permeability k has strong long range features
(e.g., highly channelized), we can use some global information v(x) related to the fea-
tures of u, e.g., the single-phase velocity at time zero, to construct the velocity multiscale
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basis functions [1]. In general, global information used to construct the basis functions in
highly heterogeneous permeability often yields much better approximation than a con-
stant boundary condition. Many numerical studies [1,21] show the global information is
very helpful to improve accuracy when the permeability k has distinguished long range
features. We note that one can use time-dependent global fields to construct multiscale
basis functions. This is helpful for compressible flow simulations.

If multiple global fields vn(x) (n=1,··· ,N) are used to build basis functions, then each
interface corresponds to multiple multiscale basis functions φn

ij (n=1,··· ,N), which solve





−div
(
k∇φn

ij

)
=0, in Ωij,

−k∇φn
ij ·n=





−
vn(x)·n∫

el
ij
vn(x)·ndx

, on el
ij,

vn(x)·n∫
el

ij
vn(x)·ndx

, on er
ij,

0, on eb
ij∪et

ij.

(3.4)

We note that the multiple global fields vn(x) can be associated to some representative
realizations in the setting of stochastic two-phase flows [22].

Remark 3.1. By the result of Owhadi and Zhang [28], we can use d (d = dim(Ω)) global
fields in (3.4). From the result, the global field vn(x)=−k∇pn (n=1,··· ,d) are the solutions
of the elliptic equations

{
−div(k∇pn)=0, in Ω,

pn = xn, on ∂Ω,
(3.5)

where x=(x1,··· ,xd).

Following the ideas in [21], the global information can be computed on an interme-
diate coarse grid using upscaling techniques. This will reduce the computation for the
global information.

Because the source term of the basis equation (3.3) is zero, the flux conservation im-
plies the following proposition.

Proposition 3.1. Let Eij ∈EH be any interface and ψij be the corresponding velocity basis func-
tion. Then ∫

Eij

ψij ·nEij
dx=1.

Moreover, all ψij are linear independent, i.e., they form a set of finite element basis functions.

Remark 3.2. If k is a constant in Ωij and no global information is used, then ψij and ψik

are orthogonal each other, i.e., the velocity basis function producing horizontal flux is
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orthogonal to the velocity basis function producing vertical flux. In fact, we can show
that (see [25])

ψij =

{
1

|Eij|
(1,0), on Ωij,

0, else,
and ψik =

{
1

|Eik|
(0,1), on Ωik,

0, else.

This coincides with the velocity basis in Example 2.1. If k is varied in the coarse block,
then ψij and ψik may not be orthogonal to each other any more. This can be observed
from Fig. 3 (right).

3.2 Analysis of the mixed MsFV

In this subsection we will show that the new mixed MsFV method is well defined. We
have to check the conditions (2). The first one is straightforward since PH = Qh and
UH = VH. The second condition is verified below. We also give more details how to
organize the computations.

The mixed finite volume formulation (3.1) implies the following algebraic linear sys-
tem

{
AU+BP=0,

CU = F,
(3.6)

where A is a mass matrix. Here B has only nonzero entries 1 and −1 and the BP repre-
sents the jump of P. The matrix C has only nonzero entries 1 and −1, and the sign de-
pends upon the normal direction to which the corresponding flux entries of U associate.
Because the first equation in (3.1) can be computed dual coarse block by dual coarse block
and the support of velocity basis function lies in a dual coarse block, A can be represented
as a block diagonal matrix, i.e., A=diag(A1,A2,···), where each diagonal block Ai is the
mass matrix associated to a dual coarse block.

A straightforward calculation implies the following proposition.

Proposition 3.2. Let B and C be defined in (3.6). Then BT =C.

Because the mass matrix A is block diagonal in the mixed MsFV, this allows to invert
each block entry A1,A2,··· , to eliminate the flux U and the computation (for A−1

1 ,A−1
2 ,··· ,)

is fast. It is known that mixed MsFEM also yields a system such as (3.6), but mass matrix
in mixed MsFEM is not block diagonal and one has to globally compute the inverse of
the mass matrix to eliminate the flux U. In general, the computation for the inverse in
mixed FEM is quite time-consuming when the mass matrix is large. This is an advan-
tage of mixed MsFV over mixed MsFEM. Fig. 4 shows the mass matrix for RT0 mixed
FEM (left) and mixed MsFEM (right), respectively, where 6×10 grid is used for both and
permeability is heterogeneous (portion of SPE 10 in layer 85).
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Figure 4: Sparsity patterns for mass matrix in lowest order Raviart-Thomas mixed FEM (left) and sparsity
patterns for mass matrix in mixed MsFEM (right).

