
Commun. Comput. Phys.
doi: 10.4208/cicp.291010.180311a

Vol. 11, No. 1, pp. 114-146
January 2012

An Adaptive Moving Mesh Method for Two-Dimensional

Relativistic Hydrodynamics

Peng He and Huazhong Tang∗

HEDPS, CAPT & LMAM, School of Mathematical Sciences, Peking University,
Beijing 100871, China.

Received 29 October 2010; Accepted (in revised version) 18 March 2011

Available online 5 September 2011

Abstract. This paper extends the adaptive moving mesh method developed by Tang
and Tang [36] to two-dimensional (2D) relativistic hydrodynamic (RHD) equations.
The algorithm consists of two ”independent” parts: the time evolution of the RHD
equations and the (static) mesh iteration redistribution. In the first part, the RHD
equations are discretized by using a high resolution finite volume scheme on the fixed
but nonuniform meshes without the full characteristic decomposition of the govern-
ing equations. The second part is an iterative procedure. In each iteration, the mesh
points are first redistributed, and then the cell averages of the conservative variables
are remapped onto the new mesh in a conservative way. Several numerical examples
are given to demonstrate the accuracy and effectiveness of the proposed method.
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1 Introduction

Relativistic hydrodynamics plays a major role in many fields of modern physics, e.g.,
astrophysics, nuclear and high-energy physics and, lately, also in condensed matter. A
relativistic description of fluid dynamics should be used whenever matter is influenced
by large gravitational potentials, where a description in terms of the Einstein field theory
of gravity is necessary. It is also necessary in situations where the local velocity of the
flow is close to the light speed in vacuum or where the local internal energy density is
comparable (or larger) than the local rest mass density of the fluid. Alternatively, rela-
tivistic flows are present in numerous astrophysical phenomena from stellar to galactic
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scales, e.g., core collapse super-novae, X-ray binaries, pulsars, coalescing neutron stars
and black holes, micro-quasars, active galactic nuclei, super-luminal jets, and gamma-ray
bursts etc.

The dynamics of the relativistic systems require solving highly nonlinear equations,
rendering the analytic treatment of practical problems extremely difficult. Often studying
them numerically is a possible approach. The first attempt to solve the RHD equations
was made by Wilson in the 1970s [42,43], using an Eulerian explicit finite difference code
with a monotonic transport, depending on the artificial viscosity techniques to handle
shock waves. After that, various numerical methods are developed to solve the RHD
equations. We refer the readers to the review article by Martı́ and Müller [27]. Most
of those schemes are the generalizations of the shock-capturing Godunov-type methods
based on the exact or approximate Riemann solvers. These Riemann solvers either rely on
characteristic decompositions of the Jacobian matrix or not. Eulderink and Mellema [15]
and Falle and Komissarov [16] developed RHD solvers based on the local linearization,
respectively. Balsara [1], Dai and Woodward [8], and Mignone et al. [29] developed two-
shock approximation solver for the RHD system. A flux-splitting method was extended
to the RHDs in [12]. Schneider et al. [32] and Duncan and Hughes [13] presented the HLL
(Harten-Lax-van Leer) method in the context of the RHD equations. An extension of the
HLLC (Harten-Lax-van Leer-Contact) approximate Riemann solver for the RHDs was
presented by Mignone and Bodo [28]. ENO (essentially non-oscillatory) based methods
for the RHD system have been studied by Dolezal and Wong [11] and Del Zanna and
Bucciantini [45].

In practice, solutions to the (nonlinear) RHD equations are frequently smooth in large
fractions of the physical domain but contain sharp transitions or discontinuities in rela-
tively localized regions. In the smooth regions, relatively coarse numerical zoning may
be sufficient to accurately represent the solution, while finer zoning is needed where
sharp transitions occur. Because of this, adaptive mesh strategies are needed. Successful
implementation of the adaptive approaches can improve the accuracy of the numerical
approximation and decrease the computational cost. Adaptive moving mesh methods
have been playing an increasingly important role in many branches of scientific and en-
gineering areas. Up to now, there have been many important progresses in the adaptive
moving mesh methods for partial differential equations, including grid redistribution ap-
proaches based on the variational principle of Winslow [44], Brackbill [2], Brackbill and
Saltzman [3], Ren and Wang [31], and Wang and Wang [41]; moving finite element meth-
ods of Millers [30], and Davis and Flaherty [9]; moving mesh PDEs methods of Russell
et al. [5, 33], Li and Petzold [24], and Ceniceros and Hou [6]; and moving mesh methods
based on the harmonic mapping of Dvinsky [14], and Li, Tang and Zhang [10, 22, 23].
Computational costs of moving mesh methods can be efficiently saved with locally vary-
ing time steps [34]. Balanced monitoring of flow phenomena in moving mesh method is
recently discussed in [39]. We also refer the readers to recent review papers [4, 38] and
references therein.

The paper is organized as follows. Section 2 introduces the governing equations of
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the (ideal) relativistic hydrodynamics and gives the recovering procedure of the prim-
itive variables from the conservative variables, which is a key ingredient in numerical
algorithms of the RHDs. Section 3 is devoted to present the basic time evolution algo-
rithm for the two-dimensional (2D) RHD equations. It is a high-resolution finite volume
scheme on (general) quadrilateral meshes. Section 4 shows our moving mesh strategies
including the mesh iteration redistribution and the conservative interpolation for the con-
servative variables. The full solution procedure will be outlined in Section 5. Section 6
conducts several numerical experiments to demonstrate the efficiency of the proposed
adaptive moving mesh method. They are 2D smooth problem for the accuracy test, quasi
2D relativistic Riemann problems, genuinely 2D relativistic Riemann problems, the rela-
tivistic double Mach reflection problem, and the shock-bubble interaction problems. Sev-
eral concluding remarks are given in Section 7.

2 Governing equations

As the motion of the ideal compressible non-relativistic fluids, the motion of an ideal
relativistic fluid is also governed by the continuum equation, the momentum conserva-
tion, and the energy conservation. The covariant form of four-dimensional space-time
relativistic hydrodynamic (RHD) equations is given as follows [20]

{
∂α(ρuα)=0,

∂α

(
ρhuαuβ+pgαβ

)
=0,

(2.1)

where the Greek indices α and β run from 0 to 3, ∂α =∂xα stands for the covariant deriva-
tive, uα denotes the four-velocity vector, the metric tensor in this paper is restricted to the
Minkowski tensor, i.e.,

(
gαβ

)
4×4

= diag{−1,1,1,1}, ρ and p denote the rest-mass density
and the kinetic pressure, respectively, and h is the specific enthalpy defined by

h=1+e+
p

ρ
. (2.2)

Here e is the specific internal energy. Throughout the paper, units in which the speed of
light is equal to one will be used so that

xα =(t,x1,x2,x3)
T and uα =γ(1,v1,v2,v3)

T,

where γ=1/
√

1−v2 is the Lorentz factor and v2 :=v2
1+v2

2+v2
3.

An equation of state for the thermodynamical variables is needed to close the system
of Eq. (2.1). Assuming that the fluid is a perfect gas so that the equation of state can then
be expressed in the form of the algebraic equation

p=(Γ−1)ρe, (2.3)
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where Γ is the adiabatic index, taken as 5/3 for the mildly relativistic case and 4/3 for the
ultra-relativistic case, i.e., ρe≫0, see [45].

