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Abstract. The analysis of seismic wave propagation and amplification in complex ge-
ological structures requires efficient numerical methods. In this article, following up
on recent studies devoted to the formulation, implementation and evaluation of 3-
D single- and multi-region elastodynamic fast multipole boundary element methods
(FM-BEMs), a simple preconditioning strategy is proposed. Its efficiency is demon-
strated on both the single- and multi-region versions using benchmark examples (scat-
tering of plane waves by canyons and basins). Finally, the preconditioned FM-BEM
is applied to the scattering of plane seismic waves in an actual configuration (alpine
basin of Grenoble, France), for which the high velocity contrast is seen to significantly
affect the overall efficiency of the multi-region FM-BEM.
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1 Introduction

Due to rapid and steady increase of available computational resources, the simulation of
wave propagation in 3D configurations is currently a very active research area. The main
advantage of the boundary element method (BEM) is that only the domain boundaries
(and possibly interfaces) are discretized, leading to a reduction of the number of degrees
of freedom (DOFs), and avoiding cumulative effects of grid dispersion [17, 18]. The BEM
is well suited to unbounded-domain idealizations commonly used in seismology, as exact
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satisfaction of radiation conditions is built into the formulation [3, 20]. However, the stan-
dard BEM leads to fully-populated matrices, which result in high computational costs in
CPU time (O(N2) per iteration using an iterative solver such as GMRES) and memory
requirements (O(N2)), where N denotes the number of DOFs of the BEM model. The ap-
pearance of accelerated boundary element (BE) methodologies, allowing complexities far
lower than those of traditional BEMs, has dramatically improved the capabilities of BEMs
for many areas of application, largely owing to the rapid development of the Fast Mul-
tipole Method (FMM) over the last two decades [23]. Such approaches have resulted in
considerable solution speedup, memory requirement reduction, and model size increase.
The FMM is inherently associated with iterative solvers (usually GMRES), and is known
to require O(N logN) CPU time per iteration for Helmholtz-type equations [9, 10, 34]. To
date, only few studies have been devoted to the FMM in elastodynamics (including [15]
for the frequency-domain case, [35] for the time-domain case and [4] for a formulation
specialized to surface waves), whereas FMMs for the Maxwell equations have been more
extensively investigated, see e.g. [9, 16, 21, 34]. The present authors recently proposed an
elastodynamic single-domain FM-BEM formulation which incorporates recent advances
of FMM implementations for Maxwell equations [6], with BEM models of size up to
N =O(106) run on a single-processor PC, then extended it to multi-domain situations,
with emphasis on alluvial-basin configurations, by developing a FMM-based BE-BE cou-
pling approach suitable for 3-D piecewise-homogeneous media [7].

The previous studies [6, 7] revealed that iteration count could significantly hinder the
overall efficiency of the elastodynamic FM-BEM, especially for multi-region configura-
tions, and even for problem sizes well within the computational platform’s limitations in
terms of required memory and CPU cost of a single iteration. This article aims at address-
ing this issue via a simple preconditioning approach based on an inner-outer GMRES
algorithm, whose usefulness is then demonstrated on 3-D numerical examples represen-
tative of seismic wave propagation. The proposed preconditioned FM-BEM is then ap-
plied to a more realistic seismological configuration, namely the propagation of seismic
waves in an alpine basin (Grenoble, France), for which the high velocity contrast is seen
to significantly affect the overall performance of the multi-region FM-BEM. The paper is
organized as follows. Classical concepts pertaining to elastodynamic BEM and FMM are
summarized in Section 2. The preconditioning strategy is presented and demonstrated
on numerical examples in Section 3, and applied on the Grenoble site model in Section 4.