We analyze the block diagonal entries of A. Let Dijkl be the control volume with
vertexes i, j, k, l. In Dijkl , uH can be represented by

uH|Dijkl
=uijψij+uikψik+ujlψjl +uklψkl .

Consequently, the first equation in (3.1) can be reduced to be in Dijkl




aij,ij aik,ij ajl,ij akl,ij

aij,ik aik,ik ajl,ik akl,ik

aij,jl aik,jl ajl,jl akl,jl

aij,kl aik,kl ajl,kl akl,kl







uij

uik

ujl

ukl


+




pj−pi

pk−pi

pl−pj

pl−pk


=




0
0
0
0


, (3.7)

where aik,ij :=
∫

Dijkl
k−1ψij ·ψikdx and the other entries are defined similarly. We define A to

be the most left matrix in (3.7) and it is a symmetric and positive Gram matrix. We would
like to note that A is a representative for the diagonal entries in A defined in (3.6). We
compute each multiscale basis functions ψij in fine scale by standard mixed FEM (e.g.,

Raviart-Thomas mixed FEM). Then ψij in Dijkl can be represented as ψij = ∑m rij,mψh
m,

where ψh
m are standard mixed finite element basis functions in fine scale. Hence A can be

computed in the following way.

Proposition 3.3. Let Ah be the Gram matrix with entries (Ah)mn =
∫

Dijkl
k−1ψh

m ·ψ
h
ndx and each

column of R consist of all rij,m. Then

A= RT AhR.

In particular, if permeability k is homogeneous (constant) in a dual coarse block and
the mesh is uniformly square and no global information is used, then a straightforward
calculation implies that the corresponding matrix

A=diag(2,2,2,2),
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i.e., A is a diagonal matrix with diagonal entry 2.
Because A is positive (or invertible), Eq. (3.7) implies that




uij

uik

ujl

ukl


= A−1




pi−pj

pi−pk

pj−pl

pk−pl


. (3.8)

Here A−1 is a transmissibility matrix. We plug the expression (3.8) into the second equa-
tion in (3.1) to obtain a system about the pressure,

DP= F. (3.9)

Here D = CA−1B, where B and C are defined in (3.6). We can show that D is sparse. In
fact, from Eq. (3.1), we know that only the fluxes of the interfaces of coarse volume Ki

contribute the mass conservation at volume Ki, and that each interface flux is determined
by its neighbor pressures. Consequently, there are at most 9 nonzero entries for each row
of matrix D for 2D rectangle cells. If we do not consider the restrictions of boundary
condition, D is symmetric. This can be shown by using the fact BT = C. Our numerical
studies show that D is positive. When permeability is homogeneous, a rigorous mathe-
matics proof for the positiveness can be found in [25]. Hence Eq. (3.9) is solvable. Once
we obtain the pressure values, then we go back to Eq. (3.8) to get the flux vector U.

In particular, if the permeability k is a constant, the scheme in (3.1) coincides with the
standard cell-centered difference scheme. In this case, we get the following matrix D̃ for
a 2D uniformly square 3×3 grid,

D̃=




2 −1 0 −1 0 0 0 0 0
−1 3 −1 0 −1 0 0 0 0
0 −1 2 0 0 −1 0 0 0
−1 0 0 3 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 3 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −1 0 −1 3 −1
0 0 0 0 0 −1 0 −1 2




. (3.10)

Here we assume Neumann boundary condition without restriction
∫

Ω
pdx =0. If we re-

strict
∫

Ω
pdx=0 for a unique solution, e.g., replace the fifth row in D̃ by (1,1,1,1,1,1,1,1,1),

the matrix D̃ becomes an invertible matrix D.
We summarize the computation as following:

Algorithm 3.1

1. For each interface Eij, we solve basis equation (3.3).
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2. By Eq. (3.1), we formulate an algebraic system (3.6).