In order to solve the RHD equations using the conservative shock-capturing methods,
the covariant form (2.1) is casted into a system of conservation laws as follows

∂U

∂t
+

3

∑
i=1

∂F i(U)

∂xi
=0, (2.4)

where U and F i are the conservative variable vector and the flux vector in the xi-direction,
respectively, defined by

U =
(

D,m1,m2,m3,E
)T

, F1 =
(

Dv1,m1v1+p,m2v1,m3v1,m1

)T
,

F2 =
(

Dv2,m1v2,m2v2+p,m3v2,m2

)T
, F3 =

(
Dv3,m1v3,m2v3,m3v3+p,m3

)T
.

Here D=γρ, mi=Dhγvi and E=Dhγ−p denote the mass, xi-momentum and energy den-
sities relative to the laboratory frame, respectively, i =1,2,3. Relations between the labo-
ratory quantities (the mass density D, the momentum density mi, and the energy density
E) and the quantities in the local rest frame (the energy density e, the mass density ρ, and
the fluid velocity vi) introduce a strong coupling between the hydrodynamic equations
and pose additional numerical difficulties. In practical computations by using the con-
servative shock-capturing methods, the primitive variable vector V :=(ρ,v1,v2,v3,p)T has
to be calculated from the known conservative one U at each time step. This is very trivial
for the Euler equations of the perfect gas in the non-relativistic hydrodynamics, but the
relativistic case is not so trivial as the previous. Assuming that the values of U are given,
we can solve a non-linear pressure equation such as

E+p= Dγ+
Γ

Γ−1
pγ2, (2.5)

by any standard root-finding algorithm, e.g., Newton’s method, to get the pressure. Note

that the Lorentz factor γ in (2.5) has been rewritten into
(
1−(m2

1+m2
2+m2

3)/(E+p)2
)−1/2

.
Then γ, ρ, e, h, and vi can be calculated sequentially.

In the following, we will restrict our attention to two-dimensional RHD equations,
that is

∂U

∂t
+

2

∑
i=1

∂F i(U)

∂xi
=0, (2.6)

where the conservative variable vector U and the flux vector in the xi-direction F i, i=1,2,
become

U =
(

D,m1,m2,E
)T

, F1 =
(

Dv1,m1v1+p,m2v1,m1

)T
, F2 =

(
Dv2,m1v2,m2v2+p,m2

)T
.

Generally, numerical computations still need the eigenvalues of the Jacobian matrix
Bi=∂F i/∂U corresponding to the flux vector F i in (2.6), i=1,2, which have been discussed
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in the literatures, see e.g., [17]. Here, as an example, we only list four eigenvalues of the
Jacobian matrix B1

λ
(1)
1 =

v1(1−c2
s )−cs

√
(1−v2)

[
1−v2

1−(v2−v2
1)c2

s

]

1−v2c2
s

,

λ
(2)
1 =λ

(3)
1 =v1,

λ
(4)
1 =

v1(1−c2
s )+cs

√
(1−v2)

[
1−v2

1−(v2−v2
1)c2

s

]

1−v2c2
s

,

where cs denotes the sound speed, defined by

cs =
√

Γp/ρh. (2.7)

In the limit |v1|9 1, the 1st and 4th characteristic fields are genuinely nonlinear and
others are linearly degenerate. But, in the limit |v1| → 1, the 1st and 4th characteristic
fields will become linearly degenerate. The eigenvalues of the Jacobian matrix B2 can
be similarly obtained by using symmetry considerations. In the one-dimensional case,
the velocity component v2 disappears and two genuinely nonlinear characteristic fields
reduce to (v1∓cs)/(1∓v1cs).

For completeness, Appendix A shows the procedure of deriving the eigenvalues and
the eigenvectors of the Jacobian matrix Bi =∂F i/∂U.

3 Basic numerical scheme

This section is devoted to present the basic time evolution algorithm for the two-
dimensional RHD equations (2.6). It is a high-resolution finite volume scheme on (gen-
eral) quadrilateral meshes.

Denote the coordinate (x1,x2) by x and given a partition of the physical domain Ωp

as {Aj+ 1
2 ,k+ 1

2
|Aj+ 1

2 ,k+ 1
2
⊂Ωp, j,k∈Z} and a partition of the time interval [0,T], {tn+1 = tn+

∆tn|∆tn >0, n∈N}, where Aj+ 1
2 ,k+ 1

2
is a quadrangle with four vertexes xj,k,xj+1,k,xj+1,k+1

and xj,k+1, see its schematic interpretation in Fig. 1 and the time step size ∆tn will be

suitably chosen following the stability requirement. We will use L(ℓ) to denote the ℓth

edge of Aj+ 1
2 ,k+ 1

2
and n(ℓ) =(n

(ℓ)
1 ,n

(ℓ)
2 ) be the outward unit normal vector on the ℓth edge

of the control volume Aj+ 1
2 ,k+ 1

2
, ℓ=1,2,3,4. For example, the edge L(1) is the line segment

with two end points xj,k and xj+1,k, and then other edges are ordered sequentially in an
anticlockwise direction.

Integrating the Eq. (2.6) over the control volume Aj+ 1
2 ,k+ 1

2
and using the divergence

theorem gives
∣∣Aj+ 1

2 ,k+ 1
2

∣∣ d

dt
U j+ 1

2 ,k+ 1
2
(t)+

4

∑
ℓ=1

∫

L(ℓ)
Fn(ℓ)(U)ds=0, (3.1)
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A

j,k

j,k+1
j+1,k+1

j+1,k

j+1/2, k+1/2

Figure 1: A schematic interpretation of Aj+ 1
2 ,k+ 1

2
.

where
∣∣Aj+ 1

2 ,k+ 1
2

∣∣ denotes the area of the control volume Aj+ 1
2 ,k+ 1

2
, Fn(ℓ) = F1n

(ℓ)
1 +F2n

(ℓ)
2 ,

and U j+ 1
2 ,k+ 1

2
(t) is the cell average of the conservative variable vector U(x,t) over the cell

Aj+ 1
2 ,k+ 1

2
, i.e.,

U j+ 1
2 ,k+ 1

2
(t)=

1∣∣Aj+ 1
2 ,k+ 1

2

∣∣
∫

A
j+ 1

2 ,k+ 1
2

U(x,t)dx. (3.2)

Eq. (3.1) is the base of the finite volume scheme approximating (2.6) and may be con-
sidered as a governing equation for the cell averages {U j+ 1

2 ,k+ 1
2
(t)}. To derive a finite

volume scheme of (2.6), the solution U or the flux Fn(ℓ)(U) appeared in the second term
at the left hand side of (3.1) should be approximated appropriately. Usually, a two-point
numerical flux F̂n(ℓ)(UL,UR) is used to approximate the flux Fn(ℓ)(U) in (3.1) so that we
have a semi-discrete numerical scheme for (3.1)

d

dt
U j+ 1

2 ,k+ 1
2
(t)=− 1∣∣Aj+ 1

2 ,k+ 1
2

∣∣
4

∑
ℓ=1

∫

L(ℓ)
F̂n(ℓ)(U

(ℓ)
L ,U

(ℓ)
R ) ds, (3.3)

where U
(ℓ)
L and U

(ℓ)
R are defined by

U
(ℓ)
L := lim

x→x(ℓ)−
Uh(x,t), U

(ℓ)
R := lim

x→x(ℓ)+
Uh(x,t), x(ℓ)∈L(ℓ).

Here Uh(x,t) is an approximation of the exact solution U, e.g., a piecewise polynomial
obtained or reconstructed by using the cell averages {U j+ 1

2 ,k+ 1
2
(t)}. The numerical flux

F̂n(ℓ)(U
(ℓ)
L ,U

(ℓ)
R ) may be formulated by using either approximate or exact Riemann solvers.