2 Standard and fast multipole accelerated BEM

2.1 Single-region boundary element method

Let Ω denote a region of space occupied by an isotropic elastic solid characterized by µ
(shear modulus), ν (Poisson’s ratio) and ρ (mass density). A time-harmonic motion with
circular frequency ω is assumed, and the implicit factor e−iωt will be, as usual, omitted
throughout. Assuming the absence of body forces, the displacement u is given at an
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interior point x∈Ω by the well-known integral representation formula:

uk(x)=
∫

∂Ω
[ti(y)U

k
i (x,y;ω)−ui(y)T

k
i (x,y;ω)]dSy , (2.1)

where t is the traction vector on the boundary ∂Ω, and Uk
i (x,y;ω), Tk

i (x,y;ω) are the i-th
components of the elastodynamic fundamental displacement and traction, respectively,
generated at y∈R

3 by a unit point force applied at x∈R
3 along the direction k [13]:
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k2
S =

ρω2
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S

in which n(y) is the unit normal to ∂Ω directed outwards of Ω and G(r;k), defined by

G(r;k)=
exp(ikr)

4πr
(2.3)

is the free-space Green’s function for the Helmholtz equation with wavenumber k corre-
sponding to either P or S elastic waves.

The boundary traces (u,t)|∂Ω featured in the integral representation (2.1) are gov-
erned by the singular boundary integral equation:

cik(x)ui(x)+−
∫

∂Ω
ui(y)T

k
i (x,y;ω)dSy−

∫

∂Ω
ti(y)U

k
i (x,y;ω)dSy=0, (2.4)

where −
∫

indicates a Cauchy principal value (CPV) singular integral and the free-term
cik(x) is equal to 0.5δik in the usual case where ∂Ω is smooth at x.

To formulate a well-posed problem from (2.4), part of the boundary traces (u,t)|∂Ω

must be prescribed by applying boundary conditions in the usual way, and ω must not
coincide with one of the countable (real or fictitious) eigenfrequencies of the integral oper-
ator governing the part of (u,t)|∂Ω that remains unknown. The numerical solution of (2.4)
is then based on a boundary element (BE) discretization of the surface ∂Ω and boundary
traces (u,t), here based on linear three-noded triangular boundary elements, piecewise-
linear continuous (i.e. isoparametric) interpolation of displacements and a piecewise-
constant interpolation of tractions. This leads to the system [3]:

HU+GT=0, (2.5)

where H, G are fully populated, nonsymmetric, influence matrices while vectors U, T,
collect the displacement and traction degrees of freedom (DOFs). Moreover, a colloca-
tion approach is employed here whereby rows of (2.5) are generated by enforcing (2.4)
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at a discrete set of points x. Upon introduction of boundary conditions, the matrix equa-
tion (2.5) is recast in the form:

Kx=F, (2.6)

where the N-vector x collects the unknown DOFs, while the N×N matrix of influence
coefficients K contains the columns of H and G associated with the unknown DOFs.

BEM matrix equations such as (2.6) are here solved iteratively using the GMRES algo-
rithm [29]. The influence matrix K being fully-populated, standard BEM numerical inte-
gration procedures entail a O(N2) computing time for each GMRES iteration through the
evaluation of Krylov vectors xk+1 =Kxk. To lower this high complexity, which is unac-
ceptable for large BEM models, fast BEM solutions techniques such as the Fast Multipole
Method (FMM) used here are called for.

2.2 Fast Multipole Method: principle

The goal of the FMM is to speed up the matrix-vector product computation required
for each iteration of the iterative solver applied to the BEM-discretized equation (2.6)
while avoiding actual computation and storage of the BEM influence matrix. Substantial
savings in both CPU time and memory are thus achieved.

In general terms, the FMM exploits a reformulation of the fundamental solutions in
terms of products of functions of x and of y, so that (unlike in the traditional BEM) in-
tegrations with respect to y can be reused when the collocation point x is changed. On
decomposing the position vector r = y−x into r = (y−y0)+r0−(x−x0), where x0 and
y0 are two poles and r0 = y0−x0 and invoking the Gegenbauer addition theorem, the
Helmholtz Green’s function is written as [9, 12]:

G(|r|,k)= lim
L→+∞

∫

ŝ∈S
eikŝ.(y−y0)GL(ŝ;r0;k)e−ikŝ.(x−x0)dŝ, (2.7)

where S is the unit sphere of R
3 and the transfer function GL(ŝ;r0;k) is defined in terms of

the Legendre polynomials Pp and the spherical Hankel functions of the first kind h
(1)
p by:

GL(ŝ;r0;k)=
ik

16π2 ∑
0≤p≤L

(2p+1)iph
(1)
p (k|r0|)Pp

(

cos(ŝ,r0)
)

. (2.8)

Representations of the form (2.7) with GL replaced with suitably-defined (tensor) transfer
functions are then easily found [6] for the elastodynamic fundamental solution (2.2).

