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Abstract. We propose a multigrid method to solve the molecular mechanics model
(molecular dynamics at zero temperature). The Cauchy-Born elasticity model is em-
ployed as the coarse grid operator and the elastically deformed state as the initial guess
of the molecular mechanics model. The efficiency of the algorithm is demonstrated by
three examples with homogeneous deformation, namely, one dimensional chain un-
der tensile deformation and aluminum under tension and shear deformations. The
method exhibits linear-scaling computational complexity, and is insensitive to param-
eters arising from iterative solvers. In addition, we study two examples with inhomo-
geneous deformation: vacancy and nanoindentation of aluminum. The results are still
satisfactory while the linear-scaling property is lost for the latter example.
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1 Introduction

Molecular mechanics model is an important tool for studying static properties of atomic
solids. At zero temperature (or lower temperature), the equilibrium state is obtained by
minimizing the total energy subject to certain boundary condition and external loading.
The most popular approach is the lattice statics proposed by Born and Huang [3]. Re-
cent development of this method can be found in [39] and the references therein. The
lattice statics has been widely used to study the equilibrium configurations and many
other properties of solids. This method considers a harmonic perfect crystal with an
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eigendeformation as the defect, and solves the equilibrium equations arising from the
minimization problem. Therefore, the solution obtained represents the equilibrium state,
which may be a local minimum, a metastable state or even a global minimum.

In contrast, we turn to the direct minimization of the molecular mechanics model.
By [11, 12, 38], the elastically deformed states are only local minima of the total energy
at zero temperature. Therefore, we seek for relevant local minimum. The principal dif-
ficulty arises from the nonconvexity of the total energy. There are two sources of non-
convexity. On the one hand, the potential energy function is usually nonconvex; on the
other hand, the translation invariance of the underlying crystal naturally imposes non-
convexity on the total energy even though the potential energy function is convex [18].
A crucial step for the success of the traditional minimization algorithms is to find a good
initial guess, which places the crystal in the right energy well nearby the configurations
of interest.

By [12], under certain stability conditions on the phonon spectra of the crystal, there
is a unique local minimum of the atomistic model sitting nearby the elastically deformed
state. This motivates us to employ the elastically deformed state as the initial guess for
the minimization algorithms of the atomistic model. First, we solve the Cauchy-Born
(CB) elasticity model over the successively refined meshes. Next we interpolate the so-
lution to the atomic sites and take the interpolant as the initial guess for the atomistic
model. Finally, the atomistic model is minimized with the given initial guess. Similar
ideas can be found in many atomistic simulations of fracture and dislocation, where ex-
plicit solutions of elasticity model over the whole space, such as the solution obtained by
Sin and Liebowitz [32] and the Stroh’s formalism [36], are employed.

We demonstrate the efficiency of the current method by a set of representative exam-
ples. The method is applied to crystals under either homogeneous deformation or inho-
mogeneous deformation. For crystals under homogeneous deformation, the total CPU
time scales linearly with respect to the total number of the atoms. Hence, the proposed
method is a linear-scaling algorithm. For crystals under inhomogeneous deformation,
the method still gives satisfactory results. The linear-scaling property is even recovered
for a problem with vacancy by an additional local correction step.

It is worth mentioning that the method automatically bypasses many irrelevant local
minima since the elastically deformed state is relatively smooth. It is a notorious fact
that there are enormous local minima for the molecular mechanics models. For example,
there are 1467 different local minima for Lennard-Jones cluster problem [9] that is closely
related to the problem in study. Another interesting aspect of this method is that it is
insensitive to parameters in the nonlinear iterative solvers, which may be due to the
hierarchical structure of the method.

In contrast to the quasicontinuum method [34] that combines the macroscopic model
and the microscopic model in a concurrent way, our method is a sequential multiscale
method in the terminology of multiscale modeling and multiscale methods [4, 10].

Compared with our method, the commonly used quasistatic process also gives satis-
factory results if the increment of the deformation is sufficiently small. During the pro-
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cess, the state obtained in the former step is taken as the initial guess of the latter step,
and all the steps must be computed sequentially. In the current method, instead, the lat-
ter step can be independent of the former step since the elastic state obtained by the CB
elasticity model is employed as the initial guess.

The outline of the paper is as follows. In Section 2, we describe our method and
demonstrate the difficulty in solving the molecular mechanics model (MM) and the CB
elasticity model. In Section 3, we report three examples of the homogeneous deformation,
which include one dimensional chain under tensile loading, and aluminum under tensile
loading and shear loading. The tests for the inhomogeneous deformation are shown in
Section 4, which contains vacancy and nanoindentation. Conclusions are drawn and
possible extensions are discussed in the last section.