3. Eliminate U by local systems (3.7) and obtain Eq. (3.9).

4. Solve Eq. (3.9) to get pressure P and return to Eq. (3.8) to get U.

5. By basis equation (3.3) and U, downscale coarse scale velocity to fine scale velocity.

3.3 Reconstruction of the fine-scale velocity field

Fluxes across the interfaces of primary coarse grid can be accurately computed by (3.8).
In many situations it is often needed to accurately compute the small-scale velocities
(or fluxes) in regions of interest. Although we can obtain the velocity in fine grid by
straightforwardly prolonging the multiscale basis function into fine grid, the velocity
are in general discontinuous on the interfaces of the dual coarse grid. Then large errors
can occur in the divergence field and local mass balance is violated. We can use a post-
procedure to reconstruct a conservative fine-scale velocity which is continuous on the
interfaces of both fine grid and coarse grid and fully consistent with the fluxes across the
coarse grid interfaces given by the velocity multiscale basis functions. We would like to
note that a similar post-procedure is used in MsFV [20]. We describe the post-procedure
as following.

Algorithm 3.2

1. Extract the velocities through the interfaces of all coarse primary cells K∈TH. Let uH |∂K be the
velocity across ∂K, the boundary of K.

2. On each coarse grid K, the following local problem is solved by mixed finite element methods (or
fine volume methods),

{
−div(k∇ p̃)= f , in K,

−k∇ p̃·n=uH |∂K ·n, on ∂K.
(3.11)

3. Define ũH =
⊕

K ũK
H, where ũK

H =−k∇ p̃ and p̃ solves (3.11).

By the post-procedure, ũH ∈ H(div,Ω), that is to say, ũH is continuous along all fine
interfaces and coarse interfaces.

Remark 3.3. Because there may exist some errors while computing uH,
∫

∂K uH ·ndx
may be not close to

∫
K f dx sufficiently. We can replace the source term f in (3.11) by

|K|−1
∫

∂K uH ·ndx to remedy the little disparity for better accuracy.

Remark 3.4. It the solution of problem (3.11) is considered to be computationally expen-
sive, another set of basis functions could be constructed only once and used during the
simulation (see [20] for a similar approach and [27] for details).
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4 More mixed finite volume methods and their multiscale

analogues

If we define different grids, approximation spaces or operators ∇h and divh, then we
can obtain different mixed finite volume methods. One mixed finite volume method has
already been described in Example 2.1 of Section 2, and its multiscale analogue has been
developed and analyzed in Section 3. In this section, we briefly present more examples
of mixed finite volume methods and their multiscale analogues.

The following Example 4.1 is closely related to Example 2.1.

Example 4.1. [Mixed FV 2] The primary grid Th and the dual mesh Dh are identical to
the ones in Example 2.1. The discrete space Ph for pressure is the space of bilinear func-
tions. The basis function of Ph for each cell center is one in the particular cell center and
zero in all neighbors. Qh is the space of piecewise constants on the primary grid. The
approximation space for the vector variable, Uh =Vh is the same as in Example 2.1 and
∇h =∇.

Unstructured grid is often used in practical simulations and mixed finite volume
method can apply to the unstructured grid (see [13] for extensive discussions). The fol-
lowing example describe a mixed finite volume method on an unstructured grid.

Example 4.2. [Mixed FV 3] We assume that the dual grid Dh consists of triangles and the
cells in the primary mesh Th are control volumes around each vertex in Dh. Particular
example is the Delauney mesh as a dual grid and the corresponding Voronoi grid as pri-
mary grid (see Fig. 5). The space Ph is the space of piece-wise linear functions on the dual
grid. The space Qh is the space of piece-wise constants on the primary grid. The approx-
imation space for the vector variable, Uh =Vh, is the space of piece-wise constant vectors
with continuous normal components and it is defined on the dual mesh (see Fig. 6). The
construction of the basis is analogous with the procedure described in Example 2.1. The
operator ∇h =∇. Note that the dual grid can be any mesh of triangles, and the primary

Figure 5: Voronoi box/Delaunay triangles.
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Figure 6: Triangle D.

grid can consists of control volumes, not necessarily convex polygons, around each ver-
tex. Frequently the control volumes are formed by connecting the middle of the edges
of each triangle with the center of mass of the triangle. The details of the method can be
found in [26].

If the dual grid is Delauney mesh and the primary grid is Voronoi mesh, then we can
approximate the scalar variable with piecewise constants, i.e., Ph is the space of piecewise
constants on the primary grid. Then the operator ∇h is defined by (2.6).

Here we consider a mixed finite volume method closely related to the multi-point flux
approximation (MPFA) discretizations [24].