Single-region FMM. A 3D cubic grid of linear spacing d embedding the whole bound-
ary ∂Ω is then introduced. The FMM basically consists in using decomposition (2.7),
with the poles x0 and y0 being chosen as the cell centers, whenever x and y belong to
non-adjacent cubic cells. The treatment of such ”FM” contributions exploits the multipole
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expansions of the fundamental solutions (2.2), truncated at a finite L. When x and y be-
long to adjacent cells, traditional BEM evaluation methods based on expressions (2.2) and
(2.3) are used. As a result, the system matrix is split into two submatrices

K=Knear+KFM.

The matrix Knear is explicitly assembled and stored, while KFM is not. To improve further
the computational efficiency of the FM-BEM, a multi-level scheme is used whereby cells
are recursively subdivided into eight smaller cubic cells [9, 16, 21]. The cell-subdivision
approach is systematized by means of an oct-tree structure of cells. The level ℓ=0, com-
posed of only one cubic cell containing the whole surface ∂Ω, is the tree root. The subdi-
vision process is further repeated until the finest level ℓ= ℓ̄, implicitly defined by a preset

subdivision-stopping criterion (dℓ̄ ≥ dmin), is reached, where dℓ is the linear level-ℓ cell
size. Level-ℓ̄ cells are usually termed leaf cells. Decompositions of type (2.7) diverge in
the low-frequency limit ω → 0 [10]. FM-BEMs exploiting them are thus mid-frequency
FMMs and, as established in various empirical studies (e.g. in [6, 9]), require leaf cells to
have a minimum size relative to wavelength. Here, the bound dmin=0.30λS is used.

The theoretical complexity of the multi-level FMM is O(N logN) per GMRES itera-
tion both for CPU time and memory (see [6] for further details on the method and its
implementation for single-domain elastodynamic problems).

Multi-region FMM. This method is then extended to 3-D elastic wave propagation in
piecewise homogeneous domains in the form of a FM-accelerated multi-region BE-BE
coupling approach. Such formulation is useful e.g. for studying site effects (i.e seismic
wave amplification) in sedimentary basins. The coupling approach rests upon applying
the FMM independently for each homogeneous subregion. The BE-BE coupling then con-
sists in defining suitable linear combinations of equations arising from each subregion,
with weighting coefficients adjusted on the basis of numerical experiments. Further de-
tails on the BE-BE coupling and its implementation are available in [7].

3 Preconditioning strategy

No preconditioning was used in the previous studies [6, 7], which revealed that large
numbers of GMRES iterations could constitute a significant limiting factor, especially for
multi-region configurations, and even for problem sizes well below the expected limita-
tions in memory or CPU cost of a single iteration. A preconditioning strategy is clearly
needed to improve convergence properties for large coupled BE-BE models.

3.1 Overview of preconditioning strategies in the context of the FMM

Preconditioning strategies in the context of the FMM. Generally speaking, precondi-
tioning the linear system (2.6) consists in reformulating it using a preconditioning matrix
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M which approximates K in some sense while being easier to evaluate (either explicitly
or implicitly through matrix-vector products), store and invert. A right preconditioning
strategy then consists of considering the system

KM−1z=F, with Mx= z, (3.1)

where M should lower the condition number of the system, i.e. Cond(KM−1)<Cond(K).
Of course, forming the preconditioned matrix KM−1 is never needed in practice, linear
systems with matrix M being solved instead.