2 Multigrid method for the molecular mechanics model

2.1 Atomistic and continuum models of crystalline solids

Under normal conditions, atoms in a crystal are arranged regularly over a lattice, which
can be categorized into two types: simple lattice and complex lattice. Any lattice site x of
a simple lattice takes the following form:

x=
d

∑
i=1

νiei+o,

where {νi}d
i=1 ∈Z, {ei}d

i=1 are the basis vectors, d is the dimension, and o is a particular
lattice site which can be taken as the origin. In principle, any lattice can be regarded as a
union of congruent simple lattices [14] with shift vectors among them.

Consider a system with N atoms interacting through the potential function V, and
let f i be the external force on the i-th atom. At zero temperature, the total energy of the
system can be written as a sum of the energy of each atom:

Etot(y)=V(y1,··· ,yN)−
N

∑
i=1

f i ·yi,

where yi is the position of the i-th atom in the deformed state. The atomic configuration
is then given by the following minimization problem:

{y1,··· ,yN}=argmin Etot(y) (2.1)

with y subject to certain boundary condition. The displacement of the i-th atom is defined
as

ui =yi−xi,



J. Chen and P. B. Ming / Commun. Comput. Phys., 10 (2011), pp. 70-89 73

where xi is the position of the i-th atom in the undeformed configuration.
In the continuum model of solids, the displacement field u is a vector that is usually

determined by the following variational problem:

I(u)=min
v∈X

I(v) (2.2)

with

I(v)=
∫

Ω

[
W

(
Dv(x)

)
− f (x)·v(x)

]
dx,

where Ω is the domain occupied by the material in the undeformed state, X is a suitable
function space and W is the stored energy density that is in general a functional of the
displacement gradient (or deformation gradient). In the literature of continuum mechan-
ics, W is often obtained empirically by fitting a few experimental parameters such as the
elastic moduli. A more general proposal is to obtain W from the atomistic model by the
CB rule [3, 16]. For simple lattice, the CB rule works as follows. Let F = I+Du be the
deformation gradient tensor, and E0(F) be the energy of the unit cell in the deformed
lattice whose lattice vectors {ai}3

i=1 are given by

ai = F Ai,

where {Ai}3
i=1 are lattice vectors of the undeformed lattice. The stored energy density is

given by

WCB(F)=
E0(F)

υ0
,

where υ0 is the volume of the unit cell in the equilibrium state. Considering a two-body
potential function V2, we write WCB as

WCB(F)=
1

2υ0
∑

s

V2(Fs),

where s runs over the range of the potential function.
As an illustrative example, we consider one dimensional chain interacting through

the Lennard-Jones (LJ) potential [23]:

V(r)=4
[(σ

r

)12
−

(σ

r

)6]
, (2.3)

where σ is a parameter representing the atomic length scale. Considering the infinite
range of interactions, we obtain the explicit expression of WCB as

WCB(F)=
4

r∗
ζ2(6)

ζ(12)

(1

4
|F|−12− 1

2
|F|−6

)
, (2.4)
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where the equilibrium bond length is given by

r∗=
(2ζ(12)

ζ(6)

1
6 )

σ

with the Riemann zeta function ζ(n)≡∑
∞
k=1k−n. The expression of the equilibrium bond

length of the finite-range interaction can be found in the next section.
For the case when V is a many-body potential and the underlying lattice is a complex

lattice, the definition of WCB is more involved, and we are concerned with [12, 35] for
details.

The stored energy density is not convex in general; see e.g., (2.4). Actually, it is not
convex in certain weaker sense. To be more precise, it is not quasiconvex as proven in [2,
5,17]. This is mainly due to the periodicity of the lattice structure and the invariance of the
potential function [21]. As in [5], we are concerned with the equilibrium configurations of
the crystal under certain load, which are local minima of the total energy. This is usually
achieved by solving the following approximation problem of (2.2):

I(uH)= min
v∈XH

I(v),

where XH is the linear finite element space with mesh size H. This yields a nonconvex
minimization problem that is highly nonlinear. Such nonconvex minimization problem
may well yield many physically irrelevant local minima, which may trap the minimiza-
tion process.

