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Abstract. The Schrödinger equation defines the dynamics of quantum particles which
has been an area of unabated interest in physics. We demonstrate how simple transfor-
mations of the Schrödinger equation leads to a coupled linear system, whereby each
diagonal block is a high frequency Helmholtz problem. Based on this model, we de-
rive indefinite Helmholtz model problems with strongly varying wavenumbers. We
employ the iterative approach for their solution. In particular, we develop a precon-
ditioner that has its spectrum restricted to a quadrant (of the complex plane) thereby
making it easily invertible by multigrid methods with standard components. This
multigrid preconditioner is used in conjunction with suitable Krylov-subspace meth-
ods for solving the indefinite Helmholtz model problems. The aim of this study is to
report the feasibility of this preconditioner for the model problems. We compare this
idea with the other prevalent preconditioning ideas, and discuss its merits. Results
of numerical experiments are presented, which complement the proposed ideas, and
show that this preconditioner may be used in an automatic setting.
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1 Introduction

Acoustic, electromagnetic or seismic waves can all be modeled by a Helmholtz equation
with a wave number that has properties specific to the problem area. In some acous-
tic scattering applications, for example, the wave number is space independent but the
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boundary of the domain can be very complicated depending on the shape of the object.
In electromagnetic scattering there are jumps in the material parameters which lead to
a piecewise constant wavenumber. In a similar way, the wavenumber in seismic waves
will contain information about the geological layers in the earths crust. Each of these
problems pose different challenges to the numerical methods.

In this article, we focus on the iterative solution of the Helmholtz equations with
a wave number that is specific to models for breakup problems in chemical systems.
These breakup dynamics are described by a Schrödinger equation that reduces, in the
energy range of breakup problems, to Helmholtz equation with a wavenumber that is
continuous in the space variables and can become very large near the boundary of the
domain. One example is the disintegration into four charged particles of the H2 molecule
when it is hit with a single photon [1].

The prevalent practice for solving this type of problem requires massively parallel
computers [2] and they use a significant portion of the resources of large computer fa-
cilities. The long term aim of this research is to replace this practice by efficient iterative
methods.

The Helmholtz equation has often outgoing wave boundary conditions. Fixing ho-
mogeneous Dirichlet boundary conditions, on the boundaries of the truncated numerical
domain, leads to artificial reflections in the domain of interest. These reflections are nu-
merical errors and must be diminished by damping the outgoing waves at the domain
boundaries. To bring this about in our numerical solution method, we employ exterior
complex scaled [3] absorbing boundary layers (henceforth ECS-ABL). There is a long his-
tory of this type of absorbing boundary condition for chemical reactions [4]. This treat-
ment is equivalent to the use of perfectly matched layers (PML) [5, 6] and leads to a non-
Hermitian discrete problem [7]. For a review on transparent and absorbing boundary
conditions for the Schrödinger equation we refer to [8].

For Krylov-subspace methods, the main challenge is to find a good preconditioner.
Over the years there have been different approaches to preconditioning the indefinite
Helmholtz equation. One line of research is based on a shifted Laplacian preconditioner
that started with the work [9,10] (Bayliss, Goldstein and Turkel). They used the Laplacian
and the positively shifted Laplacians as preconditioner.

This was later successfully generalized into a robust method, known as the com-
plex shifted Laplacian (CSL) preconditioner, by Erlangga, Vuik and Oosterlee using com-
plex valued shifts in [11, 12]. Introducing a complex shift pushes the spectrum of the
Helmholtz operator into a region that is favorable for multigrid methods [13–15] to ap-
proximately invert the preconditioning problem. It is well-known that multigrid effi-
ciency can readily be exploited only for problems having (positive or negative) definite
spectra. In the indefinite case [15], both vital components of multigrid, i.e., smoothing,
and coarse grid correction suffer severe degradation, and consequently this results in
divergence of the method [16].

An alternative preconditioner that, in addition to shift, also scales the Laplacian was
derived from frequency shift time integration by Meerbergen and Coyette [17]. By appro-
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priately choosing the shift and the scale it is possible to restrict the spectrum of precondi-
tioning matrix into one quadrant of the complex plane. We call this type of preconditioner
a quadrant definite (QD) preconditioner.

In [7], we proposed the complex-scaled grid (CSG) preconditioner, and demonstrated
its utility in connection with indefinite Helmholtz problems constructed with ECS-ABL.
Both the CSL and the CSG preconditioners have similar performance and are based on
similar ideas. The CSL translates the spectrum, while the CSG rotates it, thereby placing
it in a region which is multigrid favorable. Both of these preconditioners depend on the
translation magnitude or the rotation angle which has to be tuned for specific problems.

This paper studies a preconditioner based on a scaled translation of the spectrum
that restricts it to one quadrant of the complex plane. We evaluate it on a set of model
problems representative for breakup problems that are derived in the paper. While its
efficiency is found to be between that of the Laplacian preconditioner and the CSL/CSG
preconditioners, the main merit is its ease of invertibility by multigrid methods that use
well-known standard components. This is a clear advantage of using the QD method, as
for the CSL/CSG preconditioners, multigrid has to be tuned for different wavenumbers.
Moreover, a shift for the CSL preconditioner (or equivalently, a rotation angle for the CSG
preconditioner) is apparently only available through a hit-and-trial rule. In comparison,
the QD preconditioner may be used in an automatic setting.

Both the discretization and the absorbing boundary conditions used in this paper are
of low order of accuracy. Both can be replaced by higher order methods, however, the
focus of the paper is on the working of the iterative methods and this can be studied with
the low order methods since the higher order discretization and boundary conditions
have similar spectral properties.