For the sake of simplicity, a local Lax-Friedrichs flux

F̂n(ℓ)(U
(ℓ)
L ,U

(ℓ)
R )=

1

2

(
Fn(ℓ)(U

(ℓ)
L )+Fn(ℓ)(U

(ℓ)
R )−Q(ℓ)(U

(ℓ)
R −U

(ℓ)
L )

)
(3.4)

is employed in the current work, where Q(ℓ) = Q(ℓ)(U
(ℓ)
L ,U

(ℓ)
R ) denotes the numerical vis-

cosity matrix, which is assumed to be a diagonal matrix and each of its diagonal elements
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is not less than maxU maxm{|λ(m)

n(ℓ) |} in order to preserve the numerical stability, and λ
(m)

n(ℓ)

denotes the mth eigenvalue of the Jacobian matrix ∂Fn(ℓ)(U)/∂U, m=1,2,3,4.
Our numerical scheme is restricted to second-order accurate shock-capturing schemes

based on the initial reconstruction technique. In this case, the definite integral in (3.3) can
be approximately calculated by using the midpoint rule and the approximate solution
Uh(x,t) is defined as a piecewise linear function of x such as

Uh(x,t)=U j+ 1
2 ,k+ 1

2
(t)+Sj+ 1

2 ,k+ 1
2
(t)

(
x−xj+ 1

2 ,k+ 1
2

)
, x∈Aj+ 1

2 ,k+ 1
2
, (3.5)

where Sj+ 1
2 ,k+ 1

2
(t) is an approximation of the ”gradient” ∇U(xj+ 1

2 ,k+ 1
2
,t) obtained by us-

ing any slope limiter and the cell averages {U j+ 1
2 ,k+ 1

2
}. After those, the scheme (3.3) is

replaced with

d

dt
U j+ 1

2 ,k+ 1
2
(t)=− 1∣∣Aj+ 1

2 ,k+ 1
2

∣∣
4

∑
ℓ=1

F̂n(ℓ)

(
U

(ℓ)
L ,U

(ℓ)
R

)
|L(ℓ)|, (3.6)

where |L(ℓ)| is the length of the line segment or the edge L(ℓ), U
(ℓ)
L and U

(ℓ)
R for ℓ=1 and

2 are

U
(1)
L =U j+ 1

2 ,k+ 1
2
(t)+Sj+ 1

2 ,k+ 1
2
(t)

(
xj+ 1

2 ,k−xj+ 1
2 ,k+ 1

2

)
,

U
(1)
R =U j+ 1

2 ,k− 1
2
(t)+Sj+ 1

2 ,k− 1
2
(t)

(
xj+ 1

2 ,k−xj+ 1
2 ,k− 1

2

)
,

U
(2)
L =U j+ 1

2 ,k+ 1
2
(t)+Sj+ 1

2 ,k+ 1
2
(t)

(
xj+1,k+ 1

2
−xj+ 1

2 ,k+ 1
2

)
,

U
(2)
R =U j+ 3

2 ,k+ 1
2
(t)+Sj+ 3

2 ,k+ 1
2
(t)

(
xj+1,k+ 1

2
−xj+ 3

2 ,k+ 1
2

)
,

and U
(ℓ)
L and U

(ℓ)
R for ℓ=3 and 4 can be similarly given.

Remark 3.1. In practical computations, the reconstruction of the primitive variables in
the logical domain Ωl will replace the reconstruction of the conservative variables in

(3.5) so that the values of the primitive variables V
(ℓ)
L and V

(ℓ)
R are calculated instead of

U
(ℓ)
L and U

(ℓ)
R for the numerical fluxes or the time evolution of the cell averages. There

are two advantages of reconstructing the primitive variables instead of the conservative
variables. The first is that calculating the primitive variables from the known cell aver-
ages of the conservative vector is reduced to once per cell in (3.3). The second is that it is
easy to avoid the occurrence of the nonphysical values of the physical variables e.g., the
negative pressure and the velocity larger than the speed of light.

Because both Fn(ℓ) and U are functions of the primitive variables V , the numerical flux
(3.4) for (3.6) can be rewritten as follows

F̂n(ℓ)

(
V

(ℓ)
L ,V

(ℓ)
R

)
=

1

2

(
Fn(ℓ)

(
U(V

(ℓ)
L )

)
+Fn(ℓ)

(
U(V

(ℓ)
R )

))

− 1

2
Q(ℓ)

(
U(V

(ℓ)
L ),U(V

(ℓ)
R )

)(
U(V

(ℓ)
R )−U(V

(ℓ)
L )

)
,
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with (for example)

V
(2)
L =V j+ 1

2 ,k+ 1
2
+

1

2
δV

(2)

j+ 1
2 ,k+ 1

2

, V
(2)
R =V j+ 3

2 ,k+ 1
2
− 1

2
δV

(2)

j+ 3
2 ,k+ 1

2

, (3.7)

where the primitive variable vector V j+ 1
2 ,k+ 1

2
is calculated from the known cell average

U j+ 1
2 ,k+ 1

2
. The ”approximated slope” δV is computed by using the values {V j+ 1

2 ,k+ 1
2
} and

any slope limiter, such as the minmod limiter, the van Leer limiter, or the monotonized
central difference limiter, see [21].

Remark 3.2. Other numerical fluxes can also be used, e.g., the HLL (Harten-Lax-van
Leer) flux

F̂
HLL
nℓ =





FL, 0≤α−≤α+,

α+FL−α−FR+α+α−(Uℓ
R−Uℓ

L)

α+−α−
, α−<0<α+,

FR, α−≤α+≤0,

(3.8)

where FL = Fnℓ(Uℓ
L) and FR = Fnℓ(Uℓ

R), and the coefficients α± are taken into account the
highest speeds of the head and the tail of the Riemann fan, which can be estimated from

the minimum eigenvalue λ
(1)

n(ℓ) and the maximum eigenvalue λ
(4)

n(ℓ), that is

α−=min
{

λ
(1)

n(ℓ)(V ℓ
L),λ

(1)

n(ℓ)(V ℓ
R)

}
, α+ =max

{
λ

(4)

n(ℓ)(V ℓ
L),λ

(4)

n(ℓ)(V ℓ
R)

}
.

The numerical resolution of the HLL numerical flux (3.8) is similar to the above local
Lax-Friedrichs flux. They are more dissipative than the numerical flux based on the exact
Riemann solver, but the latter is more complicated and time-consuming.

Remark 3.3. To approximate the system of ordinary differential equations (3.6) in time,
we use the second-order accurate Runge-Kutta time discretizations. More precisely, if we
rewrite the system (3.6) in a compact form

d

dt
U = L(t,U)= L

(
t,U(V)

)
=: L̃(t,V),

then it may be approximated by the following explicit second-order accurate Runge-
Kutta method

U∗=Un+∆tn L̃(tn,V n), (3.9a)

Un+1 =
1

2

(
Un+U∗+∆tn L̃(tn,V∗)

)
, (3.9b)

where U and V are the conservative and primitive variable vectors respectively.
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4 Mesh iteration redistribution

This section presents the adaptive mesh moving strategies including the iteration redis-
tribution of the mesh points and the conservative interpolation of the conservative vari-
ables. We refer the readers to [36] for details.

