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Abstract. In this paper we study a low frequency model for acoustic propagation in a
2D flow duct. For some Mach profile flow, we are able to give a well-posedness the-
orem. Its proof relies on a quasi-explicit expression of the solution which provides us
an efficient numerical method. We give and comment numerical results for particular
linear, tangent and quadratic profiles. Finally, we give a numerical validation of our
asymptotic model.
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1 Introduction

The present work has been motivated by applications to computational aeroacoustics,
namely the numerical modelling of the propagation of sound in a moving fluid. In this
perspective, we have chosen to reconsider the problem from a fundamental point of view
and to begin with the propagation of sound in a duct. We consider a strongly varying par-
allel flow which can be simply described with the help of a scalar function M(y) which
represents, after appropriate normalisation (it is the Mach number), the lateral variations
of the velocity of the reference flow. We shall call this function the Mach profile. For this
model problem, a quasi-1D mathematical problem has been obtained in [1] from Gal-
brun’s equations [5] (which are equivalent to the well-known linearized Euler equations)
by a formal asymptotic expansion with respect to the width of the tube (this can also be
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seen as a low frequency analysis). This model leads to the following initial value prob-
lem, where the unknown u is the limit (as the width tends to 0) of the x component of the
Lagrange displacement:
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

Find u(x,y,t) : R×[−1,1]×R
+→R,

(

∂

∂t
+M(y)

∂

∂x

)2

u− ∂2

∂x2
Eu=0, (x,y)∈R×[−1,1], t>0,

u(x,y,0)=u0(x,y), (x,y)∈R×[−1,1],

∂u

∂t
(x,y,0)=u1(x,y), (x,y)∈R×[−1,1],

(1.1)

where M∈ L∞(]−1,1[) is the Mach profile and E is the following averaging operator on
L2(]−1,1[):

E : u → Eu=
1

2

∫ 1

−1
u(y)dy. (1.2)

This model is local (differential) in x, the coordinate along the axis of the tube, but non
local in y, the transversal coordinate. The paper [2] is devoted to the mathematical analy-
sis of this problem, using the Fourier transform and spectral theory. Despite its apparent
simplicity this problem has rather surprising properties. In particular, we exhibit in [2]
a necessary condition for the problem to be well-posed and it was conjectured that it
is a sufficient condition. The authors of [6] are able to show this conjecture for a class
of smooth monotonous and convex (or concave) profiles. This was done by calculat-
ing a quasi-explicit expression of the solution, using the Fourier-Laplace transform. This
present paper is devoted to the numerical computation of the solution of (1.1), hence it is
based on the two articles [2] and [6]. In Section 2, after reminding some properties of (1.1),
we give a new well-posedness theorem (2.1) based on the method used in [6]. Then we
apply this theorem to the case of a class of smooth monotonous profiles for which more
calculations can be done, to get Theorem 2.2. After that, the case of the quadratic pro-
file M(y)=1−y2 is explored, it constitutes an example of extension to non monotonous
profiles. The proof of Theorem 2.1 relies on a quasi-explicit representation of the solu-
tion which is given; this representation of the solution will provide an efficient way to
compute the solution. The numerical method is presented in Section 3 and is then illus-
trated, for smooth monotonous profiles, by the linear and tangent profiles, and for a non
monotonous profile, by the quadratic profile M(y)=1−y2. In the last section, we give a
numerical validation of our asymptotic model by comparison to a 2D Eulerian code.

At this stage of the work, our contribution remains quite academic and several steps
need to be done before asserting that this kind of approximate model is useful for the
applications.

• Because of its non-local nature, our model is not easily tractable from the numerical
point of view. However approximating the reference profile M(y) by a piecewise
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linear profile leads to a new model that is local: it couples a 1D PDE with ordinary
differential equations in time. The derivation and the implementation of this model
is currently under consideration.

• The 3D case (a thin 3D domain delimited by two parallel surfaces) is of course of
fundamental interest. The quasi 2D limit model has already been derived in the case
of plane surfaces (under natural assumptions on the reference flow ). The general
case requires further investigation involving differential geometry.