We use Newton method, Newton-Raphson method and conjugate gradient (CG)
method to solve the minimization problems arising from both the continuum and atom-
istic models. The choice of different solvers is due to custom and simplicity. Line search
technique will be employed whenever necessary.

2.2 Difficulty in solving the atomistic and continuum models

We illustrate the difficulty in solving the atomistic and continuum models by studying
one dimensional chain with N+1 atoms interacting through the LJ potential. We assume
that the interaction range is up to the 4-th neighborhood, which will be explained later
on. In this case, the equilibrium bond length is given by

r∗=
6
√

2σ
( A

B

) 1
6

with A=1+2−12+3−12+4−12 and B=1+2−6+3−6+4−6.
Let the occupied interval be [0,1], i.e., Nr∗ =1, which leads to

σ=
[

N
6
√

2
( A

B

) 1
6
]−1

.
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The total energy is

Etot(y)=
4

∑
ℓ=1

N+1−ℓ

∑
i=2

V(|yi−yi+ℓ |).

We need to solve the following minimization problem:

minEtot(y)

subject to the Dirichlet boundary condition y1 =0, yN+1 =1+δ.
The stored energy density of the continuum model is given by

WCB

(dv

dx

)
=

B2

r∗A

(∣∣∣1+
dv

dx

∣∣∣
−12

−2
∣∣∣1+

dv

dx

∣∣∣
−6)

.

The corresponding CB elasticity problem (2.2) becomes

minWCB

(dv

dx

)

subject to the Dirichlet boundary condition v(0)=0 and v(1)=δ.
The ideal strength (stress) is the highest achievable strength of a defect-free crys-

tal [25]. In this example, elastically deformed states are known a priori. Hence we can
compute the ideal strain, the ideal strength and the stress-strain curve; see Fig. 1. The
ideal strain is 0.1086, which means that the atomic chain is elastically deformed when
the amount of stretch is smaller than 10.86% while plastic deformation occurs after this
threshold. Although elastically deformed states become mechanically unstable when the
strain is greater than 10.86%, we retain these to make the ideal stress and the ideal strain
more observable.
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Figure 1: Stress-strain curve for elastically deformed states of one dimensional chain.

First we employ the linear finite element method to solve the CB elasticity problem.
The resulting nonlinear problem is solved by Newton method with line search whose pa-
rameters are taken from [13]. The initial guess is set as zero. Denote by δc the numerical
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Table 1: Numerical ideal strain vs. Dofs in the continuum model.

n 2 4 100 1024 Ideal
δc 0.1077 0.0804 0.0106 0.0017 0.1086

ideal strain, and n the degrees of freedom (Dofs) of the discretization problem, respec-
tively. We report δc in terms of n in Table 1. It is clear that δc is about one percent of the
ideal strain when n is larger than 1000.

Next we turn to MM. Since the interaction range is not restricted to the nearest neigh-
bor and the Dirichlet boundary condition is imposed, we add certain ghost atoms to both
ends of the chain to avoid the nonsmooth deformation for atoms near the boundary. The
procedure is similar to the extrapolation technique employed in the construction of the
higher order finite difference schemes [26]. For the 4-th neighborhood interaction, three
ghost atoms are needed on each end. From left to right, we label the left ghost atoms
by 2̄,1̄,0 and the right ones by N+2,N+3,N+4, respectively. Since the deformation is
homogeneous in the elastic regime, i.e., the deformation gradient is a constant, we have

ui =
δ

N
(i−1), i=1,2,··· ,N+1,

and the discrete deformation gradient is given by

ui+1−ui

xi+1−xi
=

δ

N

1

r∗
=δ, i=1,2,··· ,N.

Therefore, the displacement of the 0-th atom satisfies

u1−u0

x1−x0
=δ,

which yields u0 =−δr∗, since x0 =−r∗. The position of the 0-th atom is

y0 = x0+u0 =−(1+δ)r∗.

The same argument gives the positions of the 2̄-th, 1̄-th, (N+2)-th, (N+3)-th and (N+4)-
th atoms as follows:

y2̄ =−3(1+δ)r∗, y1̄ =−2(1+δ)r∗, yN+2 =(N+1)(1+δ)r∗,

yN+3 =(N+2)(1+δ)r∗, yN+4 =(N+3)(1+δ)r∗.

We take the undeformed state as the initial guess of Newton method, i.e.,

xi =(i−1)r∗, i=2,··· ,N.

Let N =100, and we show δc for different interaction ranges in Table 2. It is well-known
that the number of minima decreases as the interaction range increases [8]. However, it
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Table 2: Numerical ideal strain vs. interaction range in MM.