The determination of an efficient preconditioner for the elastodynamic FM-BEM is a
largely open issue. In [15], where problem sizes of at most N =O(104) are considered,
a block-diagonal preconditioner is used. Preconditioning of electromagnetic FMMs is
more developed, with several proposed approaches available in the literature. The in-
complete LU factorization with threshold has been successfully applied in e.g. [33] to
various electromagnetic scattering problems, in conjunction with the FMM. Other strate-
gies exploit the sparse approximate inverse (SPAI) of K, defined as the matrix M mini-
mizing ‖I−MK‖F subject to sparsity constraints [1]. The flexible GMRES (FGMRES [27]),
where the preconditioner may vary from one GMRES step to the next, has also been
proposed for FMM implementations. In [5], the standard (accurate) FMM is applied to
the matrix-vector products for the outer solver whereas the inner solver exploits a low-
accuracy FMM, itself preconditioned using the SPAI. This method is shown to be efficient
for problems of size up to N=O(106) DOFs.

3.2 Inner-outer preconditioning using the near influence matrix

In the FMM, the complete influence matrix K is never explicitly assembled, and Knear,
a sparse matrix into which the near contributions are assembled, is the only naturally
available matrix. It is proposed here to use Knear as the preconditioning matrix, i.e. to set
M=Knear, in a right-preconditioning approach. The size of Knear, while permitting its as-
sembly and storage (as a sparse matrix), is however too large (see the numerical examples
thereafter) for applying direct solvers to it. For this reason, two GMRES solvers are nested
in an inner-outer scheme, where the outer GMRES (restarted every m iterations) solves
the linear system of interest while the inner GMRES (without restart) solves precondition-
ing linear systems based on Knear. Moreover, to avoid having to apply M−1 to the Krylov
vectors as in the standard version of the right-preconditioned GMRES, recourse is made
instead to the FGMRES variant [27] of the algorithm, where such inversion is replaced
with storage of m additional auxiliary vectors. Even though FGMRES allows one to vary
M at each step, the same M is used here for each step k = 1,··· ,m. This leads to Algo-
rithm 3.1, which has been implemented using the FGMRES routine zPackfgmres.f [14]
and is demonstrated thereafter. The advantage of this preconditioning strategy is that the
computation of the preconditioner is not CPU-consuming since the sparse matrix Knear is
computed and stored anyway. The matrix-vector product needed for the inner GMRES
solver takes advantage of the structure of the computation of the near contributions.
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Algorithm 3.1: GMRES(m) with right preconditioning and inner GMRES for solving Ax= b.

r0=b−Ax0, β=‖r0‖2, v1= r0/β
while ‖r0‖≥ εouter(‖A‖‖x0‖+‖b‖) do

for j=1,··· ,m do

Mzj=vj solved using inner GMRES (unpreconditioned, no restart, tolerance εinner)
w=Azj

for i=1,··· , j do

hi,j=(w,vi)
w=w−hi,jvi

end for

hj+1,j=‖w‖2, vj+1=w/hj+1,j

Zm =[z1,··· ,zm], H̄m ={hi,j}1≤i≤j+1,1≤j≤m

end for

ym=argminy‖βe1− H̄my‖2, xm =x0+Zmym

x0=xm

r0=b−Ax0, β=‖r0‖2, v1= r0/β
end while

3.3 Numerical validation

The efficiency of this preconditioning strategy is now checked on two variants of a seismo-
logy-oriented problem often used as benchmark [7, 22, 30], where the scattering by either
a semispherical canyon (case (a)) or a semispherical alluvial basin (case (b)) of plane seis-
mic waves travelling in an elastic half-space is considered (Fig. 1). In both cases, an
oblique (θ = 30◦) incident plane P-wave is considered, the material in Ω1 has a Poisson
ratio ν(1) = 0.25, the free surface is meshed within a disk of radius b = 5a (where a is
the radius of the semispherical obstacle), and the non-dimensional frequency is set to

k
(1)
P a/π=2.

In case (a) (Fig. 1(a)), the BE mesh features N=111,237 DOFs. In case (b), the alluvial
basin Ω2 (Fig. 1(b)) is also modeled (with material parameters in Ω2 given by µ(2) =
0.3µ(1), ρ(2)=0.6ρ(1) and ν(2)=0.3), and the mesh features N=190,299 DOFs.

Efficiency of the preconditioning strategy. All examples presented in this article have
been run on the same 8-processor PC (RAM: 64 GB, CPU frequency: 2.33 GHz), with each
FMM analysis performed independently on a single processor.