Example 4.3. [Mixed FV 4] The primary mesh is a general quadrilateral mesh (see Fig.
7). The dual cells are formed by connecting the cell-centers with the centers of the edges
of the quadrilaterals. These lines split each primary cell Vi into four quadrilaterals Vi,j,
j=1,2,3,4. The space Ph is the space of piecewise linear functions on Vi,j with a common
point in the cell center and the other two points on the edges on the quadrilateral Vi,j (see
Fig. 8). The space Qh is the space of piecewise constant functions on the primary grid.
The space Uh is the space of piecewise vector constants with continuous normals on the
dual cells, and the space Vh is the space of piecewise vector constants on the dual cells.
Note that these two spaces have different dimensions. Each local subspace Uh,i has four
degrees of freedom. Each local subspace Vh,i has eight degrees of freedom. The operator
∇h is defined by

∫

Ω
∇h ph ·vhdx= ∑

Vi∈Th

4

∑
j=1

∫

Vi,j

∇ph ·vhdx.

Note that Ph here is not subspace of H1(Ω). The approximation of ∇p is nonconforming.
One way to make the mixed finite volume method more robust is to use a conforming
approximation. For example, it is possible to use as Ph the space of piecewise bilinear
functions on Vi,j. One extra basis function is added for each intersection of four adjoint
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Figure 7: Quadrilateral mesh with volumes and covolumes.

Figure 8: Quadrilateral Vi.

primary cells in two dimensions [9]. Extra basis functions are required for three dimen-
sional grids [17].

We note that the same procedure works for the grids in Example 3 [32].

We used the mixed finite volume methodology to develop a new mixed multiscale
method based on Example 2.1 in Section 3. We will sketch how we can follow the same
procedure and derive mixed multiscale finite volume methods based on Example 4.1-
Example 4.3. Some of the methods derived following this framework are known, most
are new.

We assume that a consistent mixed finite volume method is defined on the fine mesh,
i.e., fine primary and dual grids are given with the corresponding spaces and the oper-
ators. We need coarse primal and dual grids and we will assume that each coarse cell
consists of fine cell of the same type, i.e., every coarse primary grid cell is a union of
adjacent fine primary grid cells. The same is true for each coarse dual grid cell. This
construction is straightforward for the structured grids. We suppose that an appropriate
coarsening algorithm is used to define the coarse grid for the unstructured grids. The
next step is to define the approximation spaces. We will require that the coarse discrete
spaces provide some approximation of the corresponding functions. This requirement is
easily fulfilled if we follow the same procedure on the coarse structured grids. For exam-
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ple the space PH can consists of constant functions on the primary coarse grid TH. Then
the space UH has to be a multiscale space. We can consider a multiscale finite element
(e.g., [14, 18, 20] for detailed description) space for PH and the space UH could be the
space of piecewise constant vector functions on the dual cells. The situation is more com-
plicated for unstructured grids. We need approximation of the gradient of the pressure
on unstructured grids and therefore we have to use a multiscale finite element space PH.
The space UH can be either a standard piecewise vector constant space or a multiscale
space.

We provide below more details for several mixed multiscale methods that can be
derived following our methodology and using the mixed finite volume methods on the
fine grid in Examples 4.1-Example 4.3.

For better presentation, we call the mixed MsFV proposed in Section 3 to be Mixed
MsFV 1.

Example 4.4. [Mixed MsFV 2] The derivation below is related to Example 4.1 (Mixed
MsFV 2). The primary grid TH and the dual mesh DH are identical to the ones in Mixed
MsFV 1 (Section 3). We chose PH to be the space of multiscale functions. The space
Uh =Vh is the space of piecewise constant vector functions with continuous normals on
the dual coarse grid. The operator ∇H =∇.

The basis of PH on TH can be calculated in the same way as in [20]. Then we will
exactly reproduce the method proposed in [20]. We can derive a different method by
using a different basis for PH. For example, the discrete harmonic basis [14, 33] can be
constructed in a multilevel way, that is cheaper, and the computations can be performed
using only the fine matrix.

Another method is derived if we select PH to be the space of bilinear functions and
Uh = Vh to be a multiscale space defined in the same way as in Mixed MsFV 1. The
operator ∇H =∇.

The case for unstructured grids is more complicated. Here we sketch the derivation
of a mixed MsFV for unstructured fine triangular grids.

Example 4.5. [Mixed MsFV 3] We assume that the primary and dual grids TH, DH are
constructed from fine cells described in Example 4.2 (MFV 3) using an appropriate coars-
ening algorithm [33]. The first method we propose uses a multiscale space PH of discrete
harmonic functions discussed in previous example. The space UH =VH is the space of
constant vector functions with continuous normals. The operator ∇H =∇. Note that this
method does not use global information.