• An attractive application of this kind of model consists in deriving approximate
boundary conditions for dealing with thin boundary layers of the reference flow
(see for instance [3] for a general exposition of the problematic). This research is
under way and preliminary results show that our approximate model is one of the
ingredients in the equivalent boundary condition.

2 Well-posedness results and a quasi-explicit representation of

the solution

Despite its apparent simplicity, the study of the well-posedness of (1.1) is a difficult prob-
lem (see [2] and [6]). We are here going to recall, quickly, the method and some of the
results obtained in [6]. More precisely, we give a well-posedness theorem obtained for a
class of smooth monotonous profiles. But first, we give a more general but less explicit
theorem, for which the hypotheses will be, roughly speaking: ”we can do the same cal-
culation as in [6]”. In both cases, we will give a quasi-explicit expression of the solution
which will provide us an efficient method to compute numerically the solution.

2.1 Preliminary statements and results

From now on, we assume that M∈C0([−1,1]) and we denote:

M+ := sup
y∈[−1,1]

M(y), M− := inf
y∈[−1,1]

M(y).

It is clear that, if Eu is known, (1.1) is a simple transport square equation along x, for each
fixed y. We solve this transport equation explicitly:

u(x,y,t)=u0

(

x−M(y)t,y
)

+t

[

u1

(

x−M(y)t,y
)

+M(y)
∂u0

∂x

(

x−M(y)t,y
)

]

+
∫ t

0
(t−s)

∂2

∂x2
Eu
(

x−M(y)(t−s),s
)

ds. (2.1)

The idea followed in [6] is to calculate Eu by using the Fourier transform in x and the
Laplace transform in t. We define the Fourier transform as an unitary operator on L2(R),
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defined for f ∈L1(R) as

(F f )(k)= f̂ (k) :=
1√
2π

∫ ∞

−∞
e−ikx f (x)dx.

We denote by ũ the Laplace transform in time of û,

ũ(k,y,ω) :=
∫ ∞

0
eiωt û(k,y,t)dt, Im(ω)>0.

After Fourier-Laplace transform and by applying the operator E, we get from (1.1):

Eũ=−2N
(ω

k

)

E

(

û1−i
(

ω−2kM(y)
)

û0
(

ω−kM(y)
)2

)

, (2.2)

where

N(λ) :=
(

2−F(λ)
)−1

,

with

F(λ) :=
∫ 1

−1

1
(

λ−M(y)
)2

dy, λ∈C\[M−,M+]. (2.3)

One can show that N is meromorphic in C\[M−,M+]. We now introduce the following
hypothesis:

(HS) The function N(λ) has no complex (i.e. non real) poles.

This assumption is fundamental. Indeed it is shown in both [2] and [6] that, if N has non
real poles, then (1.1) is ill-posed. Moreover, in [2] you can find explicit conditions on M
that ensure that (HS) is satisfied or not. We now introduce another assumption:

(HRL) M(y) takes the value M± at a point where it has a right or left derivative.

One can see (see again [2]) that, consequently, N(λ) has exactly one real pole λ− (resp.
λ+) in ]−∞,M−[ (resp. in ]M+,∞[).

The next step, the difficult one, is to calculate the inverse Laplace transform of the
expression (2.2) of Eũ. This is done, in [6], using integration techniques and contour
deformation. Therefore, the poles of N play an important part in the process. Moreover,
N has, in general, a cut on Range(M). Hence, N can blow up as we approach the cut
from above and below. The calculation was done in [6] for strictly monotonous and
convex (or concave), regular profiles. It provides a well-posedness theorem, a quasi-
explicit expression and an estimate of the solution. These results are rewritten in Section
2.3.1, where the constant convexity condition is replaced by a less explicit one. In the
following section, we give a general theorem based on the same proof.
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2.2 A general theorem

For a better understanding we mostly keep the same notation as in [6]. We denote, when
it is possible

N±(λ) :=











N(λ), λ∈C
±,

lim
εց0

N(λ±iε), λ∈]M−,M+[,
N′
±(λ) :=















dN

dλ
(λ), λ∈C±,

lim
εց0

dN

dλ
(λ±iε), λ∈]M−,M+[,

where C± = {z∈C/±Imz> 0}. Before stating the theorem, we have to introduce two
new technical hypotheses:

(HN) The function N± can be extended by continuity with N±(M+)=N±(M−)=0, as a
function Hölder continuous in C±∪[M−,M+].

