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Abstract. In the present work adaptation in meshless framework is proposed. The
grid adaptation or mesh adaptation is quite well developed area in case of conven-
tional grid based solvers and is popularly known as Adaptive mesh refinement (AMR).
In such cases the adaptation is done by subdividing the cells or elements into finer cells
or elements. In case of meshless methods there are no cells or elements but only a cloud
of points. In this work we propose to achieve the meshless adaptation by locally refin-
ing the point density in the regions demanding higher resolution. This results into an
adaptive enriched cloud of points. We call this method as Adaptive Cloud Refinement
(ACR). The meshless solvers need connectivity information, which is a set of neighbor-
ing nodes. It is crucial part of meshless solvers. Obviously because of refining point
density, the connectivity of nodes in such regions gets modified and hence has to be
updated. An efficient connectivity update must exploit the fact that the node distribu-
tion would be largely unaffected except the region of adaptation. Hence connectivity
updating needs to be done locally, only in these regions. In this paper we also present
an extremely fast algorithm to update connectivity over adapted cloud called as ACU
(Automatic Connectivity Update).
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1 Introduction

Mesh adaptation is a technique to reduce the errors in approximations used to solve the
PDE’s. This can be done by redistributing the grid (r-refinement), refining the grid (h-
refinement) or increasing the order of approximation (p-refinement). In the conventional
solvers i.e., FDM, FVM or FEM, h-adaptation is done by subdividing the cells or elements
into finer ones. These techniques, called Adaptive Mesh Refinement (AMR) are fairly
well developed [1, 2]. The idea is to have finer discretization. The subdivision of cells or
elements has to be done subject to quality constraints on resulting mesh. In particular
the adapted mesh should avoid hanging nodes or edges and highly skewed cells. The
subdivision and formation of new cells or elements has to reflect in the book keeping
followed for the mesh and the solver. The data of cells, edges and nodes gets modified. In
the AMR these challenges have to be faced to achieve adaptation for mesh based solvers.

The meshless methods have been very successful in solving several challenging CFD
problems [3–5]. These solvers ease the process of grid generation which is often a bot-
tleneck in CFD simulations. These methods in general require only a cloud of points
and connectivity information at each of the nodes, where connectivity is defined as the
set of nearest neighbouring nodes to a given node. Hence only node data is sufficient.
Managing only node data offers considerable simplicity in book keeping. Further the
quality constraints on the cloud of points are far less when compared to mesh based
solvers. These observations are very encouraging to explore adaptation in meshless en-
vironment. The meshless methods do not contain any cells or elements, hence adaptation
by subdividing the cells or elements on mesh based solvers is not relevant here. A new
approach has to be followed for adaptation in meshless solvers. Keeping with the idea of
finer discretisation we propose to refine the point density in regions demanding higher
resolution. This results in an adapted and enriched cloud of points. We call this method
as Adaptive cloud refinement (ACR). Connectivity which is defined as the set of neigh-
bouring nodes is the crucial component of meshless solvers. When we refine the point
distribution by increasing the local point density, the connectivity of the nodes in that re-
gion gets altered. The new nodes which are added do not have any connectivity. Hence
the connectivity has to be updated for the nodes from initial cloud and has to be gen-
erated for new nodes. This should as well be carried out locally as the connectivity of
nodes in unrefined regions is largely unaffected. In this work an efficient algorithm has
been developed for this purpose and is called as Automatic Connectivity Update (ACU).

Adaptation through h-refinement essentially involves obtaining solutions on an ini-
tial discretized domain. Suitable sensors are used to mark the regions requiring refine-
ment. Refinement in these regions obviously alters the domain discretization locally. The
solver is run on the adapted domain to obtain a better solution. Several cycles of adap-
tation can be carried out to achieve good results i.e., accurate resolution of flow scales.
We have chosen Least Squares Kinetic Upwind Method (LSKUM) [6] for computing flow
solutions. It is a meshless solver requiring only a cloud of points and the connectivity
information.
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2 LSKUM: A meshless solver