In Section 2.1, we give the transformation of the Schrödinger equation to a coupled
Helmholtz problem, and derive the model problems for this study. The details of ECS-
ABL and the discretization are given in Section 3. Also reviewed here, are the spectral
properties of the discrete operator. Next, in Section 4, we describe the QD preconditioner
in detail, and give the multigrid algorithm which we use for approximate inversion of the
preconditioners. This is followed by numerical experiments, which are given in Section
5. Some conclusions mark the end of the paper in Section 6.

2 From the Schrödinger equation to a coupled Helmholtz

problem

2.1 The model problem

In this section we derive the model Helmholtz problem that we use in this paper to bench-
mark iterative solvers. The model problem is
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



(
−∆l1 ,l2−k2(x,y)

)
u(x,y)= f (x,y) on [0,a]2 ⊂R2,

u(x,0)=0 ∀x∈ [0,a] and u(0,y)=0 ∀y∈ [0,a],
ABC on u(x,a) ∀x∈ [0,a] and u(a,y) ∀y∈ [0,a],

(2.1)

where ABC denotes outgoing wave boundary conditions, see Section 3, and

∆l1,l2 =∂xx+∂yy−
l1(l1+1)

x2
− l2(l2+1)

y2
(2.2)

denotes the radial part of the Laplacian in spherical coordinates with l1, l2 ∈ N. The
wavenumber k2(x,y)=2m(E−V(x,y)) depends on a potential V(x,y) that varies contin-
uously in x and y in the domain [0,a]2, E> 0 is the energy and m> 0 is the mass of the
system. The right hand side f (x,y) is assumed to be zero outside [0,b]2 with b< a so that
the Helmholtz problem becomes a homogeneous problem in a strip near the boundaries
with the ABC.

2.2 The Schrödinger equation

To derive this model we start from the driven Schrödinger equation

(H−E)ψ(r1,r2)=φ(r1,r2), (2.3)

with r1, r2∈R3 and where H denotes the Hamiltonian and is given by

H=− 1

2m
∆r1

− 1

2m
∆r2+V1(|r1|)+V2(|r2|)+V12(r1,r2) (2.4)

with V1 and V2 local potentials that only depend on magnitude of ri. The potential V12

depends, usually, on the relative distance between r1 and r2. The mass m> 0 scales the
Laplacians. The right hand side of (2.3), φ(r1,r2), is assumed zero if |r1|>b or |r2|>b, and
can model an incoming electron that impacts in the system [18], or alternately, represents
the dipole operator working on a groundstate if the model is used to compute photo-
ionization [1].

For these breakup problems the solution ψ(r1,r2) is an outgoing wave in any direction
similar to the Sommerfeld radiation condition. This leads to a six dimensional problem
on an unbounded domain. The problem can also be interpreted as a 6D Helmholtz prob-
lem (

−∆6D−k2(r1,r1)
)

ψ(r1,r2)= f (r1,r2), (2.5)

where k(r1,r2) =
√

2m(E−V) with V denotes the sum of all potentials. This becomes

a Helmholtz problem with a constant wave number, k=
√

2mE, in the regions of space
where the potentials go to zero. This 6D problem is hard to solve with the current gener-
ation of numerical methods.
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2.3 Expansion of the solution in partial waves

In this section we discuss the reduction of the 6D problem to a coupled set of 2D prob-
lems. At large distances the solution behaves as a spherical wave emerging from the
center of mass of the system. It is therefore common practice [19, 20] to rewrite Eq. (2.3)
in spherical coordinates. The Laplacian operator then splits into a radial operator and
the angular operator differential [21]. The coordinates are written as r1 = (ρ1,Ω1) and
r2=(ρ2,Ω2), where Ω denotes (θ,ϕ). The solution is then written as a series

ψ(r1,r2)=
∞

∑
l1=0

l1

∑
m1=−l1

∞

∑
l2=0

l2

∑
m2=−l2

ψl1m1,l2m2
(ρ1,ρ2)Yl1m1

(Ω1)Yl1m1
(Ω2), (2.6)

where Ylm(Ω) are the spherical harmonics, the eigenfunctions of the angular differential
operator of the Laplacian in spherical coordinates [21]. In physics this decomposition
is referred to as the partial wave expansion and the functions ψl1 m1,l2 m2

(ρ1,ρ2) are called
partial waves.

When this proposal, (2.6), is substituted in (2.3) we find an equation for ψl1 m1,l2 m2
(ρ1,ρ2)

for all l1≥0,l2≥0,|m1|≤ l1,|m2|≤ l2 that is coupled to all other partial waves:

[
− 1

2m
∆l1 ,l2−E

]
ψl1m1,l2m2

(ρ1,ρ2)

+
∞

∑
l′1=0

l1

∑
m1=−l1

∞

∑
l′2=0

l′2

∑
m′

2=−l′2

Vl1 m1 l2 m2;l′1 m′
1,l′2 m′

2
(ρ1,ρ2)ψl′1m′

1,l′2m′
2
(ρ1,ρ2)= ϕl1m1,l2m2

, (2.7)

where the coupling potentials are calculated as

Vl1m1l2m2;l′1m′
1l′2m′

2
(ρ1,ρ2)=

∫
dΩ1dΩ2Y∗

l1m1
(Ω1)Y

∗
l2m2

(Ω2)

×[V1(|r1|)+V2(|r2|)+V12(r1,r2)]Yl′1m′
1
(Ω1)Yl2m2

(Ω2), (2.8)

and ϕl1 m1,l1 m2
is partial wave of the right hand side.