Neighbors 1-st 2-nd 3-rd 4-th Ideal
δc 0.0105 0.0108 0.0109 0.0109 0.1086

Table 3: Numerical ideal strain vs. number of atoms in MM.

N 8 32 100 1024 Ideal
δc 0.0628 0.0250 0.0109 0.0017 0.1086

follows from Table 2 that δc does not change up to the 4-th neighbor interaction. There-
fore, we consider the 4-th neighbor interaction for this example.

Adopting different number of atoms, we obtain δc in terms of N. Table 3 shows that
the numerical ideal strain becomes smaller as the number of atoms increases and the ideal
strain is about one percent when N is larger than 1000. This is similar to the situation in
the continuum model as shown in Table 1.

We have revealed the difficulty in solving the atomistic and continuum models. In
both cases, parameters must be tuned oftentimes to ensure the convergence. Moreover,
the larger the number of atoms, the more the number of iterations. This is in accordance
with the fact that if the number of atoms increases the problem becomes more and more
intractable since more and more local minima come in. Even worse, it follows from Ta-
bles 1 and 3 that neither of them gives the feasible ideal strain.

2.3 Multigrid-like method

Consider a nested sequence of triangulations T0 ⊂ T1 ⊂ ··· ⊂ Tl of Ω, which may be
constructed by the bisection procedure. Let T be an element in Ti. The mesh size
hi ≡maxT∈Ti

{diamT} satisfies

hi =
hi−1

2
, for i=1,··· ,l.

The associated finite element spaces Xi are also nested

X0⊂X1⊂···⊂Xl.

Our method is described as follows:

Step 1. Initialization: let u0=0 be the initial guess. Minimize the CB elasticity problem (2.2) discretized

on T0 to obtain ũ0.

Step 2. For i=1,··· ,l,

• Interpolate

ui = I i
i−1ũi−1,

where I i
i−1 is the standard finite element interpolation operator.
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• Let ui be the initial guess. Minimize the CB elasticity problem (2.2) discretized on Ti to

obtain ũi.

Step 3. Relaxation: define the CB state as y
CB

≡x+ũl(x), and solve MM (2.1) with y
CB

as the initial

guess.

Fig. 2 is the schematic illustration of the proposed method. It is worth mentioning that the
first two steps in solving the CB elasticity problem are in the same spirit of the so-called
Cascadic multigrid method in [7].

H
0
                CB elasticity

H
1
            CB elasticity

H
n−1

          CB elasticity

H
n
            CB elasticity

Interpolation

Interpolation

Interpolation

Interpolation

Atomistic scale               MM

Figure 2: Schematic illustration of our method.

2.4 Comparison between our method and MM

We revisit one dimensional chain described in Section 2.2. Let the number of atoms be
17, and the displacement of the left-most atom and the right-most atom be 0 and 0.05,
respectively. As to MM, we generate the initial configuration of the internal atoms by the
normal distribution with expectation 0 and variance 0.2. As to the proposed method, we
use the initial value of the 9-th (middle) atom in MM as the initial guess on the coarsest
mesh.

First we show the total energy of the system in Fig. 3 for 50 samples. If the minimiza-
tion process for solving MM does not converge for a fixed number of iterations (200 in
this example), or blows up, we set the energy as 0 (denoted by ∇). It is clear that the
system energy in our method keeps unchanged, while that in MM varies dramatically
with different initial guesses.

Next we demonstrate that our method can give the physically relevant local min-
imum while MM cannot. Configurations obtained by our method for different initial
guesses are the same, which explains the invariance of the system energy as shown in
Fig. 3. However, different initial guesses give different configurations in MM. Denote
by • the positions of atoms in the undeformed state. We show the configuration by
our method and also one configuration randomly chosen from those obtained by MM.
The corresponding positions of atoms are marked by © and ♦, respectively; see Fig. 4.
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Figure 3: Energy distribution with random initial guesses. Our method =•; MM =∗.
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Figure 4: Atomic configurations and system energies for different methods.

We also present the atomic configuration of the deformed state (denoted by �) obtained
by MM with the undeformed state as the initial guess. The energies corresponding to
©, ♦ and � are −15.4575, −8.4984 and −15.5492, respectively. Since the elastically de-
formed state in this problem is known, a direct calculation gives that the system energy
is −15.4575. We observe that our method gives exactly the elastically deformed state,
which is only a local minimum of the total energy because its energy is higher than that
in the � state.