Least squares kinetic upwind method (LSKUM) is a kinetic theory based meshless solver
[6, 7]. It needs only point distribution over the domain of interest and connectivity infor-
mation for each node in the cloud of points. Connectivity is defined as the set of nearest
neighbors of a given node which are used for computation at the node. The meshless
methods do not need any topological information. LSKUM is based on the fact that suit-
able moments of Boltzmann equation lead to Euler equations [7]. Numerical schemes
are derived at Boltzmann level. Update scheme at Boltzmann level is mapped to Euler
level through moment method [6]. An upwind scheme is achieved at Boltzmann level by
splitting molecular velocity into positive and negative parts using the Courant-Isaacson-
Reeves (CIR) splitting. Spatial derivatives are approximated by using least squares ap-
proximation. The second order accuracy can be achieved by using entropy variables
and defect correction [8] or modified CIR (MCIR) splitting [9]. The time derivative can be
suitably discretized to arrive at update scheme. Much advancement has taken place since
its inception [4]. Recently, Konark developed weighted LSKUM (WLSKUM) [10] which
increases the robustness of the LSKUM. The MCIR of Ramesh achieves higher order ac-
curacy in single step. These have been implemented in the code being used for the work.
A multistage R-K method is used for time stepping. This code has been used to obtain
solutions. Error sensors are used with solution so obtained to identify regions requiring
adaptation.

3 Formulation of LSKUM

Here we briefly describe the formulation of 2-D LSKUM [6, 7]. Consider the 2-D Boltz-
mann equation

∂ f

∂t
+v1

∂ f

∂x
+v2

∂ f

∂y
= J, (3.1)

where f is the velocity distribution function, v1 and v2 are the Cartesian components of
the molecular velocity. J represents a collision term which vanishes in the Euler limit,
when f is a Maxwellian distribution F, which in two dimensions is given by

F=
ρ

I0

β

π
exp

[
−β(v1−u1)

2−β(v2−u2)
2−

I

I0

]
(3.2)

where β=1/(2RT), ρ is the fluid density, I is the internal energy variable, I0 is the internal
energy due to non-translational degrees of freedom, and u1 and u2 are the Cartesian
components of the fluid velocity, R is the gas constant and T is the absolute temperature
of the fluid. Therefore in the Euler limit it is enough to consider

∂F

∂t
+v1

∂F

∂x
+v2

∂F

∂y
=0. (3.3)
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Using CIR splitting, v1 and v2 can be written as

v1=
v1+|v1|

2
+

v1−|v1|

2
, v2 =

v2+|v2|

2
+

v2−|v2|

2
. (3.4)

Using CIR splitting for the components of molecular velocity, the Boltzmann equation
can be written as

∂F

∂t
+

v1+|v1|

2

∂F

∂x
+

v1−|v1|

2

∂F

∂x
+

v2+|v2|

2

∂F

∂y
+

v2−|v2|

2

∂F

∂y
=0. (3.5)

We define the moment vector Ψ by

Ψ=

[
1, v1, v2, I+

v2
1+v2

2

2

]T

, (3.6)

and define the Ψ moment as

<Ψ, F>=
∫ ∞

0
dI

∫ ∞

−∞
dv1

∫ ∞

−∞
dv2Ψ F. (3.7)

Now the Ψ moment of the Eq. (3.5) will lead to Kinetic Flux Vector Split Euler equations

∂U

∂t
+

∂

∂x
(GX+)+

∂

∂x
(GX−)+

∂

∂y
(GY+)++

∂

∂y
(GY−)=0, (3.8)

where

U=<Ψ, F>, GX±=
〈

Ψ,
v1±|v1|

2
F
〉

, GY±=
〈

Ψ,
v2±|v2|

2
F
〉

.