4.1 Redistribution of the mesh point

Let Ωl and Ωp be the two-dimensional (2D) logical domain with coordinates ξ =(ξ1,ξ2)
and the 2D physical domain with coordinates x = (x1,x2), respectively. A one-to-one
coordinate transformation from Ωl to Ωp is denoted by

x= x(ξ), ξ∈Ωl. (4.1)

We limit our attention to the case of that the physical domain Ωp is convex and the trans-
formation (4.1) is to find the minimizer of the following ”mesh-energy” functional de-
fined by

Ẽ[x]=
1

2

2

∑
i=1

∫

Ωl

(∇̃xi)
TGi∇̃xidξ, (4.2)

where ∇̃=(∂ξ1
,∂ξ2

)T, and G1 and G2 are two given symmetric positive definite matrices
called the monitor functions. More terms can be added to the above functional to control
other aspects of the mesh such as the orthogonality and the alignment with a given vector
field, see e.g., [2, 3]. The corresponding Euler- Lagrange equations of (4.2) are

∇̃·(Gi∇̃xi)=0, ξ∈Ωl , i=1,2. (4.3)

Solving the Euler-Lagrange equations or the mesh equations (4.3) on Ωl will give directly
a coordinate transformation x = x(ξ) from the logical domain Ωl to the physical domain
Ωp. Note that Eq. (4.3) is convenient to be numerically solved since the 2D logical domain
is chosen as a unit square in most cases.

In general, the monitor functions depend on the solutions or their derivatives of the
underlying governing equations and are one of the most important elements in the adap-
tive moving mesh methods. Appropriate choice of the monitor will generate the meshes
with high quality. The simplest choice of the monitor function is

Gi =diag{ω,ω} (4.4)

introduced by Winslow [44], where ω is a positive weight function. It produces isotropic
or nondirectional mesh adaptation. A simple directional monitor function considered
in [35] is

Gi =diag{ω1,ω2}, (4.5)
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where ω1 and ω2 are two positive weight functions. The monitor function (4.5) will affect
mainly the mesh point redistribution in the direction of the logical coordinate lines and
reduces to the Winslow monitor function (4.4) if ω1 =ω2.

In our computations, the mesh equations (4.3) are approximated by the central dif-
ference scheme on the uniform square mesh and then solved by using the Gauss-Seidel
type iteration method

(ω1)
[ν]

j+ 1
2 ,k

(
x
[ν]
j+1,k−x

[ν+1]
j,k

)
−(ω1)

[ν]

j− 1
2 ,k

(
x
[ν+1]
j,k −x

[ν+1]
j−1,k

)

+(ω2)
[ν]

j,k+ 1
2

(
x
[ν]
j,k+1−x

[ν+1]
j,k

)
−(ω2)

[ν]

j,k− 1
2

(
x
[ν+1]
j,k −x

[ν+1]
j,k−1

)
=0, (4.6)

where

(ω1)
[ν]

j± 1
2 ,k

=
1

2

((
ω1(V

[ν]

j± 1
2 ,k+ 1

2

)
)
+

(
ω1(V

[ν]

j± 1
2 ,k− 1

2

)
))

,

(ω2)
[ν]

j,k± 1
2

=
1

2

((
ω2(V

[ν]

j+ 1
2 ,k± 1

2

)
)
+

(
ω2(V

[ν]

j− 1
2 ,k± 1

2

)
))

.

The mesh iteration is continued until ‖x[ν]−x[ν+1]‖< ε or ν≥3, where ε is an error toler-
ance.

Different problems may be equipped with different monitor functions. There are sev-
eral choices of the monitor functions introduced by the existing works for various prob-
lems. We refer the readers to [19, 35–37] and references therein. In this work, the weight
functions ω in (4.4) and ωi in (4.5) are respectively chosen as follows

ω(V)=

√√√√1+
3

∑
ℓ=1

αℓ

(
min

{
1,

|∇̃ψℓ|
βℓmax|∇̃ψℓ|+(1−βℓ)min|∇̃ψℓ|

})2
, (4.7)

ωi(V)=

√√√√1+
3

∑
ℓ=1

αiℓ

(
min

{
1,

|∂ψℓ/∂ξi|
βℓmax|∇̃ψℓ|+(1−βℓ)min|∇̃ψℓ|

})2
, (4.8)

where ψℓ are some physical variables or their functions and αℓ, αiℓ, and βℓ are some non-
negative constants, but βℓ∈ [0,1], ℓ=1,2,3, i=1,2.

Remark 4.1. In practice, it is common to use some temporal or spatial smoothing on the
monitor function to obtain smoother meshes. One of the reasons for using smoothing is
to avoid very singular mesh and/or large approximation errors near those regions where
the solution has a large gradient. In this work, the following low pass filter is applied to
smooth the monitor function

(ωi)j+ 1
2 ,k+ 1

2
← 1

4
(ωi)j+ 1

2 ,k+ 1
2
+

1

8

(
(ωi)j+ 3

2 ,k+ 1
2
+(ωi)j+ 1

2 ,k+ 3
2
+(ωi)j− 1

2 ,k+ 1
2
+(ωi)j+ 1

2 ,k− 1
2

)

+
1

16

(
(ωi)j+ 3

2 ,k+ 3
2
+(ωi)j+ 3

2 ,k− 1
2
+(ωi)j− 1

2 ,k+ 3
2
+(ωi)j− 1

2 ,k− 1
2

)
,

2∼3 times at each iteration of (4.6).
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Remark 4.2. In many flow situations, the discontinuities may initially exist in bound-
aries or move to boundaries at a later time. As a consequence, the grid points on the
boundaries of the physical domain Ωp should be redistributed in order to improve the
quality of the solution near boundaries of Ωp. This work uses the redistribution strategy
for boundary points given in [36].

4.2 Interpolation of the conservative variables

After each iteration of the mesh redistribution by (4.6), the solution information has to be

passed from the ”old” mesh {x
[ν]
j,k} to the ”new” mesh {x

[ν+1]
j,k }. Use A

[ν+1]

j+ 1
2 ,k+ 1

2

and A
[ν]

j+ 1
2 ,k+ 1

2

to denote the quadrangles (finite control volumes) with four vertices
{

x
[ν+1]
j+p,k+q,p,q=0,1

}

and
{

x
[ν]
j+p,k+q,p,q=0,1

}
, respectively.

A conservative interpolation scheme is derived by using a perturbation method

in [36] to update the cell average values U j+ 1
2 ,k+ 1

2
on the control volume A

[ν+1]

j+ 1
2 ,k+ 1

2

. It

is of form∣∣∣A
[ν+1]

j+ 1
2 ,k+ 1

2

∣∣∣U [ν+1]

j+ 1
2 ,k+ 1

2

=
∣∣∣A

[ν]

j+ 1
2 ,k+ 1

2

∣∣∣U [ν]

j+ 1
2 ,k+ 1

2

−
(
cn(1)U

[ν]
)

j+ 1
2 ,k
−

(
cn(2)U

[ν]
)

j+1,k+ 1
2

−
(
cn(3)U

[ν]
)

j+ 1
2 ,k+1
−

(
cn(4)U

[ν]
)

j,k+ 1
2
, (4.9)

where
∣∣∣A

[ν+1]

j+ 1
2 ,k+ 1

2

∣∣∣ and
∣∣∣A

[ν]

j+ 1
2 ,k+ 1

2

∣∣∣ denote the areas of the corresponding control volumes,

respectively, and the components of the mesh velocity in the direction n(ℓ) are approxi-
mately defined by

cn(1) =
1

2

(
c1
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j+1,k

)(
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[ν]
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ĵ,k+1
−(x1)

[ν]
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2
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where cn(ℓ) = cTn(ℓ), c=(c1,c2)=
(

x
[ν]
1 −x

[ν+1]
1 ,x

[ν]
2 −x

[ν+1]
2

)
, and n(ℓ) is the normal outward

vector of the ℓth edge of the control volume A
[ν]

j+ 1
2 ,k+ 1

2

, ĵ := j+1 and k̂ := k+1.