When the potentials V1, V2 and V12 are spherically symmetric the system decouples.
When it is cylindrically symmetric the different m1 and m2 are decoupled. But in general
the system is fully coupled. Furthermore, it is common practice to truncate the infinite
series in l at a finite lmax so that it becomes a finite system of coupled partial differential
equations.

The boundary conditions for Eq. (2.3) translate in spherical coordinates into homoge-
neous Dirichlet ψ(ρ1,0)= 0 for all ρ1 and ψ(0,ρ2)= 0 for all ρ2. This is typical for radial
problem since ρ1 =0 and ρ2 =0 is now the origin of the coordinate system [21]. The out-
going boundary conditions translate then into outgoing boundary conditions ρ1 →∞ or
ρ2→∞. We will elaborate on this topic in Section 3.

The partial wave expansion can also be written down for a single particle Hamilto-
nian. It then involves an expansion over a single angular function Ylm and subsequently
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leads to a coupled system of ordinary differential equations. On the other hand, the
Hamiltonians currently studied in the physics and chemistry communities involve three
or more particles. For three particles the driven Schrödinger equation is a 9-dimensional
equation that, after expansion in partial waves, becomes a set of coupled 3D PDEs.

2.4 Blocked structure and iterative methods

The system (2.7) has a very particular structure. Since the differential operators are block
diagonal in the spherical expansion, they only appear on the diagonal blocks of the equa-
tion. The blocks are only coupled by the potentials defined in Eq. (2.8). The Hamiltonian
H can be written in blocked matrix notation as



− 1

2m ∆l1,l1+Vl1m1 l1m1;l1m1l1m1
−E Vl1m1 l1m1;l1m1l2m2

···
Vl1m1 l2m2;l1m1 l1m1

− 1
2m ∆l1,l2+Vl1m1 l2m1;l1m1l2m2

−E ···
...

...
. . .


, (2.9)

where the ∆l1,l2 are the radial differential operators defined in (2.2). This can be written
as a coupled Helmholtz operator



−∆l1,l1−k2

l1m1 l1m1;l1m1l1m1
(ρ1,ρ2) −k2

l1m1 l1m1;l1m1l2m2
(ρ1,ρ2) ···

−k2
l1m1 l2m2;l1m1 l1m1

(ρ1,ρ2) −∆l1 ,l2−k2
l1m1 l2m1;l1m1l2m2

(ρ1,ρ2) ···
...

...
. . .


. (2.10)

After discretization of the differential operators on a grid discussed in detail in Section
3, we arrive at a system of linear equations, Ax = b. The matrix A will have the same
blocked structure as the coupled system of partial differential equations above and we
can write: 



A11 A12 A13 ···
A21 A22

A21 A33

··· . . .







x1

x2

x3
...


=




b1

b2

b3
...


, (2.11)

where the discretized differential operators will only appear in the diagonal blocks Aii.
Since the differential operators will lead to the largest eigenvalues, the condition number
of the full matrix A will also be determined predominantly by the diagonal blocks Aii.
After discretization of ρ1 on n grid points and ρ2 on n grid points, a single block is a
sparse matrix of size n2×n2.

The solution method for solving this type of breakup problems as employed in [1]
is iterative. This method was developed in [22] and exploits the particular block struc-
ture of A. A block diagonal preconditioning matrix M is constructed that contains only
the diagonal blocks Aii. Since the largest eigenvalues and eigenvectors of M and A are
very similar, M−1A has a smaller condition number, and therefore, M−1 proves to be
a good preconditioner for any suitable Krylov-subspace method. However, note here
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in particular, that the strategy in used in [1] is to exactly invert the blocks (each of size
n2×n2) within the preconditioning step. Inasmuch as each diagonal block represents a
two-dimensional system, the diagonal block matrices can be inverted possibly on a single
processor. The coupled system, however, requires the inversion of many diagonal blocks
and requires a cluster.

However, the problems currently under investigation in the physics and chemistry
communities such as the impact-ionization problems or problems where electronic mo-
tion and nuclear motion are combined described in Section 2.5.3, each diagonal block
constitutes a three dimensional problem and renders itself too unwieldy for exact inver-
sion.

We therefore study in this paper the multigrid-preconditioned iterative solution of
the diagonal block only, and not the entire problem as a whole. The diagonal blocks (2.9)
correspond closely to the model problem (2.1). It is important to understand that the
complete process now involves two independent iterative schemes, the outer scheme for
approximately inverting the entire system via a preconditioned Krylov process, and the
inner iterative scheme which uses multigrid preconditioning for approximately inverting
the diagonal blocks within the outer preconditioner. The latter alone forms the subject
matter of this paper. We have chosen to restrict the dimensions to two for this study.

2.5 Examples

To illustrate the significance of the coupled system of partial differential equations we
give a few example physical systems that are currently studied with the approach. We
cite the relevant papers.