We recommend using the multiscale space UH =VH when it is beneficial to use some
global information about the problem and this information can be transferred using the
velocity. The basis functions for UH are constructed in a similar way as on the rectangular
grid. We modify the definition of the velocity basis function (3.3) as follows. Consider the
triangle D on Fig. 6. The basis function corresponding to li is the solution of the following
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boundary value problem:





−div(k∇φij)=0, in Di∪Dj,

−k∇φij ·n=





−
v(x)·n∫

eik
v(x)·ndx

, on eik,

v(x)·n∫
e jk

v(x)·ndx
, on ejk,

0, on lk∪lj,

0, on eij∪eji.

(4.1)

Again ∇H =∇.

Example 4.6. [Mixed MsFV 4] There are several ways to construct multiscale MPFA
methods. One approach is presented in [20]. This requires a construction of a multi-
scale space PH and the standard spaces for UH and VH. Another method with the ability
to utilize the available global information can be constructed by using a multiscale space
PH, not necessarily the same as in [20], and a multiscale spaces UH and VH defined in
similar way as (4.1). There exists a third way for rectangular or quadrilateral grids, such
that the edges of the coarse cells are straight lines. We can use the standard finite el-
ement space PH and a multiscale space UH. The framework also can be applied to the
MPFA discretizations proposed in [9,17,32] and the corresponding mixed MsFV methods
derived.

We note that it is difficult to apply standard multiscale basis functions in produc-
tion code because of the geometric grid information necessary to impose the appropriate
boundary conditions. It is also difficult to apply them for unstructured grids. If the coarse
grid is very distorted, it may happen that a point where the four quadrilaterals meet is
not in the support of the neighboring functions. This will decrease the accuracy. If dis-
crete harmonic and multilevel basis is used, then computation becomes cheaper and can
be applied on the matrix level (see [14]). The extensive study for these issues is still under
investigation.

5 Numerical results

In this section, we apply the mixed MsFV propped in Section 3 to simulate incompressible
two-phase flows in porous media. We will consider the porous media with non-separable
scales and separable scales. In the first example, the permeability field is from SPE Com-
parative Solution Project [10] (also known as SPE 10) and its scales are non-separable, and
it has channelized structure. In the second example, we consider the flows in two-point
correlation permeability. The permeability is described with a two-point correlation func-
tion and has non-separable scales and distinct spatial variation. In the third example, the
permeability is described by a periodic function with a small period and its scales are
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apparently separable. We apply the local mixed MsFV and global mixed MsFV to the
flows in the three types of permeability fields. We will find that the mixed MsFV can
provide accurate approximation on coarse grid and that using global information is able
to greatly improve accuracy for the cases of non-separable scales.

In our numerical simulations, we will perform two-phase flow and transport simu-
lations. The equations are given (in the absence of gravity and capillary effects) by flow
equations

div
(
λ(S)k∇p

)
= f , (5.1)

where the total mobility λ(S) is given by λ(S) = λw(S)+λo(S) and f is a source term.
Here, λw(S) = krw(S)/µw and λo(S) = kro(S)/µo, where µo and µw are viscosities of oil
and water phases, correspondingly, and krw(S) and kro(S) are relative permeability of oil
and water phases, correspondingly. The saturation is governed by

∂S

∂t
+div(F)=0, (5.2)

where F = v fw(S), with fw(S), the fractional flow of water, given by fw = λw/(λw+λo),
and the total velocity v by:

v=vw +vo =−λ(S)k∇p. (5.3)

In our simulations, we take krw(S) = S2 and kro(S) = (1−S)2. In the presence of capil-
lary effects, an additional diffusion term is present in (5.2) and an efficient treatment of
capillarity is proposed in [23]. We note that the porosity is 1 in the saturation equation
(5.2).

We solve the two-phase flow system (5.1) and (5.2) by the classical IMPES (implicit
pressure and explicit saturation). The saturation Eq. (5.2) is discretized in fine grid by up-
wind finite volume method. The temporal discretization is an implicit scheme, which is
unconditionally stable but produce a nonlinear system (Newton-Raphson iteration solves
the nonlinear system). For completeness, we describe the upwind finite volume method
for Eq. (5.2) in Appendix.