In Eq. (4.9), the fluxes (cn(ℓ)U
[ν])j+r,k+ 1

2
and (cn(ℓ)U

[ν])j+ 1
2 ,k+s, r,s = 0 or 1, denote the

values of cn(ℓ)U
[ν] on the corresponding edge of the control volume A

[ν]

j+ 1
2 ,k+ 1

2

, where ℓ=

1,2,3,4. They will be approximated by using an upwind scheme. For example, the term
(cn(2)U

[ν])j+1,k+ 1
2

may be approximated by

(
cn(2)U
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)

j+1,k+ 1
2
=

cn(2)
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(
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. (4.10)
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In order to avoid large numerical dissipation, the initial reconstruction technique de-
scribed in Section 3 will be used in practical computations so that for example, we have
the numerical flux

(cn(2)U
[ν])j+1,k+ 1

2
=

cn(2)

2
(U

(2)
R +U

(2)
L )− |cn(2) |

2
(U

(2)
R −U

(2)
L ). (4.11)

It can be easily verified that the interpolation (4.9) preserves conservation of the con-
servative variables U in the discrete sense

∑
j,k

∣∣∣A
[ν+1]

j+ 1
2 ,k+ 1

2

∣∣∣U [ν+1]

j+ 1
2 ,k+ 1

2

=∑
j,k

∣∣∣A
[ν]

j+ 1
2 ,k+ 1

2

∣∣∣U [ν]

j+ 1
2 ,k+ 1

2

. (4.12)

Remark 4.3. The conservative interpolation scheme can also be constructed from the
viewpoint of the geometry, see [19].

5 Solution procedure

This section summarizes the solution procedure of our adaptive mesh strategy for two-
dimensional relativistic hydrodynamic (RHD) equations (2.6). It consists of two ”inde-
pendent” parts: the time evolution of the RHD equations and the (static) mesh iteration
redistribution. In the first part, the RHD equations are discretized by using a high resolu-
tion finite volume scheme on the fixed meshes without the full characteristic decomposi-
tion of the governing equations, see Section 3. The second part is an iterative procedure,
see Section 4. In each iteration, the mesh points are first redistributed, and then the cell
averages of the conservative variables are remapped onto the new mesh in a conservative
way.

The solution procedure can be illustrated by the following flowchart:

Step 1 At the time level n = 0, generate an initial adaptive mesh x0
j,k according to the initial data

U(x,0) and compute the cell averages of the conservative variables U
0
j+ 1

2 ,k+ 1
2
.

Step 2 If n>0, set x
[0]
j,k :=xn

j,k, U
[0]

j+ 1
2 ,k+ 1

2

:=U
n
j+ 1

2 ,k+ 1
2
.

For ν=0,1,2,··· ,µ−1, do the following:

(a) Compute and smooth the monitor function ω
[ν]

j+ 1
2 ,k+ 1

2

and move the mesh point x
[ν]
j,k to a

new position x
[ν+1]
j,k by (4.6).

(b) Update the conservative variables, i.e., compute U
[ν+1]

j+ 1
2 ,k+ 1

2

by (4.9) and (4.11).

(c) Recover the primitive variables V
[ν+1]

j+ 1
2 ,k+ 1

2

from the conservative variables U
[ν+1]

j+ 1
2 ,k+ 1

2

.

Step 3 Set U
n
j+ 1

2 ,k+ 1
2

:= U
[µ]

j+ 1
2 ,k+ 1

2

, V
n
j+ 1

2 ,k+ 1
2

:= V
[µ]

j+ 1
2 ,k+ 1

2

and xn+1
j,k := x

[µ]
j,k . Then, solve the RHD

equations (2.6) as follows:
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(a) Compute the characteristic speed and determine the time step size ∆tn according to the
CFL condition.

(b) Solve the RHD equations with the second-order accurate finite volume scheme given in

Section 3 to get the conservative variables U
n+1
j+ 1

2 ,k+ 1
2
.

(c) Recover the primitive variables V
n+1
j+ 1

2 ,k+ 1
2

from the conservative variables U
n+1
j+ 1

2 ,k+ 1
2
.

Step 4 If tn+1 <T, then go to Step 2. Otherwise output the results and stop.

6 Numerical experiments

This section will test our two-dimensional (2D) adaptive moving mesh method for some
relativistic hydrodynamic (RHD) problems: a 2D smooth problem, two quasi 2D RHD
Riemann problems, three 2D RHD Riemann problems, a 2D RHD double Mach reflection
problem, and two RHD shock-bubble interaction problems. In our computations, the lo-
cal Lax-Friedrichs flux is adopted for the basic finite volume scheme, the monotonized
central difference limiter [40] will be chosen for the initial reconstruction in solving dif-
ferent problems, and the CFL number is taken as 0.24 unless otherwise stated. All the
simulations are completed under the Windows environment of a personal computer of
Lenovo (Intel(R) Core(TM)i5 CPU 650 3.20GHZ 2.8GB RAM). For convenience, we will
use the notation (x,y) to replace the previous (x1,x2) in this section.

6.1 Accuracy test

Example 6.1 (2D smooth problem). In order to check the accuracy of the proposed adap-
tive moving mesh method for RHDs, we first solve a 2D smooth problem describing a
RHD wave propagating in the physical domain Ωp=[0,2/

√
3]×[0,2] at an angle of α=30◦

relative to the x-axis. The initial conditions are taken as

ρ(x,y,0)=1+0.2sin
(
2π(xcosα+ysinα)

)
,

v1(x,y,0)=0.2, v2(x,y,0)=0, p(x,y,0)=1.

The problem has the exact solution in the following form

ρ(x,y,t)=1+0.2sin
[
2π

(
(xcosα+ysinα)−(v1cosα+v2sinα)t

)]
,

v1(x,y,t)=0.2, v2(x,y,t)=0, p(x,y,t)=1.

The domain Ωp is assumed to be divided into N×2N and the periodic boundary condi-
tions are used. Table 1 gives the relative numerical errors δN and the convergence rates
RN at t=2, where

δN =
∑

N
j=1 ∑

2N
k=1

∣∣ρN
j,k−ρexact

j,k

∣∣

∑
N
j=1∑

2N
k=1

∣∣ρexact

j,k

∣∣ , (6.1)
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Table 1: Example 6.1: Numerical errors and convergence rates at t = 2 on the uniform meshes and adaptive
moving meshes.

N Fixed mesh Moving mesh with Moving mesh with
α11 =α21 =10 α11 =α21 =20

δN RN δN RN δN RN

32 1.83e-03 – 5.44e-03 – 6.13e-03 –
64 4.93e-04 1.89 1.43e-03 1.92 1.74e-03 1.82

128 1.28e-04 1.95 3.54e-04 2.02 4.59e-04 1.92
256 3.18e-05 2.01 8.04e-05 2.14 1.10e-04 2.06

and

RN = log2

(δ N
2

δN

)
. (6.2)

In the computations, the ideal equation of state is used with Γ = 5/3, and the monitor
function is chosen as (4.5) and (4.8) with (ψ1,ψ2,ψ3) = (ρ,p,v1), α12 = α22 = α13 = α23 = 0,
(β1,β2,β3) = (1,0,0), and two different values for (α11,α21). The results show that the
2nd order accuracy may be obtained for each case. However, it is worth noting that the
accuracy of an adaptive moving mesh algorithm is generally dependent on choice of the
monitor function. Fig. 2 displays the adaptive meshes of 32×64 cells at three different
times t = 1, 1.5 and 2, which are obtained by the adaptive moving mesh method with
α11 =α21 =10.
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Figure 2: Example 6.1: The adaptive meshes of 32×64 cells at three different times t=1, 1.5 and 2.