2.5.1 The dynamics of two electrons in a Helium atom

The Helium atom is a quantum system that has two electrons with a negative charge and
one nucleus which has a positive charge of unit two. Since the nucleus is much heavier
than each electron, the position of the nucleus is taken as the center of the coordinate
system. In this coordinate system the first electron is at r1 and the second electron at r2

The potentials in Eq. (2.3) are then

V1(r1)=− 2

|r1|
, V2(r2)=− 2

|r2|
, V12(r1,r2)=

1

|r1−r2|
. (2.12)

To arrive at the potentials in the coupled problem (2.8) the multipole expansion

1

|r1−r2|
=∑

l

ρl
<

ρl+1
>

Pl(cos(θ12)) (2.13)

is used to expand V12. Where ρ< and ρ> denote, respectively, the smallest and largest
of ρ1 and ρ2. The angle θ12 is between the vectors r1 and r2. Since V1 and V2 are central
potentials they will appear as −2/ρ1 and −2/ρ2 on the diagonal blocks of (2.8) when
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l1 = l′1 and l1 = l′1. The multipole expansion (2.13), however, will lead to potentials that
couple the blocks with different l values in equations (2.7). Since the problem is sym-
metric around the z axis, different m blocks are decoupled. Recent processes in Helium
studied with this approach are one and two-photon double ionization [23, 24].

2.5.2 The dynamics of two electrons in the Hydrogen molecule

The Hydrogen molecule consist of two negatively charged electrons and two protons
with a positive charge. The two protons are much heavier than the electrons. After the
Born-Oppenheimer approximation the two protons can be considered fixed in space. The
dynamics of the two electrons are governed by Eq. (2.3), where the potential is given by
the static field of the charged protons. If we take a coordinate system around the center
of mass of the protons and R is the vector connecting the two protons and r1 and r2 the
coordinates of the electrons, the potentials in (2.3) are

V1(r1)=− 1

|r1−R/2| −
1

|r1+R/2| , V2(r2)=− 1

|r2−R/2| −
1

|r2+R/2| , (2.14)

V12(r1,r2)=
1

|r1−r2|
. (2.15)

The first is the attraction of the first electron to the two protons. The second is the same at-
traction but for the second electron. The third potential is the electron-electron repulsion
because both have a negative charge. To derive the potentials in the coupled basis we
use, again, the multipole expansion (2.13) for each of the potentials. Now all potentials
couple the blocks. Again, an example of a process studied in this approach is one-photon
double ionization [1].

2.5.3 Impact ionization of Helium or the Hydrogen molecule

When an additional electron with sufficient energy collides and breaks up the Helium
atom or Hydrogen molecule that have already two electrons, we are tracking three par-
ticles. We then have a 9D problem. If we denote the coordinate of the third, impacting,
electron as r3 we end up with Helmholtz operator

−∆r1
−∆r2 −∆r3 −k2(r1,r2,r3). (2.16)

After the partial wave expansion we end up, again, with a coupled problem
[
− 1

2m

∂2

∂ρ2
1

− 1

2m

∂2

∂ρ2
2

− 1

2m

∂2

∂ρ2
3

+
l1(l1+1)

2ρ2
1

+
l2(l2+1)

2ρ2
2

+
l3(l3+1)

2ρ2
3

+V(ρ1,ρ2,ρ3)−E

]

×ψ(ρ1,ρ2,ρ3)+ ∑
l1 6=l′1,l2 6=l′2,l3 6=l′3

Cl1l2l3,l′1l′2l′3
(ρ1,ρ2,ρ3)ψl′1,l′2,l′3

(ρ1,ρ2,ρ3)=0, (2.17)

where V(ρ1,ρ2,ρ3) is a diagonal block potential while C(ρ1,ρ2,ρ3) couples the blocks. Be-
cause of the scale of these problem there are currently no converged results for this prob-
lem. A similar high dimensional problem can be formulated for Hydrogen molecule
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when no Born-Oppenheimer approximation is applied. Then the motion of the electrons,
r1 and r2, is coupled to the motion of the protons R. Solving these problems is a great
interest in the scientific community.

3 Discretization

3.1 Absorbing boundary conditions

In order to solve equations, such as the Helmholtz equation, defined on an unbounded
domain Ω0 ⊆ Rd numerically, an assumption is made on the asymptotic behavior of
the solution. The truncated computational domain is a bounded subset Ω ⊂ Ω0 of the
original one, with artificially introduced boundary conditions that imply the postulated
asymptotic behavior. A commonly used example are the first order Sommerfeld radiation
boundary conditions applied to the homogeneous Helmholtz problem, ∂u/∂n̂+iku= 0,
where n̂ is the outward normal on the boundary ∂Ω. An exponential decay of the solution
depending on the constant wave number k is assumed towards the boundary.

In more complicated Helmholtz models such as the one derived from the Schrödinger
equation (2.1) more robust techniques are preferable. In the perfectly matched layer (PML)
approach [5] a small boundary layer Γ⊂Rd is added beyond any point of domain trun-
cation. On this finite layer the continuous model is adapted to capture the asymptotic
behavior, with trivial boundary conditions at the end of the layers ∂Γ. This idea is equiv-
alent to a complex coordinate stretching [6,25,26] in the boundary layers, where the orig-
inal equation is used in the new coordinate system Γz ⊂Cd with homogeneous Dirichlet
boundary conditions at the end ∂Γz, also known as exterior complex scaling (ECS) [3, 27].
In general we can define an analytic continuation on the layers by

z(x)=

{
x, x∈Ω,
x+i f (x), x∈Γ,

with f ∈C2 increasing (e.g. linear, quadratic,···) and limx→∂Ω f (x)=0. We denote the im-
age of the layer Γz≡z(Γ) and call it the complex contour. This boundary layer method does
not need an explicit input of the wave number and it can easily be tuned in numerical
experiments. Because of the straightforward mathematical meaning the ECS method is
interesting in numerical analysis.