Moreover, ∀λ∈ [M−,M+] we have N−(λ)=N+(λ). As a consequence we can write:

N±(λ)=RN(λ)± iIN(λ). (2.4)

(HN ′) The function N′
± can be extended by continuity to [M−,M+] and it satisfies N′

+(M±)−
N′
−(M±)=0. Then it is Hölder continuous in C±∪[M−,M+].

Moreover, ∀λ∈ [M−,M+] we have N′
−(λ)=N′

+(λ). As a consequence we can write:

N′
±(λ)=RN′(λ)± iIN′(λ). (2.5)

By following the same process as in [6], one can show the following theorem:

Theorem 2.1. Let us assume that M ∈ C0([−1,1]) such that (HS),(HRL),(HN) and (HN ′)
are satisfied. Then, the Cauchy problem (1.1) is well-posed in the sense that for any (u0,u1)∈
L2

y(H3+n
x )×L2

y(H2+n
x ), n≥0, where L2

y(Hn
x ) :=L2(]−1,1[;Hn(R)), it admits a unique solution

u∈C0(R+;L2
y(Hn

x ))∩C1(R+;L2
y(Hn−1

x )).

Furthermore we have Eu(x,t)=−2 E[up(x,.,t)+uc(x,.,t)] where

• the poles contribution is:

up(x,y,t)=∑
±

∫ λ±t
0

u1(x−s,y)ds

F′(λ±)
(

λ±−M(y)
)+∑

±

λ±−2M(y)
(

λ±−M(y)
)2

u0(x−λ±t,y)

F′(λ±)
, (2.6)
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• and the branch cut contribution is:

uc(x,y,t)

=
1

π
p.v.

∫ M+

M−

IN(λ)

λ−M(y)

[

u0(x−λt,y)+tM(y)
∂u0

∂x
(x−λt,y)+tu1(x−λt,y)

]

dλ

+
1

π
p.v.

∫ M+

M−

IN′(λ)
λ−M(y)

[

∫ λt

0
u1(x−s,y)ds−M(y)u0(x−λt,y)

]

dλ

−RN
(

M(y)
)

[

u0

(

x−M(y)t,y
)

+tM(y)
∂u0

∂x

(

x−M(y)t,y
)

+tu1

(

x−M(y)t,y
)

]

−RN′(M(y)
)

[

∫ M(y)t

0
u1(x−s,y)ds−M(y)u0

(

x−M(y)t,y
)

]

, (2.7)

where p.v. stands for the Cauchy principal value integral.

Furthermore we have the following estimate of the mean value:

‖Eu‖L2
x
≤C

[

‖u0‖L2
y(L2

x)
+t

∥

∥

∥

∥

∂u0

∂x

∥

∥

∥

∥

L2
y(L2

x)

+(1+t)‖u1‖L2
y(L2

x)

]

. (2.8)

Finally we get the expression of u from (2.1).

Physical interpretation: This expression gives us a physical interpretation of the solu-
tion. Indeed, in the case u1 = 0, one can check that Eup is a solution of the generalized
wave equation

(

∂

∂t
+λ+

∂

∂x

)(

∂

∂t
+λ−

∂

∂x

)

Eup=0.

The appearance of such velocities λ± in the phenomena is not obvious simply looking
at the original model. Furthermore Euc is a continuous superposition on λ of squared
transport equation:

Euc=
∫ M+

M−
Uc,λ dλ, where

(

∂

∂t
+λ

∂

∂x

)2

Uc,λ=0.