We compare the saturation fields and water-cut data as a function of pore volume
injected (PVI). The water-cut is defined as the fraction of water in the produced fluid
and is given by qw/qt, where qt = qo+qw, with qo and qw being the flow rates of oil
and water at the production edge of the model. In particular, qw =

∫
∂Ωout f (S)v·nds,

qt =
∫

∂Ωout v·nds, where ∂Ωout is the outer flow boundary. Pore volume injected, defined

as PVI = Vp
−1

∫ t
0

qt(τ)dτ, with Vp being the total pore volume of the system, provides
the dimensionless time for the displacement. We consider a traditional quarter five-spot
problem, where the water is injected at left bottom corner and oil is produced at the right
top corner of the rectangular domain. In all numerical simulations, multiscale basis func-
tions are constructed once at the beginning of the computations. In the discussions, we
refer to the grid where multiscale basis functions are constructed as a coarse grid. We
use the global single-phase information (where λ(S) = 1) to construct mixed MsFV ba-
sis functions. The global information is computed on fine grid at time zero and will not
change throughout the simulation.
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In the simulations, we solve the pressure equation on the coarse grid by Algorithm
3.1 and use the post-procedure described in Algorithm 3.2 to re-construct the fine-scale
velocity field which is used to solve the saturation equation.

We solve the two-phase pressure Eq. (5.1) by the mixed MsFV (mixed FEM for refer-
ence solution). For the numerical simulations, we use 10 time steps for pressure equation,
and for each pressure time step, we use 10 time steps to solve saturation equation. Hence,
the time step for pressure is 0.1 PVI and the time step for saturation is 0.01 PVI.

To assess the performance of the saturations and water-cuts obtained using the mixed
MsFV, we compute the time-dependent pressure equation on fine grid by using lowest or-
der Raviart-Thomas mixed finite element method, and this produces a reference velocity
to solve a reference saturation solution Sre f . By the reference saturation and the reference
velocity, we get the reference water-cut Wre f . We measure the relative saturation error in

L1-norm and the relative water-cut error in L2-norm,

‖SMsFV−Sre f‖L1

‖Sre f ‖L1

,
‖WMsFV−Wre f ‖L2

‖Wre f ‖L2

,

where SMsFV and WMsFV denote the saturation and water-cut by the mixed MsFV, respec-
tively.

5.1 Flow in SPE 10 permeability

For the first numerical example, we choose the SPE 10 permeability (layer 85), which is
highly channelized and defined on a 60×220 find grid. The permeability map is depicted
in Fig. 9. We take 3×5 coarse grid for both the global mixed MsFV and the local mixed
MsFV. We take tests for two different viscosity ratios of water and oil.

For the first test of the example, we consider the case that viscosity ratio µw/µo of
water and oil is less than 1. Here we take µw/µo =1/10 for the simulation. Fig. 10 shows
the reference (fine-scale) saturation profile, the saturation profile using the global mixed
MsFV and the saturation profile using the local mixed MsFV, respectively, at PV1 = 1.
Fig. 11 shows the saturation error via different PVI times. From the figure, we find
that the mixed MsFV using global information render more accurate saturation solutions
throughout the whole simulation than the saturation from the local mixed MsFV. The
water-cut curves are shown in Fig. 12 for reference, global mixed MsFV and local mixed
MsFV, respectively. The water break-through time is almost the same for the three meth-
ods, however, the water-cut curve by using global mixed MsFV is closer to the reference
water-cut curve at early time than the local mixed MsFV. The average errors of saturation
and water-cut are shown in Table 1. We observe that the error of the solution of the global
mixed MsFV is at least two times smaller than the error of the solution of the local MsFV.

For the second test of the example, we consider the case when µw/µo = 3. Fig. 13
depicts the reference saturation profile and the saturation profiles using both the global
mixed MsFV and the local mixed MsFV at PV1=1. Fig. 14 illustrates the saturation error
via different PVI times and the water-cut curves as well. From Fig. 13 and Fig. 14, we
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logarithm of SPE 10 permeability, layer=85
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Figure 9: Logarithm of SPE 10 permeability, layer 85.
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Figure 10: Saturation profiles, µw/µ0 = 1/10. Top: Reference saturation at PVI = 1. Middle: Saturation at
PVI =1 by the global mixed MsFV. Bottom: Saturation at PVI =1 by the local mixed MsFV.
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Figure 11: Saturation error via time, µw/µ0=1/10.
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Figure 12: Water-cut curves, µw/µ0 =1/10.
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Reference saturation at PVI=1
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Figure 13: Saturation profiles, µw/µ0=3. Top: Reference saturation at PVI=1. Middle: Saturation at PVI=1
by the global mixed MsFV. Bottom: Saturation at PVI =1 by the local mixed MsFV.
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Figure 14: Water-cut curves and saturation error via time, µw/µ0 =3.

find that global mixed MsFV performs better than local mixed MsFV in the point of view
of accuracy and water-breakthrough time. Table 2 shows the average errors of saturation
and water-cut for the test.