3.2 Finite difference

ECS boundary conditions and their application in chemical reactions have been used
in finite difference, B-spline and spectral element discretization [28]. Finite Elements
methods are hardly used for this type of problems because the computational domain is
often a square or a rectangular strip. In this article we use finite differences since this low
order discretization can already help us to understand the convergence of the iterative
method. We define a one-dimensional uniform grid (zj)0≤j≤n on the real interval [0,1]
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x=0 x=1 x=R

−0.1

0

0.1

0.2

real

im
a
g

z
1
z
2

z
n−1
z
n

z
n+1

z
n+m−1

z
n+m

Figure 1: Discretized ECS domain zj. The ECS domain is discretized with complex mesh widths on the complex
contour.

with z0 = 0 and zn = 1 and mesh width h= 1/n∈R. Starting in 1, we apply linear ECS,
so the absorbing layer is a line connecting 1 and Rz ∈C henceforth denoted by [1,Rz]. A
second uniform grid (zj)n≤j≤n+m discretized this complex contour, with zn+m = Rz and
complex mesh width hγ =(Rz−1)/m. The union of these two grids is the ECS grid

(zj)0≤j≤n+m on [0,1]∪[1,Rz ] (3.1)

in the entire ECS domain. We will denote the fraction γ=hγ/h=(Rz−1)/(R−1).
A thorough numerical analysis of the negative Laplace operator L=−∆ discretized on

this ECS domain yields some important insights for the use of ECS on more general oper-
ators. To approximate the second derivative we employ the following standard formula
for un-equal mesh sizes, and non-uniform grids:

d2u

dz2
(zj)≈

2

hj−1+hj

(
1

hj−1
uj−1−

(
1

hj−1
+

1

hj

)
uj+

1

hj
uj+1

)

for non-uniform grids in grid point j, where hj−1 and hj are the left and right mesh widths
respectively, and may belong either to the h category or to the hγ category. The formula
can be easily derived as an exercise in Taylor expansions and it reduces to regular second
order central differences when hj−1 = hj, i.e., in the interior real region (0,1), and in the
interior of the complex contour (1,Rz) because the scaling function f is taken to be linear.
The only exception is the point zn where at most we lose an order of accuracy, however
with ample discretization steps, the overall accuracy is anticipated to match up to second
order. We will denote the resulting discretization matrix Lh.

3.3 Spectral properties

The hardest model problem, from an iterative point of view, is the problem with l1 = 0
and l2 = 0 since the problem is then at its most indefinite state. For larger l1 and l2 the
problem becomes more definite. Therefore we focus on the remainder of the paper on the
problem with l1=0 and l2=0.

The spectrum of the discretization matrix Lh determines the convergence behavior of
iterative methods such as Krylov subspace methods and multigrid schemes for solving
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any system Lhuh = bh. The spectrum σ(Lh) is drastically different from the spectrum
σ(L) of the continuous operator, on the undiscretized ECS grid [0,1]∪[1,Rz ]. Indeed,
σ(L) = {(jπ/Rz)2|j ∈ N0}, is an infinite set of points on the complex line ρe−i2θα , with
ρ∈R+ and θα the rotation angle for the complex boundary Rz. The shape of the spectrum
σ(Lh) of the discretization matrix is less obvious as follows from the next lemma, that is
proved in [7].

Lemma 3.1. Consider the ECS grid (3.1) and the discretization matrix Lh. Define γ = hγ/h.
Then the eigenvalues of Lh are the solutions of

F(λ)≡ tan(2np(λ))

tan(2mq(λ))
+

cos(p(λ))

cos(q(λ))
=0,

with p(λ)= 1
2 arccos(1− λ

2 h2), q(λ)= 1
2 arccos(1− λ

2 γ2h2).

For the Laplace problem the ECS discretized spectrum has the typical Y-shape of a
pitchfork. There is a clear complex branch associated to eigenvectors located on the com-
plex contour, along the complex line [0,4/h2

γ ], and a branch closer to the real line [0,4/h2]
that corresponds to eigenvectors located on the real domain. The smallest eigenvalues, in
the small tail of the pitchfork, belong to the smoothest eigenvectors spread over the entire
ECS domain. They lie close to the smallest eigenvalue of the continuous ECS operator L
(Fig. 2), that is along the complex line [0,4/h2

α ], where hα =Rz/(n+m+1) is the complex
mesh width, belonging to a straight complex grid connecting 0 and Rz.
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Figure 2: The eigenvalues of the ECS Laplacian discretization matrix (•) lie along a pitchfork with a Y shape, a
result in Lemma 3.1. A part of the eigenvalues lie close to the eigenvalues the same Laplace problem restricted
to the interior real domain (⊳). In a similar way part of the eigenvalues lie close to the eigenvalues when the
Laplacian is restricted to the complex contour (⊲). The inset shows the area around the origin where the smallest
eigenvalues are approximated by the smallest eigenvalues of the Laplace problem defined on the complex line
[0,Rz] (△). (color online)
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4 The QD preconditioner and multigrid

4.1 The preconditioner

We use a preconditioning operator that has a spectrum bounded by a single quadrant
such that it can be approximately inverted with standard multigrid components, which
are clearly unstable for indefinite problems.

In this article we compare the use of a preconditioner Z̃ which is a scaled and shifted
version of the original Helmholtz operator Z=−∆l1,l2−k2(x,y) defined in Eq. (2.1). We
propose to use

Z̃=δ2Z+(1−iδk), (4.1)

where δ∈R is chosen such that Z̃ is definite. This preconditioner is very similar to the
one proposed in [17]. Suppose λ0 is that eigenvalue of the original operator Z which
has the smallest real part. We can then choose δ such that −δ|λ0|+1≥0. For a Helmholtz
problem with a constant wave number k and l1=0 and l2=0 this would mean that δ≤1/k.