Estimate: The estimate (2.8) predicts a linear growth in time of the norm of the mean
value. Using this estimate of the mean value and the fact that u is the solution of a
transport squared equation, the authors of [6] get the following estimate

‖u‖L2
y(L2

x)
≤‖u0‖L2

y(L2
x)
+C

3

∑
k=1

tk

(

∥

∥

∥

∥

∂ku0

∂xk

∥

∥

∥

∥

L2
y(L2

x)

+

∥

∥

∥

∥

∂k−1u1

∂xk−1

∥

∥

∥

∥

L2
y(L2

x)

)

,

which predicts a possible polynomial growth in time as t3. In fact, they did not use that
the right-hand side depends on Eu, and consequently on the solution itself. By working
on the full expression obtained for u (through (2.1), (2.6) and (2.7)), a linear growth seems
more likely. We will confirm it through our simulations.
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2.3 Two particular cases

The Theorem 2.1 provides us a quasi explicit expression of the solution. In order to exploit
it for numerical simulations we need to get the expressions of RN, IN, RN′, and IN′.
This can be done for a class of monotonous profiles, as shown below. After that, we give
an example of a non monotonous profile for which it is still possible.

2.3.1 The case of a class of monotonous profiles

We introduce here a class of smooth monotonous profiles:

Definition 2.1. We shall say that a profile M belongs to the class Cs if

• M∈C3,γ([−1,1]) i.e. M is a real-valued function, 3-times differentiable and its third
derivative is Hölder continuous with exponent γ;

• M′(y) 6=0, ∀y∈ [−1,1];
• limεց0 F(λ±iε)−2 6=0, ∀λ∈ ]M−,M+[.

In what follows, we assume that M ∈ Cs and, without a loss of generality, that M
is increasing. We introduce the inverse function µ of M. Using the change of variable
z=M(y) and integration by parts, one can show that for λ∈]M−,M+[ (see, e.g., [8]):

RF(λ)=
[

− µ′(z)
z−λ

]M+

M−
+p.v.

∫ M+

M−

µ′′(z)
z−λ

dz, (2.9a)

RF′(λ)=
[ −µ′(z)
(z−λ)2

]M+

M−
−
[µ′′(z)

z−λ

]M+

M−
+p.v.

∫ M+

M−

µ′′′(z)
z−λ

dz, (2.9b)

IF(λ)=πµ′′(λ), IF′(λ)=πµ′′′(λ), (2.9c)

where

lim
εց0

F(λ±iε) :=RF(λ)±iIF(λ), lim
εց0

F′(λ±iε) :=RF′(λ)±iIF′(λ).

Thanks to the third condition of Definition 2.1, the definition of N± and N′
± makes sense.

Remembering (2.4) and (2.5) we get their expressions, functions of RF, RF′, IF and IF′:

RN(λ)= |N(λ)|2 (2−RF(λ)) , IN(λ)= |N(λ)|2IF(λ), (2.10a)

RN′(λ)= |N(λ)|4
[(

(

2−RF(λ)
)2−IF(λ)2

)

RF′(λ)

−2IF(λ)IF′(λ)(2−RF(λ))
]

, (2.10b)

IN′(λ)= |N(λ)|4
[

2IF(λ)
(

2−RF(λ)
)

RF′(λ)

+IF′(λ)
(

(

2−RF(λ)
)2−IF(λ)2

)]

, (2.10c)
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where

|N(λ)| :=
∣

∣

∣

∣

lim
εց0

N(λ±iε)

∣

∣

∣

∣

=
[

(2−RF(λ))2+IF(λ)2
]− 1

2 .

Furthermore it is shown in [6] that for such a profile, (HN) and (HN ′) are satisfied. (HRL)
is obviously satisfied. We now get the following theorem as a direct consequence of
Theorem 2.1:

Theorem 2.2. Let us assume that M∈Cs and that (HS) is satisfied. Then, the Cauchy problem
(1.1) is well-posed in the sense that for any (u0,u1)∈ L2

y(H3+n
x )×L2

y(H2+n
x ), n≥ 0, it admits a

unique solution

u∈C0(R+;L2
y(Hn

x ))∩C1(R+;L2
y(Hn−1

x )).

Furthermore we have Eu(x,t)=−2E[up(x,.,t)+uc(x,.,t)] where up is given by (2.6) and uc by
(2.7) and (2.10). Moreover the estimates (2.8) still hold. Finally we get u from (2.1).