Table 1: Relative errors for saturation and water-cut, µw/µ0 =1/10.

mixed MsFV Water-Cut Error Saturation Error
local mixed MsFV 0.1140 0.2024

global mixed MsFV 0.0510 0.0870

Table 2: Relative errors for saturation and water-cut, µw/µ0 =3.

mixed MsFV Water-Cut Error Saturation Error
local mixed MsFV 0.1748 0.2892

global mixed MsFV 0.1062 0.1535



L. Jiang and I. D. Mishev / Commun. Comput. Phys., 11 (2012), pp. 19-47 41

logarithm of two−point correlation  permeability
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Figure 15: Logarithm of two-point correlation permeability.
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Figure 16: Top: Reference saturation at PVI = 1 for the second example. Middle: Saturation at PVI = 1 by
the global mixed MsFV. Bottom: Saturation at PVI =1 by the local mixed MsFV.

5.2 Flow in two-point correlation permeability

In the second example, we choose a realization of the permeability field generated using
a two-point correlation function with correlation lengths in x1-direction L1 = 0.4 and in
x2-direction L2 = 0.05. Exponential variogram is selected (see e.g., [12]) to generate the
permeability. The permeability is defined on 200×200 fine-grid and depicted in Fig. 15.
The viscosity ratio is µw/µo = 1/3 and the mixed MsFVs are implemented on 10×10
coarse grid. Fig. 16 depicts the reference saturation, the saturation field using the global
mixed MsFV and the saturation field using the local mixed MsFV, respectively.

Fig. 17 demonstrate the relative saturation error via different PVI times. From the
figure, we observe that mixed MsFV can provide a good approximation for the flow,
and that using global information improves the accuracy. The water-cut curves are de-
picted in Fig. 18 for reference, global mixed MsFV and local mixed MsFV, respectively.



42 L. Jiang and I. D. Mishev / Commun. Comput. Phys., 11 (2012), pp. 19-47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PVI time

relative saturation error

 

 

global mixed MsFV
local mixed MsFV

Figure 17: Saturation error via time for the second
example.
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Figure 18: Water-cut curves for the second exam-
ple.

Fig. 18 shows that the water-cut curve in global mixed MsFV is more close to the refer-
ence water-cut curve than the mixed MsFV without using global information, and that
the water break-through time in global mixed MsFV is almost the same as the reference
water break-through time. The average errors of saturation and water-cut are shown in
Table 3. From Table 3, we can observe: the saturation in the global mixed MsFV is almost
9 times better than the saturation in the local mixed MsFV, and the water-cut in global
mixed MsFV is around 3 times better than the water-cut in the local mixed MsFV.

Table 3: Relative errors for saturation and water-cut for the second example.

mixed MsFV Water-Cut Error Saturation Error
local mixed MsFV 0.0464 0.0610

global mixed MsFV 0.0127 0.0075

5.3 Flow in periodic permeability

In the third numerical example, we choose the permeability which is specified by a peri-
odic function

k(x,y)=
2+1.8sin

(
2πx

ǫ

)

2+1.8sin
( 2πy

ǫ

) +
2+1.8sin

( 2πy
ǫ

)

2+1.8cos
(

2πx
ǫ

) , ǫ=
1

25
.

The permeability is defined on 100×100 fine grid and its map is depicted in Fig. 19.
Fig. 20 depicts the reference (fine-scale) saturation, the saturation using the global mixed
MsFV and the saturation using the local mixed MsFV, respectively, at PVI =1. Here 5×5
coarse grid is taken for simulation in both the global mixed MsFV and the local mixed
MsFV and the viscosity ratio is µw/µo =1/10. Fig. 20 shows that the saturation profile by
global mixed MsFV is almost the same as the saturation profile by local mixed MsFV and
both of them are pretty close to the reference saturation profile. The saturation error via
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Figure 19: Periodic permeability.