6.2 Quasi 2D Riemann problems

Next, two quasi 2D RHD Riemann problems are solved by our 2D moving mesh method.
Those problems have been considered to validate the 1D shock-capturing schemes for
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the relativistic hydrodynamics in [25, 28]. In order to verify the ability of the present
adaptive moving mesh method, its solutions will be compared to the analytical solutions
and the numerical solutions obtained by using the corresponding method on the fixed
uniform meshes. The domain Ωp is taken as [0,1]×[0,0.1], which is covered by non-
uniform 150×10 cells for the adaptive moving mesh method and uniform 400×10 cells
respectively. The initial discontinuity of the quasi 2D RHD Riemann problems are located
at x =0.5, and corresponding exact solutions can be obtained by an iteration procedure,
see e.g., [26].

Example 6.2 (Quasi 2D Riemann problem I). The initial data of the first quasi 2D Riemann
problem are

(ρ,v1,v2,p)=

{
(1,0.9,0,1), x<0.5,

(1,0,0,10), x>0.5.
(6.3)

In the computations, the ideal equation of state with Γ = 4/3 is used, and the monitor
function is chosen as (4.5) and (4.8) with (ψ1,ψ2,ψ3)= (ρ,p,v1), α11 = α21 =50, α12 = α22 =
α13 =α23 =20 and (β1,β2,β3)=(0.1,0.1,0.1).

Fig. 3 shows the numerical results at t = 0.4 by using the adaptive moving mesh
method (the left column) and the uniform mesh method (the right column), respectively.
The symbol ”◦” denotes the numerical solution and the solid line is the exact solution,
which consist of a left-moving shock wave, a contact discontinuity, and a right-moving
shock wave. Spurious numerical oscillations are observed behind the left-moving shock
wave in the solutions of the uniform mesh method, while the adaptive moving mesh
method presents the non-oscillatory solution and resolve the discontinuities well.

Example 6.3 (Quasi 2D Riemann problem II). The initial data of the second quasi 2D
Riemann problem are

(ρ,v1,v2,p)=

{ (
10,0,0,40/3

)
, x<0.5,

(1,0,0,0), x>0.5.
(6.4)

The equation of state is the same as the above one except for Γ = 5/3. In this case, the
initial discontinuity will be evolved into a rarefaction wave moving to the left and a shock
wave moving to the right, and a contact discontinuity in the middle.

Fig. 4 gives the numerical solutions obtained by using the adaptive moving mesh
method (the left column) and the uniform mesh method (the right column) respectively,
which are compared to the exact solutions. The results show that the adaptive moving
mesh method has a better resolution for discontinuities even with lesser number of cells.
In the computations, the monitor function is chosen as (4.5) and (4.8) with (ψ1,ψ2,ψ3)=
(ρ,p,v1), α11 =α21 =100, α12 =α22 =0, α13 =α23 =0 and (β1,β2,β3)=(0.4,1,1).

The main differences between the solution of relativistic shock tubes and their non-
relativistic counterparts are due to the nonlinear addition of velocities and to the Lorentz
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Figure 3: Example 6.2: One-tenth of the density ρ/10, one-25th of the pressure p/25, and the velocity
component in x-direction at t = 0.4. The solid lines represent the exact solutions. Left: the adaptive moving
mesh method with 150×10 cells; right: the uniform mesh method with 400×10 cells.

contraction. The former yields a curved profile for the rarefaction fan, as opposed to a
linear one in the non-relativistic case, while the latter narrows the shock plateau. These
effects, especially the latter, become particularly noticeable in the ultra-relativistic regime
(i.e., γ≫1).
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Figure 4: Example 6.3: One-tenth of the density ρ/10, one-twentieth of the pressure p/20, and the velocity
component in the x-direction at t=0.4. The solid lines represent the exact solutions. Left: the adaptive moving
mesh method with 150×10 cells; right: the uniform mesh method with 400×10 cells.

6.3 Two-dimensional problems

This section verifies the capability of the current adaptive moving mesh scheme in cap-
turing complex 2D wave configurations by solving several genuinely 2D problems of
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the RHD equations (2.6), including three relativistic 2D Riemann problems, a relativistic
double Mach reflection problem, and two relativistic shock-bubble interaction problems.

Example 6.4 (2D Riemann problem I). The 2D Riemann problems of the compressible Eu-
ler equations in the non-relativistic hydrodynamics have been widely studied and solved
in the literatures, see e.g., [18] and references therein, since they can simulate almost all
essential 2D physical phenomena such as shock reflections, the spiral formation (rolling
up of slip lines), vortex and shock interactions etc.

The initial data of the first 2D Riemann problem for the ideal relativistic fluid with the
adiabatic index Γ=5/3 are

(ρ,v1,v2,p)=





(0.035145216124503,0,0,0.162931056509027), x>0, y>0,

(0.1,0.7,0,1), x<0, y>0,

(0.5,0,0,1), x<0, y<0,

(0.1,0,0.7,1), x>0, y<0,

(6.5)

where the left and bottom discontinuities are contact discontinuities and the top and right
are two shock waves with the speed of 0.934563275373844.

In the computation, the physical domain Ωp is taken as [−1,1]×[−1,1] with four out-
flow conditions. The monitor function is chosen as the directional monitor function (4.5)
and (4.8) with (ψ1,ψ2,ψ3) = (logρ,p,v2), α11 = α21 = 70, α12 = α22 = 30, α13 = α23 = 0, and
(β1,β2,β3)=(0.1,0.3,1). Fig. 5 gives the adaptive mesh of 150×150 cells and the schlieren
image of the density at t = 0.8 obtained by using the adaptive moving mesh method.
Fig. 6 presents a comparison of the density logarithms logρ along the symmetric axis y=x
calculated by using the adaptive moving mesh method and the uniform mesh method,
where the symbol ”◦” and the solid line denote the adaptive solution with a resolution
of 150×150 and the computed solution obtained on a 600×600 uniform mesh. Moreover,
the interval of the horizontal axis has been scaled as [−1,1]. Table 2 shows the recorded
CPU times of the adaptive moving mesh method and the uniform mesh method. It can
be seen that the adaptive moving mesh is very effective, the adaptive mesh agrees well
with the important features of the solution; the interaction of the initial shock waves and
contact discontinuities produces the formation of a ”mushroom pattern” round the point
(−0.1,−0.1).

Table 2: Examples 6.4-6.6: The estimated CPU times (seconds).

Problem Algorithm Mesh number CPU time
Example 6.4 Moving mesh 150×150 510.6

Fixed mesh 600×600 2057.4
Example 6.5 Moving mesh 150×150 555.7

Fixed mesh 450×450 1034.1
Example 6.6 Moving mesh 150×150 326.9

Fixed mesh 400×400 562.1
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Figure 5: Example 6.4: The adaptive mesh of 150×150 cells and the schlieren image of the density at t=0.8.
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Figure 6: Example 6.4: The density logarithms logρ along the symmetric axis y = x at t = 0.8. The solid line
and the symbols ”◦” denote the solutions obtained on a 600×600 uniform mesh, and a 150×150 moving mesh,
respectively.