Remark 2.1. If we replace, in Definition 2.1, the third condition by M′′(y) 6=0, ∀y∈[−1,1],
then (2.9) implies limεց0 F(λ±iε)−2 6= 0 for all λ∈]M−,M+[ (since its imaginary part is
non zero). Moreover, it is shown in [6] that (HS) is automatically satisfied. Then we get
the well-posedness theorem written in [6].

This theorem provides us a quasi-explicit expression of the solution for a large class of
profiles. We are going to use this expression for numerical simulations (see Section 3.2).
However, non-monotonous profiles do not belong to this class. That is why we have
given Theorem 2.1 which can be used case by case, for more general profiles as it is
shown in the following section.

2.3.2 The case of a non monotonous profile: M(y)=1−y2

This section is devoted to the study of a non monotonous profile. To apply Theorem
2.1 the difficulty is to calculate limεց0 N(λ±iε). In opposition to a Cs profile, no general
method can be used. This section can be seen as a procedure to follow for more general
profiles. We consider here a quadratic profile:

M(y)=1−y2.

It was chosen because its behaviour is well fitted to the physics of a reference flow in a
duct. In order to apply Theorem 2.1, we have to show that we are in its framework of
application. First of all (HRL) is obviously satisfied. From the concavity of M we get that
(HS) is satisfied too (see [2]). We now want to show that (HN) and (HN ′) are satisfied.

In what follows we take the branch cut of the complex square root and of the complex
logarithm function along the real axis.
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Calculation of RN and IN: We begin with the calculation of limεց0 F(λ±iε):=RF(λ)±
iIF(λ), for λ∈]0,1[ (note that here M−=0 and M+=1). In this purpose, we are going to
calculate

F(λ)=
∫ 1

−1

1

(λ−1+y2)2
dy

for λ such that Im(λ) 6=0. We use the following partial fraction expansion

1

(λ−1+y2)2
=

1

4(1−λ)

[

1

(y−
√

1−λ)2
+

1

(y+
√

1−λ)2

]

+
1

4(1−λ)
√

1−λ

[

1

y+
√

1−λ
− 1

y+
√

1+λ

]

to obtain

F(λ)=
−1

(1−λ)λ
+

1

4(1−λ)
√

1−λ

[

log
(

1+
√

1−λ
)

−log
(

1−
√

1−λ
)

+log
(

−1−
√

1−λ
)

−log
(

−1+
√

1−λ
)

]

.

One can easily get, for any λ∈]0,1[:

RF(λ)=
−1

(1−λ)λ
+

1

2(1−λ)
√

1−λ
log

(

1+
√

1−λ

1−
√

1−λ

)

, (2.11a)

IF(λ)=
π

2(1−λ)
√

1−λ
. (2.11b)

Since IF(λ) 6= 0, we have limεց0 F(λ±iε) 6= 2 and we get the expression of RN and IN
from (2.10).

Calculation of RN′ and IN′: By a similar process we get:

RF′(λ)=
−2+5λ

2(1−λ)2λ2
− 3

4(1−λ)2
√

1−λ
log

(

1+
√

1−λ

1−
√

1−λ

)

, (2.12a)

IF′(λ)=− 3π

4(1−λ)2
√

1−λ
. (2.12b)

Once again we get the expression of RN′ and IN′ from (2.10).

Using the results above one can show that (HN) and (H′
N) are satisfied. Finally, we

can apply Theorem 2.1 to get a quasi-analytic expression of Eu and then of u. The results
of the numerical computation of the solution are presented in Section 3.2.2.
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3 Numerical computation of the solution

In this section, we present the numerical method and we illustrate it by three examples,
the linear and tangent profiles, which belong to the Cs class, and the quadratic profile
M(y)=1−y2.

3.1 The numerical method

We assume here that M is such that we can apply Theorem 2.1, and that we have obtained
the expressions of the functions RN, IN, RN′, IN′. In the case of a Cs profile these
expressions are given by (2.10) through (2.9). In the case of M(y)=1−y2 they are given
by (2.10) through (2.11) and (2.12).

Thanks to Theorem 2.1, we get a quasi-explicit expression of Eu=E[up+uc] (through
multiple integrals) through (2.6) and (2.7). We are now going to explain how we pro-
ceed to compute numerically the solution. Our main tool will be the Gauss-Legendre
quadrature, to compute integrals. For more details, see [9].