U is the state vector given by U=(ρ, ρu1, ρu2, ρe)T , e is the internal energy per unit mass
given by e= ρ

ρ(γ−1)
+ 1

2 (u
2
1+u2

2), GX± and GY± are the split fluxes. In order to develop the

update scheme we need to evaluate the spatial derivates of split fluxes. In LSKUM the
space derivates are evaluated using least squares approximation [6]. Assume that values
of F are available at a node P0 and its immediate surroundings nodes, C(P0), referred to
as connectivity of point P0. Then using Taylor series expansion for F around P0,

Fi =F0+∆xiFx0+∆yiFy0+H.O.T., ∀i∈C(P0). (3.9)

Considering only the first three terms of the series and defining error ’ei’ as

ei =Fi−(F0+∆xiFx0+∆yiFy0) (3.10)

and wi as the weight associated with point ’i’, we can take the weighted sum of squares
of error and minimize it w.r.t. Fx0 and Fy0 to get the first order approximation to the
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derivates Fx0 and Fy0 which are then given by the following formulae

Fx0=
∑wi∆yi

2
∑wi∆xi∆Fi−∑wi∆xi∆yi ∑wi∆yi∆Fi

∑wi∆xi
2

∑wi∆yi
2−

(
∑wi∆xi∆yi

)2
, (3.11a)

Fy0=
∑wi∆xi

2
∑wi∆yi∆Fi−∑wi∆xi∆yi ∑wi∆xi∆Fi

∑wi∆xi
2

∑wi∆yi
2−

(
∑wi∆xi∆yi

)2
. (3.11b)

The weights can be chosen based on distance or based on eigen weights or a combination
of both [10]. Discretising the time derivative in Eq. (3.8) to first order and using least
squares formulae Eq. (3.11) to approximate the derivatives of the various split fluxes, a
first order update scheme for 2-D KFVS Euler equations can be written as

Un+1
0 =Un

0 −∇t

[{ ∂

∂x
(GX+)

}

∆xi<0
+
{ ∂

∂x
(GX−)

}

∆xi>0

+
{ ∂

∂x
(GY+)

}

∆yi<0
+
{ ∂

∂x
(GY−)

}

∆yi>0

]
. (3.12)

The spatial derivatives in the above equation are evaluated using least squares formulae
Eq. (3.11) over a suitable subset of points in the connectivity (referred to as sub-stencil) to
ensure that the signal propagation property is not violated. The subscripts to the various
flux derivative approximations in the above equation indicates the sub-stencil chosen
from the full connectivity set.

To achieve second order accuracy we follow the modified KFVS (MKFVS) method
developed by Ramesh and Deshpande [9]. In MKFVS, modified CIR (MCIR) splitting is
used to split the velocity components. The MCIR is given by

v1=
v1+φ|v1|

2
+

v1−φ|v1|

2
, v2=

v2+φ|v2|

2
+

v2−φ|v2|

2
, (3.13)

where, a parameter φ is introduced in the usual CIR splitting (Eq. (3.4)). This parameter
helps in reducing the dissipation present in the scheme. Using MCIR splitting for the
components of molecular velocity, the Boltzmann equation can be written as
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2
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Now taking the Ψ-moments of the above equation as done early, we get the Modified
Kinetic Flux Vector Split (MKFVS) Euler equations

∂U
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+

∂
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∂

∂x
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∂

∂y
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∂
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where GXm∓ and GYm∓ are modified fluxes given by
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2
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2
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Then we can follow the same discretisation procedure as in Eq. (3.12) and use modified
fluxes (MKFVS fluxes) in place of usual fluxes (KFVS fluxes) to obtain the state update
equation. If we take φ=∆xp where ’p’ is between 0 and 1 and ∆x is the local characteristic
length in the connectivity, the resulting state update equation will be second order accu-
rate. This can be easily verified by performing the MPDE analysis where the parameter
φ appears as a multiplying factor with leading dissipation term which contains ∆x as
well. It is interesting to note that the structure of the formulae for second order accurate
approximation remains the same as formulae for first order accurate approximation.

4 Adaptive Cloud Refinement (ACR)

The meshless methods do not contain any cells or elements; they contain only a cloud
of points and connectivity data. Hence the concepts used in conventional methods of
adaptation to subdivide cells or elements are not relevant to it. In meshless methods
we achieve the finer discretization by increasing the local point density. i.e., adaptation
using h-refinement is done by adding more points locally in the regions of rapid flow
variations. In the present work we are using LSKUM [6], which is a meshless method, to
obtain flow solutions. Then a suitable sensor is used to identify nodes where refinement
is necessary. The nodes so identified are called parent nodes. Refinement is carried out
by increasing point density around parent nodes. The new nodes added around such
parent nodes are called child nodes. Several options are open to increase the point density
around parent node. In this work we are using (X) stencil to add four points at some
percentage of average radial distance in the connectivity of parent node as shown in the
Fig. 1. The point enrichment process might lead to some child nodes crossing the domain
of interest. Such nodes are deleted by using blanking algorithm [3].