Example 6.5 (2D Riemann problem II). The second 2D Riemann problem is about the
interaction of four vortex sheets (contact discontinuities) for the ideal relativistic fluid
with the adiabatic index Γ=5/3. The initial data are

(ρ,v1,v2,p)=





(0.5,0.5,−0.5,5), x>0, y>0,

(1,0.5,0.5,5), x<0, y>0,

(3,−0.5,0.5,5), x<0, y<0,

(1.5,−0.5,−0.5,5), x>0, y<0.

(6.6)

Those four initial vortex sheets with the same sign (the negative sign) will interact each
other to form a spiral with the low density in its center (0,0). This is the typical cavitation
phenomenon in gas dynamics.
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Figure 7: Example 6.5: The adaptive mesh of 150×150 cells (Left) and the contour of the density logarithm
(Right) at t=0.8 by the adaptive moving mesh method.
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Figure 8: Example 6.5: The density logarithms logρ along y= x at t=0.8. The solid line and the symbol ”◦”
denote the numerical solutions obtained on a 450×450 uniform mesh, and a 150×150 moving mesh, respectively.

Fig. 7 displays the adaptive mesh of 150×150 cells and the contour of the density
logarithm at t = 0.8 obtained by using the adaptive moving mesh method. Fig. 8 gives
a comparison of the density logarithms logρ along the line y = x calculated by using
the adaptive moving mesh method and the uniform mesh method, where the symbol
”◦” and the solid line denote the adaptive solution with a resolution of 150×150 and
the computed solution obtained on a 450×450 uniform mesh, respectively. Their CPU
times are given in Table 2. The numerical results exhibit the perfect performance of the
scheme in capturing spirals. It can also be seen that the adaptive mesh agrees well with
the important features of the solution. Our computations take Ωp as [−1,1]×[−1,1], and
chooses the monitor function (4.5) and(4.8) with (ψ1,ψ2,ψ3)= (logρ,p,v2), α11 = α21 =50,
α12 =α22 =50, α13 =α23 =50 and (β1,β2,β3)=(0.3,1,0.5).
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Figure 9: Example 6.6: The adaptive mesh of 150×150 cells (Left) and the contour of the density logarithm
(Right) at t=0.8 by the adaptive moving mesh method.
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Figure 10: Example 6.6: The density logarithms at t=0.8 along y=x. The solid line and the symbol ”◦” denote
the solutions obtained by using the uniform mesh method with 400×400 cells and the adaptive moving mesh
method with 150×150 cells, respectively.

Example 6.6 (2D Riemann problem III). The third 2D Riemann problem is about the in-
teraction of pure planar rarefaction waves for the ideal relativistic fluid with the adiabatic
index Γ=5/3. The initial data are chosen as

(ρ,v1,v2,p)=





(1,0,0,1), x>0, y>0,

(0.5771,−0.3529,0,0.4), x<0, y>0,

(1,−0.3529,−0.3529,1), x<0, y<0,

(0.5771,0,−0.3529,0.4), x>0, y<0.

(6.7)

Each of the initial discontinuities will evolve into a rarefaction wave, and then four rar-
efaction waves interact each other and generate two symmetric shock waves in the inter-
action region after the mutual penetration of the planar rarefaction waves.
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Fig. 9 shows the adaptive mesh of 150×150 cells and the contour of the density loga-
rithm at t =0.8 by the adaptive moving mesh method. Fig. 10 gives a comparison of the
density logarithms logρ along the symmetric axis y= x calculated by using the uniform
mesh method with 400×400 cells and the adaptive moving mesh method with 150×150
cells, respectively. Their CPU times are given in Table 2. We see that the results obtained
by the two methods are in good agreement, and the adaptive moving mesh method is
more effective than the uniform mesh method.

In the computation, the physical domain Ωp is taken as [−1,1]×[−1,1] with four out-
flow conditions. The monitor function is chosen as (4.5) and (4.8) with (ψ1,ψ2,ψ3) =
(logρ,p,v2), α11 =α21 =50, α12 =α22 =100, α13 =α23 =0 and (β1,β2,β3)=(0.3,0.3,1).

Example 6.7 (Double Mach reflection). The double Mach reflection of a strong shock has
often been used to test non-relativistic hydrodynamic codes. Zhang et al. [46] extended
such problem to the ideal relativistic fluid with the adiabatic index Γ=1.4. We use exactly
the same setup as in [46], i.e., the same initial and boundary conditions and same domain
Ωp = [0,4]×[0,1]. Initially a right-moving shock with the speed of vs is positioned at
x = 1/6,y = 0 and makes a 60◦ angle with the x-axis. More precisely, the initial data for
the primitive variables V =(ρ,v1,v2,p)T are set by

V(x,y,0)=

{
V L, y>h(x,0),

V R, y<h(x,0),
(6.8)

where the left and right states of the shock wave, and the exact position of the shock at
the time t are, respectively,

V L =
(
8.564,0.4247sin60◦,−0.4247cos60◦,0.3808

)T
,

V R =
(
1.4,0,0,0.0025

)T
,

h(x,t)=
√

3
(

x− 1

6

)
−2vst, vs =0.4984.

The boundary conditions are specified as follows: the right boundary is set to the exact
pre-shock condition V R; for the top boundary y = 1, the boundary conditions are set to
either the post-shock state V L or the pre-shock state V R, depending on the exact motion
of the shock wave. A reflecting wall is placed at the x>1/6 part of the bottom boundary;
and the states on the remainder boundaries, i.e., the x<1/6 part of the bottom boundary
and the left boundary, are set to the exact post-shock state V L.

Fig. 11 shows the adaptive mesh of 200×50 cells at t=4 for the whole physical domain
Ωp =[0,4]×[0,1]. It is observed that lesser mesh points are distributed for x>3, which is
a desired feature for this test problem. Fig. 12 displays the contours of the density at t=4
within the sub-domain [0,3]×[0,1] computed by using the uniform mesh method with
640×160 cells and the adaptive moving mesh method with 200×50 cells, respectively.
The comparison of their CPU times is given in Table 3. It is seen that both methods
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Figure 11: Example 6.7: The adaptive moving mesh of 200×50 cells at t=4.
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Figure 12: Example 6.7: The contours of the density at t=4. The left is obtained on a 640×160 uniform mesh;
the right is obtained by the adaptive moving mesh method with 200×50 cells.

Table 3: Example 6.7: The estimated CPU times (seconds).

Algorithm Mesh number CPU time
Moving mesh 200×50 519.4

Fixed mesh 640×160 1133.2

produce almost same numerical results, but the adaptive moving mesh method takes
much less CPU time than the uniform mesh method.

In the computations, the monitor function is chosen as (4.4) and (4.7) with
(ψ1,ψ2,ψ3)=(logρ,p,v2), (α1,α2,α3)=(100,0,0) and (β1,β2,β3)=(0.15,1,1).

Example 6.8 (Shock Bubble Interaction Problem I). The interaction between the shock
wave and the bubble in non-relativistic hydrodynamics have been extensively studied by
many authors, see e.g., [7]. We extend such problem to the relativistic hydrodynamics.
The setup of the problem is as follows. The physical domain Ωp is taken as [0,325]×
[−45,45] with two reflective boundaries at y=±45, and the states on two boundaries in
x-direction are set to the left and right shock state, respectively. Initially, a left-moving
relativistic straight shock wave is located at x=265 with the left and right states

(ρ,v1,v2,p)=

{
(1,0,0,0.05), x<265,

(1.865225080631180,−0.196781107378299,0,0.15), x>265,

for the ideal relativistic fluid with the adiabatic index G = 5/3. There is a cylindrical
bubble centered at (215,0) with the radius of 25 in front of the initial shock wave. The
initial state of the fluid within the bubble is taken as (ρ,v1,v2,p)=(0.1358,0,0,0.05), which
is in a mechanical equilibrium with the surrounding fluid and lighter than the ambient
fluid.
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Figure 13: Example 6.8: The adaptive meshes of 260×72 cells at t=90,180,270,360,450, respectively.