Numerical computation of Eu: First of all, to avoid the computation of terms of the

form
∫ µt

0 u1(x−s,y) ds we assume that we know a primitive of u1. Moreover we assume
that we have analytic expressions of the initial conditions and the profile (and its in-
verse). One can easily free himself from these technical assumptions. This is now how
we proceed:

1. We initialize the functions, F, F′, RN, RN′ , IN and IN′, using a gaussian quadra-
ture to compute the integrals. We use at most 64 quadrature points. When it is
necessary (as in the case of a Cs profile, see (2.9)), we use the following definition of
the Cauchy principal value integral (see [8]):

v.p.
∫ M+

M−

φ(λ)

λ−x
dλ=

∫ M+

M−

ϕ(λ)−ϕ(x)

λ−x
dλ+ϕ(x) log

(

M+−x

x−M−

)

. (3.1)

2. Since F is monotonous in ]M+,∞[ (resp. ]−∞,M−[) we get λ+ (resp. λ−) by di-
chotomy. From (2.6) we get up.

3. To compute uc, we use the definition (3.1) of the Cauchy principal value integral.

4. Finally, we get Eu=E[up+uc] by integrating with respect to y, using again, a Gaus-
sian quadrature.

Numerical computation of u: Derivating the expression of Eu two times with respect
to x, only consists in derivating two times the initial conditions. We obtain an expression
for ∂2Eu/∂x2 that we compute using the same process as we did for Eu. Finally we get u
by (2.1).
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Remark 3.1. We only need the values of the functions RN, IN, RN′, and IN′ at the
quadrature points. Therefore, we compute them, once and for all, at the beginning of our
program.

Remark 3.2. The precision of this computation is, unfortunately, dependent on the time
t. Indeed, the integration interval grows with t in the expression (2.1) of u. Moreover, the
functions we integrate, such that tu1(x−λt,y) in (2.7), get worse and worse with time (in
the sense that they become more difficult to integrate). The solution consists in increasing
the number of quadrature points.

3.2 Numerical computation for smooth monotonous profiles

In this section, for both linear and tangent profiles, we first show that they belong to the
Cs class and then we give the numerical results obtained.

3.2.1 The linear profile

We now consider the particular case of a linear profile M(y)=My where M∈R∗
+. We are

going to see how to use Theorem 2.2. In that case F can be explicitly calculated. Indeed,
a simple integration gives for λ∈C\[−M,M]:

F(λ)=
2

λ2−M2
.

As a consequence, the solutions of F(λ) = 2 for λ∈C\[−M,M] are λ± =±
√

1+M2, so
that (HS) is satisfied. From (2.9) and (2.10) or directly, one can easily get for λ∈]−M,M[:

RF(λ)=
2

λ2−M2
, IF(λ)=0, (3.2a)

RF′(λ)=
−4λ

(λ2−M2)2
, IF′(λ)=0, (3.2b)

RN(λ)=
1

2−RF(λ)
, IN(λ)=0, (3.2c)

RN′(λ)=
RF′(λ)

(2−RF(λ))2
, IN′(λ)=0. (3.2d)

In particular, since RF(λ) 6=2, the third condition of Definition 2.1 is fulfilled and M∈Cs.

Numerical results: We present here the solution for M=1. We have taken u0(x,y)=e−x2
,

a gaussian function with respect to x, independent of y and u1(x,y)=0. We begin with the
time evolution of the mean value Eu, where x varies from −15 to 15 on the abscissa, see
Fig. 1. The red arrows move at velocities λ±; they point out the contribution of the poles.
By this way, we can separate the two contributions, the rest representing the contribution



L. Joubert and P. Joly / Commun. Comput. Phys., 11 (2012), pp. 508-524 519

−15 −10 −5 0 5 10 15
0

0.2
0.4
0.6
0.8

1

x
−15 −10 −5 0 5 10 15
0

0.2
0.4
0.6
0.8

1

x

−15 −10 −5 0 5 10 15
0

0.2
0.4
0.6
0.8

1

x
−15 −10 −5 0 5 10 15
0

0.2
0.4
0.6
0.8

1

x

t=0 t=3

t=6 t=9

Figure 1: Time evolution of Eu for M=1.