The eigenvalues of the preconditioned operator Z̃−1Z lie inside a circle of radius
1/(2δ2)|1−i/(kδ)| centered around 1

δ2

(
1
2−i 1

2kδ

)
. We can readily see this with the follow-

ing arguments. The preconditioner Z̃ = δ2Z+(1−iδk) has the same eigenvectors as the
Z . The eigenvalues of the preconditioned system Z̃−1Z are therefore given by

λ

δ2λ+(1−iδk)
, (4.2)

where λ is an eigenvalue of Z . We assume that the eigenvalues of Z are located in the
lower half of the complex plane, σ(Z)⊂C−. Then σ(Z̃−1Z) is inside the circle that is
the image of the real axis of the transform (4.2). This circle goes through 0, 1/δ2 ∈ R

and −i/(kδ3)∈ iR, so the center c is the crossing point of the lines ℜ(z) = 1/(2δ2) and
ℑ(z)=−1/(2kδ3),

c=
1

δ2

(
1

2
−i

1

2kδ

)
.

And so the radius is r= |c|=1/(2δ2)|1−i/(kδ)|.

4.2 Multigrid

Heuristically, we note that multigrid (for convergence and efficiency), has more stringent
requirements on the condition number of the spectrum when it crosses into different
quadrants of the complex plane, than when it does not. The preconditioner in Section 4.1
has the property that its spectrum is restricted to the fourth quadrant. It can therefore be
very efficiently inverted by multigrid using the standard components, which include ω-
Red Black Jacobi, with ω=1.05, Full Weighting averaging for restriction, Bilinear interpo-
lation for prolongation, and rediscretization on the coarse grids; in a simple V(1,1) cycle



H. bin Zubair, B. Reps and W. Vanroose / Commun. Comput. Phys., 11 (2012), pp. 415-434 427

set-up. For experimental purposes we compare the performance of this quadrant-definite
(QD) preconditioner with the CSG and the CSL preconditioners. In [7], we showed that
the CSL and the CSG preconditioner can be inverted efficiently using multigrid based
on matrix components, such as ILU-smoother and the Galerkin coarse grid operator in a
V(0,1) cycle set-up. This study is more focused on using matrix-free components, which
leaves only the ω-Jacobi smoother, and the discretization coarse grid operator for the CSL
and the CSG preconditioners. Moreover, this multigrid has to be employed in an F

γc
γ f

(1,1)
cycle set-up.

Algorithm 4.1. Multigrid pseudocode

um+1
l =MG(l,Al,bl,u

m
l ,ν1,ν2,C,γ f ,γc).

(0) Initialization

– If l=C, um+1
l = exact (Al,bl); Bail out; endif

– Build the coarse-grid operator Al+1, and the restriction I l+1
l , and prolongation I l

l+1
operators.

(1) Pre–smoothing

– Compute u
m+ 1

3

l by applying ν1(≥0) smoothing steps to um
l :

u
m+ 1

3

l =smooth
ν1(Al,bl,u

m
l ) .

(2) Coarse grid correction

– Compute the residual rm
l =bl−Alu

m+ 1
3

l .

– Restrict the residual rm
l+1= I l+1

l rm
l .

– Compute the approximate error êm
l+1 from the defect equation

Al+1 êm
l+1= rm

l+1

by the following recursion

If l=C, êm
l+1= exact (Al+1,rm

l+1); endif

If l<C, approximate êm
l+1 recursively:

êm,1
l+1=0;

do i=1 to γc

If i==1,

êm,i+1
l+1 =MG(l+1,Al+1,rm

l+1, êm,i
l+1,ν1,ν2,C,γ f ,γc)

else

êm,i+1
l+1 =MG(l+1,Al+1,rm

l+1, êm,i
l+1,ν1,ν2,C,γc,γ f )

endif

continue i

endif
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– Interpolate the correction êm
l = I l

l+1 êm
l+1 .

– Compute the corrected approximation on Ωl u
m+ 2

3

l =u
m+ 1

3

l + êm
l .

(3) Post–smoothing

– Compute um+1
l by applying ν2 (≥0) smoothing steps to u

m+ 2
3

l :

um+1
l =smooth

ν2(u
m+ 1

2

l ,Al ,bl) .

Algorithm 4.1 is a slight variation of the standard multigrid algorithm in [15], and
yields various cycle types depending on the values of γ f and γc in a unified manner.
In this algorithm, l indicates the current level, C the coarsest level, and A, the discrete
operator (i.e., CSL/CSG/QD precond. operators) at various levels. bl is the right hand
side, um

l is the starting guess, and ν1 and ν2 are the number of pre and post smoothing
sweeps. γ f and γc are the cycle indices used at the fine and the coarse levels, respectively.
E.g., calling this method with γ f =1 and γc=1 gives the standard V cycle, γ f =2 and γc=2
gives the standard W cycle, while γ f = 1 and γc = 2 yields the standard F cycle. γ f = 1,
and γc = n renders an F cycle with n−1 recursions on the coarse levels. We found that
in the context of inverting CSL and CSG based Helmholtz preconditioners, F cycles with
2 and 3 recursions on the coarse levels were particularly beneficial over the standard F
cycle. F cycle with 3 recursions is abbreviated as F4

1 and is shown in Fig. 3.