The number of iterations and total CPU time required by the complete solution pro-
cedure for cases (a) and (b), with and without the preconditioning method of Section 3.2,
are given in Table 1. The GMRES tolerances are set at εinner=10−1 for the inner solver and
εouter = 10−3 for the outer solver. No restart is used for the inner solver, while the outer
solver is restarted every m=50 iterations. Preconditioning is seen to considerably reduce
the outer iteration count. However, the inner GMRES iterations in the preconditioned
version also contribute to the overall computational cost (noting, however, that inner
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plane P–wave

infinite elastic half space Ω1

Figure 1: Diffraction of an oblique incident plane P-wave by a semi-spherical canyon (top) or a semi-spherical
basin (bottom): geometry and notation.

Table 1: Diffraction of an incident plane wave by a semi-spherical canyon and basin: iteration counts and CPU
time (with and without preconditioning).

Configuration without prec. with prec.
Iters CPU Iters (inner) Iters (outer) CPU

(a) canyon 43 33′19′′ 70 17 25′36′′

(b) basin 388 7h59′27′′ 231 26 2h30′54′′

matrix-vector products Mz are less expensive than outer products Kx). Thus, in spite
of the large number of inner GMRES iterations performed by the inner-outer scheme,
Table 1 shows the overall efficiency of the latter (measured in terms of cumulative CPU
time) to be about three times that of the un-preconditioned version for case (b), which
was known beforehand to be the more problematic one in terms of convergence speed.

Influence of the inner-solver tolerance parameter. An important parameter in our
inner-outer scheme is the tolerance εinner used in the stopping criterion of the inner GM-
RES. To study its influence, εinner is varied from 5 10−2 to 5 10−1, and the corresponding
recorded values of total CPU time and iteration count are given in Table 2. Decreasing
εinner is seen to reduce the iteration count of the inner GMRES while increasing that of the
outer GMRES. Since the latter iterations are more CPU-consuming than the former, effi-
cient preconditioning requires finding a good compromise between the number of outer
and inner iterations, which is achieved on this example by setting εinner=10−1. While the
optimal choice of εinner depends on the problem (through the ratio of the CPU times per
inner and outer iterations), the value εinner=10−1 seems to be a reasonable default choice.
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Table 2: Diffraction of an incident plane wave by a semi-spherical basin: influence of the tolerance εinner used
for the convergence of the inner solver.

εinner nb iter. (inner) nb iter. (outer) CPU time

5 10−2 338 25 3h12′34′′

8 10−2 248 25 2h35′43′′

1 10−1 231 26 2h30′54′′

3 10−1 164 41 2h50′44′′

5 10−1 171 58 3h31′43′′

4 Modelling of an Alpine valley: Grenoble

The proposed preconditioned elastodynamic FMM is now applied to a more realistic
seismological configuration, namely the diffraction of a vertical incident plane seismic
wave by an Alpine valley (Grenoble, France).

4.1 Choice of the Grenoble site

The geological configuration, basin geometry and edges modify an incident wave field
and may lead to large amplifications and higher signal duration. The Grenoble alpine val-
ley (France), having previously been the subject of a numerical benchmark, offers an in-
teresting case study with available mechanical and topographical data. This benchmark
proposed various configurations (1D, 2D, 3D, with/without topography) to investigate
weak (i.e linear) as well as strong (i.e. nonlinear) seismic motion in the Grenoble valley.
Various numerical methods were used by different teams around the world, including
classical BEM simulations performed in the 2D case [11]. The results are discussed in [2].

Geometry definition and mesh generation. Mesh generation is a significant issue when
dealing with seismological applications. For this preliminary study of a realistic site, the
topography of the valley outside the sedimentary basin is not modeled to keep the BEM
model size within manageable limits. The bedrock/sediment interface, known from the
inversion of gravimetric anomalies (Vallon [36]), is defined through the topographical
coordinates of the bedrock/sediment interface on a regular grid (every 250m).