Figure 2: Time evolution of u for M=1.
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Figure 3: Time evolution of Eu for M=0.4.

of the branch cut. As the poles velocities are greater than the branch cut velocities (∈
[M−,M+], see Section 2.2), the distinction between the two contributions is easier when
time increases. We notice that the amplitude of the poles contribution decreases until a
limit value while the branch cut’s is widening and decreasing. We now present the time
evolution of u, where x is on the abscissa and y on the ordinate, see Fig. 2.

We now see the phenomena for each y; in opposition to Eu, u is no more symmet-
ric with respect to x. We notice again the distinction between the two contributions. The
branch cut contribution is the most visible one and represents the convection. Indeed, this
contribution takes on the behaviour of the profile (it is verified in all the examples pre-
sented hereinafter). The contribution of the poles is smaller and localized at the boundary
y=±1. More precisely, the contribution of the pole λ+ (resp. λ−) is localized in y=1 (resp.
y=−1), where the profile takes its maximum (resp. minimum) value. We now present
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the evolution of the mean value for M=0.4 in Fig. 3.
We notice that the poles contribution is more important than in the previous case.

What is remarkable is that when M tends to 0 this contribution becomes predominant
and the mean value tends to the solution of a wave equation. Indeed, in the simple case
of the uniform flow (M(y)=M), taking the mean value of the equation shows that ψ=Eu
is a solution of the convected wave equation

(

∂

∂t
+M

∂

∂x

)2

ψ− ∂2ψ

∂x2
=0.

3.2.2 The tangent profile

We consider here a tangent profile:

M(y)= tan
(π

2
−α
)−1

tan
(

(π

2
−α
)

y
)

,

where α ∈]0,π/2[ and tan(π/2−α)−1 is a normalization factor. In particular we have
M−=−1 and M+=1. This profile is increasing, concave on ]−1,0[ and convex on ]0,1[.
We know from [2] that for such a profile, (HS) is satisfied. To show that M∈Cs, the only
difficulty is to show the third condition of Definition 2.1. From (2.9) (which hold as soon
as M∈C2([−1,1]) and M′(y) 6=0, ∀y∈ [−1,1]) we get that IF(λ) vanishes only for λ=0.
Hence, to conclude we only have to verify that RF(0) 6=2, what is done numerically.

We now present the results obtained for u1(x,y)= 0 and u0(x,y)= e−x2
. Fig. 4 repre-

sents the time evolution of the mean value for t= 0,3,6 and 9, and Fig. 5 represents the
time evolution of function u itself at the same time. The red arrows move at velocities
λ−≈−1.21096 and λ+≈1.21096. Here again we can see the two contributions. The same
remarks as in the linear case still hold.

3.3 The quadratic profile M(y)=1−y2

Numerically we get λ−≈−0.4909 and λ+≈1.7683. We take again u1(x,y)=0 and u0(x,y)=

e−x2
. Fig. 6 represents the evolution of the mean value and Fig. 7 represents u at the same

time, for x∈[−8,24]. Once again the red arrows move at velocities λ±. We can see on both
Figs. 6 and 7 that the amplitude of the contribution of λ+ (which propagates upstream)
is smaller than that of λ− (which propagates downstream). Once again, the contribution
of λ+ is localized where M takes its maximum (at y = 0) and the contribution of λ− is
localized where M takes its minimum (at y=±1). Furthermore, the fact that |M+|> |M−|
coincides with the fact the contribution of λ+ is smaller than λ−’s.

3.4 Time dependence of the norm of the solution

It is noticed that in the previous examples that we do not see a growth (see Section 2.2),
neither for Eu nor for u. This comes from the choice of the initial conditions. To see
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Figure 4: Time evolution of Eu.

Figure 5: Time evolution of u.
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Figure 6: Time evolution of Eu.

Figure 7: Time evolution of u.
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a growth of the solution, expressions (2.6) and (2.7) suggest to take for example u1 (or
∂u0/∂x) in L2

x(R) but not in L1
x(R). We build such a function f :

f (x)=







2−14x4+28x5−20x6+5x7, |x|<1,
1

|x| , |x|≥1.