Figure 3: An F4
1(1,1) cycle, obtained by Algorithm 4.1, with γ f =1 and γc=4. ◦ stands for smoothing, \ stands

for restriction to a lower level, / stands for prolongation to a higher level, • stands for exact solution.

5 Numerical results

In this section we conduct numerical experiments on the Helmholtz model problems
given by the generic prototype Zu(x,y)= f (x,y). Again we focus on problems with l1=0
and l2 = 0 because these are the hardest problems. The operator Z is defined in each of
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the following case as follows:

Z=−∆−k2, MP1 (5.1)

Z=−∆−ν(
1

ex2 +
1

ey2 )−k2, MP2 (5.2)

Z=−∆− 1

x
− 1

y
−k2. MP3 (5.3)

For MP1, f (x,y) is the Dirac delta function that stays zero throughout the domain
save one point in the middle where it assumes the value 1. For MP2 and MP3, f (x,y)=

ex2+y2
. We use ECS-ABL on all four sides with MP1, and on the north and the east sides

only with MP2 and MP3. The model problems are solved iteratively with Bi-CGSTAB
preconditioned with multigrid approximated inverses of the following operators:

MCSL =−∆+(β1+iβ2)k
2, (5.4)

MCSG =Z, on the grid rotated by angle θα in the complex plane, see [7], (5.5)

MQD=(1−i)I+
1

|Re(λ0)|
Z, λ0 is the eigenvalue of Z with the smallest real part. (5.6)

MCSL is the Complex-shifted Laplacian as appears in [12]. A small complex shift is added
to the Laplacian operator. This imparts a rectangular translational effect on the operator
spectrum. MCSG is the original operator discretized on the so-called Complex-scaled Grid
and appears in detail in [7]. The basic mesh size has been multiplied with eiθα . This
imparts a rotation to the operator spectrum about the origin by an angle equal to θα.
MCSG is as efficient as MCSL in general, and slightly better for the current problems.

Numerical experiment results are reported for multigrid invertibility of the precondi-
tioner and the observed efficiency of preconditioned Bi-CGSTAB. Multigrid invertibility
is reported as the average multigrid convergence factor (mg-conv.) and the total num-
ber of cycles that the algorithm required to converge for the preconditioner taken as a
stand-alone problem. mg-conv. is actually the geometric mean of the observed resid-
ual decay rates during multigrid cycles, computed over the last 5 cycles. The CPU-time
is also reported. Bi-CGSTAB efficiency takes into account the number of iterations of
the algorithm for convergence. Note that each Bi-CGSTAB iteration has two embedded
multigrid cycles for preconditioning, i.e., one in each preconditioning step. The overall
solution time is given as well.

Results of the first experiment are listed in Table 1. It is important to clarify that
beating the CSL or the CSG preconditioner is not the aim of this work. We rather focus on
obtaining a preconditioner which can come in close comparison to them in performance,
and is comparatively much easier to invert. The QD preconditioner takes around 3 times
the number of iterations compared to the other choices. For this model problem (only) we
also found that feeding in the preconditioner solution computed to a tolerance of 10−2,
to the Krylov method, as the starting guess, gives us a benefit of 50 iterations.
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Table 1: Multigrid performance and comparison of the three preconditioners for MP1 with k=160, 256 cells in
the interior region, and 64 cells in ECS-ABL on all four sides of the domain. ECS angle used is π/6.

Preconditioner
Multigrid mg cyc. Bi-CGSTAB

cyc, smooth., ω mg-conv., # cycles per prec. iter, cputime

CSL F4
1(1,1), ω-Jacobi 0.43, 17

1 60, 2m 11s
(β1,β2)=(−1,−0.3) ω=0.8 4.21s

CSG F3
1(1,1), ω-Jacobi 0.39, 15

1 62, 2m 2s
θα=

π
14 ω=0.8 3.18s

QD V(1,1), ω-RB Jacobi 0.09, 6
1 170, 5m 39s

Re(λ0)=−2.6×104 ω=1.0 1.2s

(a) Solution computed in Exp. 1 (b) Solution computed in Exp. 2

(c) Solution computed in Exp. 3 (d) Solution computed in Exp. 4

Figure 4: All these four solutions were computed for each of the 4 numerical experiments listed in the tables.
The first solution as spherical waves ensuing out from the domain center. The other three solutions show
evanescent waves, also known as single ionization, near the west and the south boundaries of the domain. At
these edges the spatially dependent wavenumber grows exponentially in the model problems. (color online)

The rest of the experiments are listed in Tables 2, 3, 4. They depict that the QD per-
conditioners’s performance comes within a factor of 3 of the other preconditioners even
with strong spatial dependence in the wavenumber. The tuning effort is also much less,
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Table 2: Multigrid performance and comparison of the three perconditioners for MP2 with λ= 7, k= 4. The
domain is a square of 50 units. 512 cells are used in the interior region, and 128 cells in ECS-ABL on the east
and the north side of the domain. ECS angle used is π/6.

Preconditioner
Multigrid mg cyc. Bi-CGSTAB

cyc, smooth., ω mg-conv., # cycles per prec. iter, cputime

CSL F3
1(1,1), ω-Jacobi 0.53, 22

1 137, 7m 34s
(β1,β2)=(−1,−0.4) ω=0.5 13.4s

CSG F3
1(1,1), ω-Jacobi 0.53, 22

1 143, 7m 36s
θα=

π
17 ω=0.5 14.4s

QD V(1,1), ω-RB Jacobi 0.15, 8
1 357, 19m 40s

Re(λ0)=−16.88 ω=1.0 5.2s

Table 3: Multigrid performance and comparison of the three preconditioners for MP3 with k=2. The domain
is a square of 50 units. 512 cells are used in the interior region, and 128 cells in ECS-ABL on the east and the
north sides of the domain. ECS angle used is π/6.