The horizontal geometry of the Alpine valley is depicted in Fig. 2 (left). The seismic
recordings (accelerations) displayed in the figure show that the ground motion is strongly
amplified in the basin (seismological stations OGCU, OGSR, OGDH and OGPC) when
compared to the bedrock motion (station OGMU). To design the BEM model, the valley,
which is Y-shaped when seen from above, is enclosed in a circle of radius a ≃ 11.7 km
(Fig. 2, right). For this study, the meshed surrounding portion of the free surface is cir-
cumscribed within a disk of radius D=30 km (≃3a). No topographical data are available
at Γa

12 and Γb
12. Consequently, the North ends of the Y-shaped valley are closed artifi-

cially, although the steep slopes thus introduced may induce artificial reflections at the
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Figure 2: The Alpine valley: general topography and seismic motion recordings, from [32] (left); geometry and
notation for the model (right).

basin edges. A study comparing various artificial valley closures should be done to eval-
uate their effects on the simulated seismic motion. However, for now this simple closure
method is used in this study.

Material parameters. The bedrock and sedimentary basin models are as proposed
in [8]. In the bedrock Ω1 (Fig. 2), the P- and S-velocities and mass density are set to
constant values:

c
(1)
P =5,600 m.s−1, c

(1)
S =3,200 m.s−1 and ρ(1)=2,720 kg.m−3.

In the sedimentary basin, the velocity profile increases with depth z. The models used in
numerical benchmark (ESG 2006) were: cP(z)=1450+1.2z m.s−1, cS(z)=300+19

√
z m.s−1

and ρ(z) = 2140+0.125z kg.m−3, with z in meters. In this work, only a single homoge-
neous layer Ω2 is used, with mean mechanical parameters set to:

c
(2)
P =1,988 m.s−1, c

(2)
S =526 m.s−1 and ρ(2)=2,206 kg.m−3.

In [11], a piecewise homogeneous model of this deposit (involving 6 layers) was con-
sidered in the framework of a classical 2D BEM, which thus required a discretization of
the interfaces between each subdomain. The results were satisfactory when compared
to other numerical approaches accounting for the variations of the mechanical proper-
ties [8]. In another case study [31], the actual soil layering of the Volvi basin was modelled
using different piecewise homogeneous BEM models (two to six layers), and detailed de-
scription of the geological structure was found to affect the propagation features only in
the higher frequency range. The present preliminary model may thus be considered as
reasonable for the low-frequency range, close to the fundamental frequency of the basin
for which the most severe amplifications are known to occur [8].
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Table 3: Propagation of an incident plane P-wave in an Alpine valley: computational data.

f N ℓ̄1; ℓ̄2 CPU time / iter (s) iters (with prec.) total CPU time
0.3 Hz 95,142 4;5 86.6 253 39h55′31′′

0.6 Hz 141,288 5;6 77 747 75h45′44′′

4.2 Surface displacements for a vertical incident plane P-wave

The diffraction by the valley of a vertical incident plane P-wave is considered for two
frequencies: f = 0.3 Hz and f = 0.6 Hz. In Table 3, the number of DOFs N and the leaf
levels ℓ̄1 and ℓ̄2 are given for the two frequencies together with the CPU time per iter-
ation (without preconditioning), the number of iterations and the cumulative CPU time
(with preconditioning). In Fig. 3, the modulus of the x-, y-, z-surface displacement com-
ponents (normalized by the incident displacement amplitude) are displayed for the two
frequencies. This computation shows the possibility of very high amplifications inside
the alluvial basin (up to about 15.5 for f =0.6 Hz). Most of the amplification occurs in the
north part of the basin, for the z-component.

Limitations of the present FM-BEM for realistic seismic applications. The BE meshes
are designed so as to feature about 10 nodes per S-wavelength (Fig. 4), a common ”rule
of thumb” previously shown to be valid for our FM-BEM formulation [6, 7]. Due to the

high velocity contrasts between the bedrock and sediment (with c
(1)
S /c

(2)
S ≈ 6.1), mesh

conformity on Γ12 lead to mesh densities of about 10 nodes per smallest S-wavelength
near Γ12, i.e about 6 times too dense in the bedrock material surrounding Γ12 (Fig. 5).