P
0 

X

Y

P
0 Parent node   P

0

Child 

Nodes from

initial cloud

% of average radial 
     

Figure 1: Point enrichment with (X) stencil.
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5 Adaptive Connectivity Update (ACU)

Central to the meshless solver is the connectivity [11]. Connectivity is defined as the set
of nearest neighbouring nodes to a given node which are used for computations at that
node. When we refine the local point density, the neighbourhood of the nodes in that
region gets modified. Hence the connectivity of nodes in such regions has to be modified
accordingly to reflect the refinement. Also there are new nodes added to the domain.
The connectivity of these new nodes has to be generated. Quadtree based connectivity
generation [12], which is commonly used in meshless solvers to generate connectivity
from cloud of points, can be used for this purpose. This starts with the enriched cloud
as one new cloud and generates connectivity for each node afresh. This approach throws
away existing connectivity information from initial cloud. It is not local; starts as one new
cloud. The node distribution would be largely unaffected except in the region of adap-
tation. Hence connectivity modification and generation needs to be done only locally in
the region by of adaptation. Such a local approach will be more efficient. Hence quadtree
is an inefficient approach. In this work we propose an algorithm which locally modi-
fies or generates connectivity only in the region of adaptation. The algorithm makes use
of existing information of connectivity from initial cloud to modify or generate the con-
nectivity over refined cloud. This is achieved by considering the connectivity of a parent
node and connectivities of all nodes in the connectivity of parent node. The connectivities
of these nodes form a superset around a parent node from which we can deduce the con-
nectivity set required. We call this method of generating or modifying the connectivity
as Automatic Connectivity Update (ACU). It is further explained below.

Consider any parent node P0 (node marked for refinement), shown in Fig. 2 by Green
Square. Let C(P0) be its connectivity from initial cloud, shown by black circles in Fig. 2
and Nc(P0) be the set of newly added nodes, shown in Fig. 2 by red dots. These are child
nodes of P0. C(P0)={Pi, i=1,··· ,m} where m is the number of nodes in C(P0). Similarly,
C(Pi) is the connectivity of any node Pi ∈C(P0). Modify these connectivities from initial
cloud by adding child nodes. The modified connectivities will then be

C̃(P0)=C(P0)∪Nc(P0), C̃(Pi)=C(Pi)∪Nc(Pi).

Fig. 3 shows the modified connectivity for P0. Let Cs(P0) be the super set of connectivities
which include the above mentioned connectivities.

Cs(P0)= C̃(P0)∪{C̃(Pi), i=1,··· ,m}.

This set is shown in Fig. 4 by blue squares. The connectivity of any child node of P0

will be a subset of Cs(P0). Hence the connectivities of all children of P0 can be deduced
from the Cs(P0). Fig. 5 shows the connectivity generated for a child node using superset
Cs(P0). The connectivity of P0 can also be modified using this superset to reflect the finer
distribution of nodes due to adaptive refinement of nodes in the domain. Fig. 6 shows the
modified final connectivity of parent node. Thus the connectivity can be generated for
child nodes as well as connectivity can be updated for parent nodes using this algorithm.
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Figure 2: Set of old points to build connectivity. Figure 3: Modified Connectivity including children.

Figure 4: Connectivity super set. Figure 5: Generated connectivity of a child.