Preconditioner
Multigrid mg cyc. Bi-CGSTAB

cyc, smooth., ω mg-conv., # cycles per prec. iter, cputime

CSL F2
1(1,1), ω-Jacobi 0.32, 13

1 60, 3m 9s
(β1,β2)=(−1,−0.6) ω=0.8 6.45s

CSG F2
1(1,1), ω-Jacobi 0.32, 13

1 61, 3m 10s
θα=

π
13 ω=0.8 6.3s

QD V(1,1), ω-RB Jacobi 0.17, 8
1 164, 9m

Re(λ0)=−4.19 ω=1.05 1.2s

Table 4: Multigrid performance and comparison of the three perconditioners for MP3 with k=4, The domain
is a square of 75 units. 768 cells are used in the interior region, and 128 cells in ECS-ABL on the north and the
east sides of the domain. ECS angle used is π/6.

Preconditioner
Multigrid mg cyc. Bi-CGSTAB

cyc, smooth., ω mg-conv., # cycles per prec. iter, cputime

CSL F4
1(1,1), ω-Jacobi 0.32, 13

1 210, 18m 20s
(β1,β2)=(−1,−0.6) ω=0.8 15.8s

CSG F3
1(1,1), ω-Jacobi 0.31, 12

1 160, 14m 14s
θα=

π
13 ω=0.8 14.6s

QD V(1,1), ω-RB Jacobi 0.13, 7
1 545, 46m 40s

Re(λ0)=−16.18 ω=1.05 9.4s

in fact, the relaxation parameters, the smoothing and the grid transfer methods can all
stay constant. To date, the authors are not aware of any scientific method that minimizes
the CSL shift or the CSG rotation angle for different problems, without extra overhead.
Note that these tunable parameters have a pivotal role in establishing CSL/CSG superi-
ority in speed over the QD preconditioner. The experimental tables show the best cases
for the CSL/CSG preconditioners after they were hand-tuned for these parameters. This
points to the possibility that the QD preconditioner might be used in an automatic solver



432 H. bin Zubair, B. Reps and W. Vanroose / Commun. Comput. Phys., 11 (2012), pp. 415-434

setting. We tested the QD preconditioner against the Laplacian preconditioner (which
can also be used in an automatic setting) and found the QD to be much superior in per-
formance.

For multidimensional Helmholtz operators (including the 2D operator), the critical
eigenvalue λ0 used in the QD preconditioner may be obtained from a one-dimensional
counterpart, as is done in the current experiments. For Helmholtz problems with piece-
wise constant wavenumber, the maximum discrete wavenumber value may be used as
a rough approximation of λ0. However, this is also apt to bias the QD preconditioner
spectrum more to the right than is really required.

6 Conclusions and outlook

In this paper we showed that the Schrödinger equation for ionization problems can be
decomposed into a coupled Helmholtz problem. The diagonal blocks of this coupled sys-
tem consist of two-dimensional and three-dimensional Helmholtz problems. We propose
Helmholtz model problems from these diagonal blocks. The blocks have homogeneous
Dirichlet boundaries at one side and exterior complex scaling absorbing layers (ECS-
ABL) at the other side. Finite difference discretization (for non-uniform grids) results
in a pitchfork-shaped spectrum which is largely distributed in the fourth quadrant, but
also has some parts crossing over in the third. Another property is that the spectrum
is rather close to the real axis, and discrete problems are thus very challenging to solve
iteratively. We solved them iteratively using the preconditioned Bi-CGSTAB method and
also presented the quadrant definite (QD) preconditioner, which we derive from a time
integration scheme for the Schrödinger equation. We tried using GMRES and restarted
GMRES but found that for the current problems these methods failed to reach their su-
perlinear convergence phase. As a gross estimate we rate the efficiency of this precon-
ditioner between the CSL/CSG preconditioners and the Laplacian preconditioner, and
it has the added advantage of having a multigrid favorable spectrum, i.e., its spectrum
lies entirely in the fourth quadrant. This preconditioner can potentially be used in an
automatic Helmholtz solver. The advantage of the QD preconditioner is that it can be
built from standard multigrid components and it can be implemented matrix-free which
significantly reduces the memory use.

Although we have used a low order discretization of the differential operators and a
low order absorbing boundary conditions, we believe that calculations with higher order
methods will lead to similar conclusions on the performance of the iterative method.

Helmholtz problems, from an iterative perspective, can roughly be categorized into
two classes which can be defined according to the available computational resources.
One, where storing matrix operators is a possibility, and the other, where an iterative
solution might have to be worked out using vectors alone. In the first situation, ILU(0)
smoothing, and the Galerkin coarse grid operator used in a V(0,1) cycle render a very
attractive multigrid method for preconditioner inversion.
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However, for the other class, the situation is comparatively much worse. First, for
all preconditioners with a spectrum that leads to an efficient Krylov-subspace conver-
gence, there is no appropriate smoother for multigrid. Second, we have to do with re-
discretizing the Helmholtz operator on the coarse grid. This seems to work with non-
standard F-cycles (with multiple coarse grid recursions), which are expensive. In future,
we intend to investigate, how smoothing may be enhanced for matrix-free Helmholtz
solution contexts, as well as how to bring multigrid down to work in V cycles for precon-
ditioner inversion.
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