In particular, f ∈C4(R). In fact, f was built in this purpose.
We now present the evolution of the L2 norm of Eu and u for the tangent profile

with α= 0.2. The initial conditions are u0(x,y)= 0 and u1(x,y)= f (x). Fig. 8 (resp. Fig.
9) represents, in blue crosses, the evolution of log(‖Eu‖L2

x
) (resp. log(‖u‖L2

x(L2
y)
) ) with

respect to log(t). The red lines are reference lines with slopes equal to 1. As a conclusion
we see that the growth in time of the solution and its mean value is linear. In all our
simulations we have never observed a greater growth.

4 Numerical validation of the model

To validate our asymptotic model (1.1) we are going to compare, numerically, our solu-
tion to the solution of the linearized Euler equations in a duct: (x,Y)∈R×[−ε,ε]. Using
the equivalence between Galbrun’s equations and linearized Euler equations (see [7])
and remembering the scale used to derivate (1.1), we need the solution of the following
linearized Euler equations: for (x,Y)∈R×[−ε,ε], t∈R+,



































∂Uε

∂t
+M

(

Y

ε

)

∂Uε

∂x
+

∂Pε

∂x
+

1

ε
M′
(

Y

ε

)

Vε =0,

∂Vε

∂t
+M

(

Y

ε

)

∂Vε

∂x
+

∂Pε

∂Y
=0,

∂Pε

∂t
+M

(

Y

ε

)

∂Pε

∂x
+

∂Uε

∂x
+

∂Vε

∂Y
=0,

(4.1)
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Figure 10: The relative error for t=2, 5 and 8 in a logarithmic scale.

where (Uε,Vε) are the two components of the Eulerian velocity and Pε is the pressure.
Furthermore we obtain the following initial conditions for (x,Y)∈R×[−ε,ε], functions of
(u0,u1) the initial condition of (1.1):

Uε(x,Y,0)=u1

(

x,
Y

ε

)

+M

(

Y

ε

)

∂u0

∂x

(

x,
Y

ε

)

,

Vε(x,Y,0)=0, Pε(x,Y,0)=−∂u0

∂x

(

x,
Y

ε

)

.

Marc Duruflé, using its Montjoie code†, solved (4.1) using discontinuous Galerkin spec-
tral method (for more precision see [4]). He provided us Pε for several ε.

To compare the results we have to express u, the solution of (1.1), into Eulerian vari-
ables. Using again the equivalence between Galbrun’s equations and linearized Euler
equations and the asymptotic expansions used in [2] we denote:

p(x,y,t) :=−∂Eu

∂x
(x,t), (x,y)∈R×[−1,1], t∈R

+,

where p is the pressure like function corresponding to our asymptotic model. As a con-
sequence it should be the limit of pε(x,y,t) :=Pε(x,εy,t) when ε tends to 0. We notice that
p is independent of y.

We consider the linear case M(y)= y with the following initial conditions: u0(x,y)=
exp(−x2) and u1(x,y)=0. We get u, and then p, using the numerical method presented
in the previous section. Fig. 10 represents, in a logarithmic scale, the relative error

‖p−pε‖L2(R×]−1,1[)

‖p‖L2(R×]−1,1[)

†https://gforge.inria.fr/projects/montjoie
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with respect to ε. We can see that the relative error tends to 0 as ε tends to 0 which
validates our asymptotic model. Actually it does not tend to 0 but to a small value (which
is between 10−2 and 10−3 for each t). This is the consequence of the approximation errors
of both numerical methods. As these approximation errors increase with t, it explains
also why the relative error increases with respect to t. Finally, we observe that the relative
error has a quadratic dependance on ε, that is to say that it decreases as ε2. This remains
to be proven.
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[2] A.S. Bonnet-BenDhia, M. Duruflé, P. Joly, and L. Joubert. Stability of acoustic propagation in
a 2d flow duct: A low frequency approach. submitted.

[3] E.J. Brambley. Fundamental problems with the model of uniform flow over acoustic linings.
Journal of Sound and Vibration, 322(4-5):1026–1037, 2009.
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