Figs. 13 and 14 show the adaptive meshes of 260×72 cells and the schlieren images
of the density ρ at t =90,180,270,360, and 450, respectively, obtained by using the adap-
tive moving mesh method. Those plots are clearly showing the dynamics of the inter-
action between the shock wave and the bubble. Our computations choose the mon-
itor functions (4.4) and (4.7) with (ψ1,ψ2,ψ3) = (ρ,logρ,γ), (α1,α2,α3) = (20,50,10) and
(β1,β2,β3)=(0.05,0.6,0.8).

The computational efficiency of the adaptive moving mesh method is compared to
the fixed mesh method via the plots of the density along the line y = 0 given in Fig. 15
and the recorded CPU times presented in Table 4. The solid line and the symbols ”◦”
denote the solutions obtained on a 650×180 uniform mesh and a 260×72 moving mesh,
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Figure 14: Same as Fig. 13 except for the schlieren images of the density.

respectively. Those results show that the adaptive redistribution of the mesh points can
efficiently improve the quality of the computed solution; the discontinuities are captured
well and accurately; and at the same time, some small wave structures are also resolved
clearly.

Table 4: Example 6.8: The estimated CPU times (seconds).

Algorithm Mesh number CPU time
Moving mesh 260×72 1254.9

Fixed mesh 650×180 1829.0
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Figure 15: Same as Fig. 13 except for densities ρ along y=0. The solid line and the symbols ”◦” denote the
solutions obtained on a 650×180 uniform mesh and a 260×72 moving mesh, respectively.

Example 6.9 (Shock Bubble Interaction Problem II). This example is similar to the last
one, but the present fluid in the bubble is heavier than the ambient fluid. Such difference
will yield different flow patterns around the bubble interface after its interaction with the
shock, just like in non-relativistic hydrodynamics, see e.g., [7].

The setup of the problem is same as that of the last example, except for that the
initial states of the fluid in the bubble (ρ,v1,v2,p) = (3.1538,0,0,0.05). Figs. 16 and 17
show the adaptive meshes of 260×72 cells and the schlieren images of the density ρ at
t=100,200,300,400, and 500, respectively, obtained by the adaptive moving mesh method.
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Figure 16: Example 6.9: The adaptive meshes of 260×72 cells at t=100,200,300,400,500, respectively.

We see obviously different wave patterns of the interaction between the shock and the
bubble, and that the mesh points are well distributed and clustered round the disconti-
nuities so as to effectively improve the quality of the computed solution. The monitor
functions (4.4) and (4.7) has been employed to adaptively redistribute the mesh points,
where (ψ1,ψ2,ψ3)=(ρ,logρ,γ), (α1,α2,α3)=(20,50,10), and (β1,β2,β3)=(0.015,0.6,0.8).

A comparison of the adaptive moving mesh method to the uniform mesh method is
given via the plots of the density along y = 0 in Fig. 18 and the recorded CPU times in
Table 5. We see from Figs. 15 and 18, and Tables 4 and 5 that the present adaptive moving
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Figure 17: Same as Fig. 16 except for the schlieren images of the density.

Table 5: Example 6.9: The estimated CPU times (seconds).

Algorithm Mesh number CPU time
Moving mesh 260×72 1011.1

Fixed mesh 650×180 1559.6

mesh method is efficient for those two shock-bubble interaction problems, obtaining the
same resolution with a much smaller number of mesh points than the uniform mesh
method.
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Figure 18: Same as Fig. 16 except for the densities along y=0. The solid line and the symbols ”◦” denote the
computed solutions obtained on a 650×180 uniform mesh and a 260×72 moving mesh, respectively.

7 Conclusions

The paper has developed a high resolution adaptive moving mesh algorithm for two-
dimensional (2D) relativistic hydrodynamics. It is formed into two ”independent” parts:
the time evolution of the relativistic hydrodynamic (RHD) equations and the (static) mesh
iteration redistribution. In the first part, the RHD equations are solved by using a high
resolution finite volume scheme on the fixed non-uniform meshes without the use of the
full characteristic decomposition of the governing equations. In the second part, the mesh
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points are first iteratively and adaptively redistributed by the suitably chosen monitor
function, and then the cell averages of the conservative variables are remapped onto the
new mesh in a conservative way.

Several numerical experiments have been conducted to demonstrate robustness and
efficiency of the proposed method. They are 2D smooth problem for the accuracy test,
quasi 2D RHD Riemann problems, relativistic double Mach reflection, 2D RHD Riemann
problems, and 2D RHD shock-bubble interaction problems. The computations demon-
strate that our methods are efficient for solving problems with shock discontinuities, ob-
taining the same resolution with a much smaller number of grid points than the uniform
mesh approach.

Appendix

This appendix derives the eigenvalues and eigenvectors of the Jacobian matrix ∂F i/∂U

for the two-dimensional relativistic hydrodynamic equations, where U and F i are the
vector of the conservative variables and the flux vector in xi-direction, respectively, see
Section 2, and i=1,2.

Denote I the 4×4 identity matrix and

Ai :=
∂F i

∂V
, A0 :=

∂U

∂V
, Bi :=

∂F i

∂U
, i=1,2,

where V =(ρ,v1,v2,p)T denotes the vector of the primitive variables. Obviously, we have

Bi =
∂F i

∂U
=

∂F i

∂V
· ∂V

∂U
=AiA−1

0 . (A.1)

The eigenvalues of the Jacobian matrix Bi are the roots of its characteristic polynomial
det[Bi−λI ], i.e., the solutions of the equation

0=det[Bi−λI ]= det[Di(λ)]

det(A0)
,

where Di(λ) :=Ai−λA0. Note that the matrix A0 is nonsingular. Solving the equation

det[Di(λ)]= 0 can conveniently give four real eigenvalues {λ(ℓ)
i ,ℓ= 1,2,3,4} of the Jaco-

bian matrix Bi as shown in Section 2.

Now let λ
(ℓ)
i be one of the ℓth eigenvalue of the matrix Bi and r

(ℓ)
i the vector satisfying

Di(λ
(ℓ)
i )r

(ℓ)
i =0, i.e.,

0=Di(λ
(ℓ)
i )r

(ℓ)
i =[AiA−1

0 −λ
(ℓ)
i I ]A0r

(ℓ)
i =[Bi−λ

(ℓ)
i I ]A0r

(ℓ)
i . (A.2)

So A0r
(ℓ)
i is the ℓth eigenvector of the Bi corresponding to the ℓth eigenvalue λ

(ℓ)
i .
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A complete set of the solution vectors to the problem D1(λ
(ℓ)
1 )r

(ℓ)
1 =0 is as follows:

r
(2)
1 =(1,0,0,0)T , r

(3)
1 =(0,0,1,0)T ,

and

r
(ℓ)
1 =




1

(1−λ
(ℓ)
1 v1)υ(ℓ)

−λ
(ℓ)
1 v2υ(ℓ)

hc2
s




, ℓ=1 or 4,

where

υ(ℓ) :=
(v1−λ

(ℓ)
1 )

ρσ(ℓ)
, σ(ℓ) :=−v2γ2(λ

(ℓ)
1 )2+2v1γ2λ

(ℓ)
1 −1−v2

1γ2.

Here v2 =v2
1+v2

2 and σ(ℓ) is always non-zero if λ
(ℓ)
1 is a real number.
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