This arrangement leads to sub-optimal performance of the present FM-BEM. Stan-
dard complexity estimates for memory and CPU time are based on the assumption that
the number of DOFs per wavelength is roughly uniform, resulting in roughly equal num-
bers of DOFs per leaf cell (due to the leaf cell size lower bound dmin ≥0.30λS empirically
established in [6]). Here, the combined effect of highly heterogeneous mesh densities and
cell size threshold leads to abnormally large numbers of DOFs in leaf cells intersecting
Γ12. This in turn degrades the sparsity of Knear and increases the memory required to hold
it. The other consequence is that the CPU time and memory requirements are very sensi-
tive to the number of levels. For the two frequencies studied f=0.3 Hz and f=0.6 Hz, the
size of Knear is about 25 GB and 20 GB, respectively. The first remark is that Knear requires
more memory for f =0.3 Hz than for f =0.6 Hz even though N is smaller; this is because
the number of levels is larger in the latter case. Using the mesh with N = 141,288 for
f =0.5 Hz instead of f =0.6 Hz would lead to leaf levels ℓ̄1=4 and ℓ̄2=5 and result in an
even larger Knear filling 52 GB. A similar effect makes the proportion of near contributions
larger for f =0.3 Hz than for f =0.6 Hz, which explains the larger CPU time per iteration
observed for f =0.3 Hz. So, although being based on relatively low BEM model sizes N
(with limitations on the range of accessible frequencies) compared to the more academic
examples treated in [6, 7] with the same method (without preconditioning), the high ve-
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f =0.3 Hz f =0.6 Hz

|Ux|

|Uy|
ex

ey

|Uz|

0 1.51 3.02 4.54 6.05 0 7.86 15.73 23.59 31.46

Figure 3: Propagation of a vertical incident plane P-wave in the Alpine valley: modulus of the x- (top), y-
(middle) and z- (bottom) components of displacement for frequencies f =0.3 Hz (left) and f =0.6 Hz (right).

locity contrasts made computations performed for this study substantially more difficult.
In fact, to enable the computation at f =0.6 Hz, only about 8 points per S-wavelength are
used in Ω2 (instead of the 10 points per S-wavelength for f =0.3 Hz).

The preconditioning strategy, while still useful, proved less efficient than in the ex-
amples of Section 3.3 because of the large size of Knear, increasing the cost of the inner
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Figure 4: Density of points per S-wavelength (b) and close-ups on cells of size λ
(i)
S

(a and c), for N=141,288
and f =0.6 Hz.

(a) (b)

λ
(1)
S

Figure 5: Density of points per S-wavelength in Ω(1) (a) and close-up on the density of points per λ
(1)
S

on the
interface Γ12 (b), for N=141,288 and f =0.6 Hz.

iterations. To mitigate this effect, the inner-solver tolerance was set to ε inner = 510−1 in-
stead of the recommended value ε inner =10−1.

5 Conclusions and directions for future work

A simple and efficient preconditioning strategy has been proposed and implemented.
This strategy is shown to be efficient on canyon problems and even more on basin prob-
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lems (which are more ill-conditioned). It constitutes a step towards the definition of an
optimal preconditioning strategy, a key issue for improving the efficiency of the elas-
todynamic FM-BEM for which further study is still needed. Moreover, a comparative
study with the other preconditioning approaches used in electromagnetic FMM (incom-
plete LU, SPAI, inner-outer GMRES with two embedded FMM using various levels of
accuracy), under way, is expected to bring worthwhile insight on this issue.

In the paper, the FM-BEM is also used to study a more realistic example: the diffrac-
tion of incident plane seismic waves by an Alpine valley (Grenoble, France). This exam-
ple underlines the sub-optimal efficiency of the present FM-BEM for dealing with basin
problems featuring a high velocity contrast between two layers, caused by non-uniform
BE meshes near the interface. This issue would become even more problematic when
considering different geological layers having various velocities.

To overcome this limitation, a method combining low- and mid-frequency FMM for-
mulations could be used [19, 24]. Such treatment removes the dmin =0.30λS lower bound
for the linear size of leaf cells (the subdivision-stopping criterion used in the present
mid-frequency FMM), allowing to instead define leaf cells in terms of a preset, uniform
over the mesh, minimum number of DOFs per cell. Another possibility is to use non-
conforming meshes [26]. Such approaches would permit the analysis of complex geolog-
ical structures involving several layers having different wave velocities.
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