Figure 6: Final modified connectivity of parent node.
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6 Sensors

In adaptation, sensors are used to identify regions requiring refinement. The sensors
generally try to locate such regions by measuring the variation in some flow parameters.
In the present work we have not made any studies on sensors. A brief description is
included for the sake of completeness. Commonly used sensors are pressure gradient,
density gradient, vorticity, entropy etc. We have used pressure gradient, entropy and D2

distance [14] based sensor in our work. In multivariate statistics, a measure of the dis-
tance between two multivariate normal distributions is given by the directed divergence
or D2 distance. Here distance is not the Euclidean distance. It is a measure of how dif-
ferent two distributions are. Since the Maxwellian velocity distribution is also a normal
distribution, a sensor at the Boltzmann level can be formulated in detecting two differ-
ent Maxwellian distributions using this directed divergence. The corresponding sensor
at the Euler level is obtained by taking Ψ moments of the Boltzmann level sensor. This
sensor is called the Mahalanobish distance. In 2D the expression for D2 sensor is

D(Fi, Fj)=ρi

( ρi

ρj
−1

)
ln

[
ρj

ρi

(Ti

Tj

)2
]
+ρi

(ρj

ρi
+

Ti

Tj

) (u1i−u1j)
2+(u2i−u2j)

2

2RTi

+2ρi

(Tj

Ti
−1

)(ρj

ρi
−

Ti

Tj

)
. (6.1)

7 Results and discussions

The ACR along with new connectivity generation algorithm, ACU has been tested on the
standard NACA0012 2D test cases and MDA three element airfoil to assess the perfor-
mance of enrichment and connectivity generation. In the following figures the black dots
represent initial cloud points and red dots represent newly added points.

7.1 NACA0012 test cases

The LSKUM [6] solver has been used to obtain the solution. The initial cloud of points is
obtained using unstructured grid with 49,046 points. The number of points on the body
are 240 and number of points on the outer boundary are 120. The solution on the initial
cloud is obtained using LSKUM solver. Suitable sensors have been used to identify the
nodes for refinement. Enrichment and connectivity generation with ACR & ACU are
carried out to generate the adapted cloud of points with connectivity information.

7.1.1 Transonic test case M∞=0.85, α=10

The transonic test case has a shock on the upper surface and a weak shock on the lower
surface. In this test case we have used D2 based sensor [13], which is a measure of dis-
tance between two Maxwellians, to identify regions requiring refinement. Fig. 7 & Fig. 8
show the initial and adapted point distribution after one cycle of adaptation respectively.
It clearly shows that refinement has taken place in the regions having dominant flow
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Table 1: M∞ =0.85, α=10 Transonic Case.

Cloud from Unstructured Grid Cl Cd

Initial 0.379 0.062
Enriched 0.343 0.055
AGARD 0.330-0.389 0.0464-0.0590

Table 2: M∞ =1.2, α=00 Supersonic Case.

Cloud from Unstructured Grid Cl Cd

Initial 0.000975 0.0956
Enriched -0.000399 0.0953
AGARD 0 0.0946-0.096

Table 3: M∞ =0.63, α=20 Subsonic Case.

Cloud from Unstructured Grid Cl Cd

Initial 0.346 0.005
Enriched 0.38 0.00036
GAMM 0.329-0.336 0.0003-0.0007

features. The total number of points after adaptation is 56226. Fig. 9 & Fig. 10 shows
the pressure contours on initial cloud and adapted cloud. Fig. 11 shows comparison of
Cp plots for adapted cloud and initial cloud. We can easily see that the flow features
have been captured more accurately on the adapted cloud. Table 1 shows the CL and CD

comparison with AGARD [14] results. The CD has been predicted well on the refined
cloud.

7.1.2 Supersonic test case M∞ =1.2, α=00

The supersonic test case has a bow shock ahead of airfoil and fish tail shock at trailing
edge. In this test case we have used D2 based sensor [14] to identify regions requiring
refinement. Fig. 12 shows the adapted cloud of points. The total number of points after
enrichment is 60674. It is clearly seen that refinement has taken place in the regions of
bow shock and fish tail shocks. Pressure contours (Fig. 13 & Fig. 14) indicate improved
performance on the adaptive cloud. Table 2 shows CL and CD comparison with AGARD
[13] results. CL should be zero for this case which is predicted well by the adapted cloud.

7.1.3 Subsonic test case M∞=0.63, α=20

In this case there are rapid flow variations near the leading edge. The suction peak ap-
pearing near leading edge is of interest. In this case we have used an entropy based
sensor to capture the entropy layer. The enriched cloud Fig. 15 shows refinement in this
region. The Cp plot Fig. 16 shows that suction peak is captured well by adapted cloud.
The total number of points after enrichment in this case is 74222. For this test case CD

should be zero. Note from the Table 3 that CD is more close to zero on the refined cloud.
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Figure 7: Initial Cloud. Figure 8: Adapted Cloud.