Reference saturation at PVI=1
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Figure 20: Top: Reference saturation at PVI =1 for the third example. Middle: Saturation at PVI =1 by the
global mixed MsFV. Bottom: Saturation at PVI =1 by the local mixed MsFV.
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Figure 21: Saturation error via time for the third
example.
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Figure 22: Water-cut curves for the third example.
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different PVI times is shown in Fig. 21. It can be seen that the two saturation errors are
very close and quite small. The water-cut curves are shown in Fig. 22 for reference, global
mixed MsFV and local mixed MsFV, respectively. Fig. 22 shows that the three water-cut
curves coincides each other. The average errors of saturation and water-cut are shown
in Table 4. We find from Table 4 that: (1) the average errors of saturation and water-cut
by global mixed MsFV and local mixed MsFV are comparable. (2) the average errors of
saturation are less than 1% and the average errors of water-cut are less than 2%. This
example shows that local mixed MsFV can provide very good accuracy in the case of
separable scales (e.g., periodic) and its performance is as good as the global mixed MsFV.
The example confirms the findings for many multiscale finite elements (e.g., [3, 8, 21]).

Table 4: Relative errors for saturation and water-cut for the third example.

mixed MsFV Water-Cut Error Saturation Error
local mixed MsFV 0.0074 0.0171

global mixed MsFV 0.0082 0.0169

6 Conclusions

We developed a framework of mixed MsFV methods for elliptic equations arising from
flows in porous media. These methods take advantages of both mixed MsFEM and finite
volume methods. The essential characteristic of mixed MsFV is the explicit approxima-
tion of both pressure and velocity.

We proposed a new multiscale basis functions for velocity. Global information can be
used to construct the multiscale velocity basis functions to improve accuracy for highly
heterogeneous porous media. We analyze one of the mixed MsFV methods and apply it
to simulate two-phase flows in porous media. We test the method on permeability fields
with both non-separable and separable scales. Numerical examples demonstrate that
the mixed MsFV can efficiently approximate the two-phase flows on coarse grid. Using
global information in the mixed MsFV yields much better accuracy than the local mixed
MsFV if the permeability field has strong no-local features.

We also can use multiscale basis for the pressure. Discrete harmonic and energy min-
imizing basis constructed in a multilevel fashion is accurate and the computations are
very efficient [14, 33]. Moreover, the methods easily can be extended to unstructured
grids without requiring extra geometric information. Further investigation of these is-
sues is worth pursuing in the future.

Appendix: Upwind finite volume method for Eq. (5.2)

In the Appendix, we would like to present a finite volume discretization of the saturation
Eq. (5.2). Let γij be the common face (or edge) of Kh

i (underlying fine grid) and Kh
j (under-
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lying find grid) and nij be the normal vector pointing from Kh
i to Kh

j . Using the θ-rule for

temporal discretization and a finite-volume scheme for the saturation equation, it follows
the following form:

1

∆t
(Sn+1

i −Sn
i )+

1

|Kh
i |

∑
j 6=i

[
θFij(Sn+1)+(1−θ)Fij(Sn)

]
=0, (A.1)

where Sn
i is the cell-average of water saturation at t= tn, i.e.,

Sn
i = 〈S(x,tn)〉Kh

i

and Fij is a numerical approximation of the flux over γij, i.e.,

Fij(S)≈
∫

γij

fw(S)ijuij ·nijds.

Here fw(S)ij denotes the fractional-flow function associated with γij and the first-order
upstream weighting scheme for it is defined as

fw(S)ij =

{
fw(Si), if u·nij ≥0,

fw(Sj), if u·nij <0.

For θ =0 or 1, we can write (A.1) as a vector form

Sn+1 =Sn+(δt
x)

T A f (Sm), m=n or n+1,

where (δt
x)i =∆t|Kh

i |
−1.

If θ = 0, then (A.1) is an explicit scheme and only stable provided that time step ∆t
satisfies a stability condition.

For θ = 1, (A.1) is an implicit scheme and unconditionally stable but gives rise to
a nonlinear system. Such a nonlinear system is often solved with a Newton-Raphson
iterative method. Define

G(Sn+1)=Sn+1−Sn−(δt
x)

T A f (Sn+1). (A.2)

By Taylor expansion, we have

G(Sn+1)≈G(Sn)+G′(Sn)(Sn+1−Sn).

Noticing G(Sn+1)=0 we have δSn :=Sn+1−Sn =−[G′(Sn)]−1G(Sn). From (A.2), we have

G′(S)= I−(δt
x)

T A f ′(S),

where f ′(S)i = f ′(Si). Hence
Sn+1 =Sn+δSn.

This iteration proceeds until pre-defined iterations are reached or the norm of δSn is
smaller than a prescribed value.
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