Figure 9: Pressure contours on initial cloud. Figure 10: Pressure contours on adapted cloud.

Unstructured 

0.062

0
1

Cloud from Unstructured 

0
0

Figure 11: Cp plots for Transonic case. Figure 12: Adapted point Distribution for supersonic
case.
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Figure 13: Pressure contours on initial cloud. Figure 14: Pressure contours on adapted cloud.

Figure 15: Adapted cloud.

Cloud from Unstructured 

0
2

Figure 16: Cp plots for subsonic case.

Figure 17: Adapted cloud. Figure 18: Cp plots for subsonic case.
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7.2 Subsonic test case MDA 3 element airfoil

This is a high lift configuration with free stream Mach number 0.2 and angle of attack
16◦ [15]. Like the earlier subsonic test case, in this case too there are rapid flow variations
near each of the leading and trailing edges of the 3 elements present. The slat surface has
141 points. The main airfoil surface is made up of 267 points. The flap is made up of 191
points. In all, the inner boundaries are made of 599 points. The outer boundary is made
up of 80 points. In order to find out the exact locations where gradients are high, we
have used an entropy gradient sensor. The initial distribution (black points) has 23092
points. The enriched distribution Fig. 17 has 34060 points. The suction peak on the slat
has improved from 13 to nearly 15 (Fig. 18) as a consequence of ACR.

8 Conclusion

We have successfully demonstrated an adaptation methodology (ACR+ACU) for mesh-
less methods. The strategy employed for adaptation of cloud of points is to increase
the local point density and is termed as Adaptive Cloud refinement (ACR). The refine-
ment leads to alteration of neighbourhood, necessitating connectivity updation process.
This has been very efficiently addressed by developing Automatic Connectivity Update
(ACU) algorithm. The efficiency of ACU is due to the fact that we are able to exploit local-
ity of refinement and prior connectivity information from initial cloud while generating
connectivity unlike tree based searches, used commonly in meshless methods, which are
not local in nature. The ACR along with ACU has been successfully demonstrated on
standard test cases of NACA 0012 airfoil and MDA 3 element airfoil configuration. The
capture of sharp gradients and better values of coefficients over adapted cloud in the
standard test case of NACA 0012 airfoil and the complicated MDA 3 element airfoil con-
figuration have demonstrated the success of ACR with ACU. The algorithm is directly
applicable to adaptation in 3D. The changes required in code for adaptation in 3D are
very minimal as one needs to work with only node data.

Even though AMR is pretty matured and ACR is still in developmental stage, some
observations are worth noting when we compare ACR with AMR. In AMR one needs to
take care of hanging nodes and edges [16]. This would lead to refinement even in cells
or elements not marked for refinement causing excessive refinement. Such a problem
does not arise in ACR. The points can be added arbitrarily if one decides to do so. Data
structure requirements for ACR present a good case for it. The meshless methods re-
quire data only from the connectivity set. Hence data structure would consist of nodes in
connectivity set and other data at these nodes. The ACR also uses the similar data struc-
ture and only needs node data. The data structure of AMR generally needs node, edge,
element, data structure [16]. The data structure becomes further complicated in case of
hybrid grids and hierarchical grids [17]. Obviously the overheads due to data structure
of adaptation in ACR are far less when compared to AMR.

Even though the present work has dealt with only inviscid flows, some comments
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regarding viscous flows are relevant here. In the case of viscous flows the point distri-
bution or points cloud and connectivity will have in general some directionality i.e., the
distribution of points in the connectivity will be anisotropic to resolve the flow features
properly. In the present work we have adopted the approach of adding points isotropi-
cally. This approach needs to be changed when handling adaptation with viscous flows.
Some measure of directionality has to be considered while adding points. While this
seems not so difficult, further research and study are required to establish the methodol-
ogy. However the methodology to update the connectivity, ACU, would rather remain
very much similar.
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