Two problems arise when we solve MM directly. Firstly the energy landscape be-
comes more and more complex as N increases. Many attraction basins are sitting be-
tween the initial guess and the elastically deformed state. It is demonstrated in [9] that
the number of local minima is expected to grow exponentially as the number of atoms
increases. Under such circumstances the elastically deformed state is difficult to be cap-
tured as shown in Section 2.2 and this subsection. Secondly the computational cost has
the superlinear growth, which will be explained in the next section.

E and Ming [12] proved that the CB elasticity model is consistent with MM under cer-
tain stability conditions, which is the theoretical foundation of the current method. The
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hierarchical structure is employed in the implementation, which brings out two advan-
tages. On the one hand, the method can automatically bypass many local minima and is
insensitive to the choice of the initial guess and parameters in the iterative solvers. Due
to the hierarchical structure, only two kinds of minima survive finally: 1) the CB state; 2)
minima around the CB state. The number of the local minima in the CB elasticity model
grows exponentially as n (Dofs) increases, similar to the case in MM [9]. Therefore, the
number of local minima is O(n!) in our method while O(N!) in MM. When n is small, the
elastically deformed state can be easily captured. On the other hand, the current method
is an O(N) method as shown in the next section.

3 Homogeneous deformation

We adopt the definition of linear-scaling complexity from [19]. If CPU time of the method
scales linearly in terms of the system size, i.e.,

TCPU =CN

with a constant C independent of N, we call the method linear-scaling, or O(N) equiva-
lently.

If only short-range interactions are considered, the cost for computing the forces on
each atom scales O(N). One may think that O(N) methods emerge naturally for solving
MM in this case. Actually this is not true. We always encounter problems with strong
nonlinearity in MM. When this kind of problems are solved iteratively, we cannot guar-
antee that the number of iterations does not increase as the system size increases. Take
the elastically deformed state as an illustrative example. This state is smooth and can
be generated by the collective motion of all atoms in the system. Roughly speaking, to
generate the collective motion, the number of iterations is at least O(N) since one step
iteration can only update positions of atoms up to certain neighbors. Therefore, even if
only short-range interactions are considered and an O(N) solver is employed for linear
systems at each step, the total cost for generating the elastically deformed state scales
at least O(N2). Similar phenomena have been observed in electronic structure calcula-
tions [1].

When we investigate the linear-scaling property of the method in what follows, we
always extract one state from the stress-strain curve and count the total CPU time when
enlarging the system size of the state. For all the examples in this section and in Sec-
tion 4.1, the total CPU time is recorded on LSSC-II with one Intel 2GHz Xeon processor
as a measure of the computational cost.

3.1 One dimensional chain revisited

We firstly simulate one dimensional chain with the proposed method. The setup is the
same as that in Section 2.2. Newton method without line search is used for the minimiza-
tion problems arising from both the CB elasticity model and MM. The resulting linear
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Figure 5: Stress-strain curve for one dimensional chain.
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Figure 6: CPU time vs. system size for one dimensional chain (Log-log plot).

systems are solved by a parallel sparse direct solver MUMPS [30]. The Hessian matri-
ces arising from the CB elasticity model are tridiagonal matrices; those arising from MM
are ninth-diagonal matrices since only up to the 4-th neighbor interaction is taken into
account. The computational complexity of MUMPS for solving such linear equations is
O(N).

The stress-strain curve is plotted in Fig. 5. The numerical ideal strain δc is 0.1086,
exactly the same as the ideal strain. Before δc, the stress-strain curve of our method co-
incides with that of elastically deformed states perfectly. We also obtain the plot of the
total CPU time in terms of the system size in Fig. 6, which suggests that our method is
linear-scaling.

3.2 Tension and shear for aluminum

Next we study the deformation of aluminum (Al) under tensile and shear loading. The
atoms are assumed to be interacting through the embedded-atom method (EAM) poten-
tial [6] of the form:

E=
1

2 ∑
i,j

φij(rij)+∑
i

Ui

[
∑

j

ρi(rij)
]
,
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where φij is the pairwise potential, rij is the distance between the i-th and j-th atoms, Ui

is the glue function and ρi is the atomic density function of the i-th atom. Parameters in
the potential function are taken from [15] and we refer to [34] for the expression of WCB

based on the EAM potential. The cut-off radius is 5.56Å [15], which includes up to the
3-rd neighbor interaction.

We employ the CG method with Fletcher-Reeves formula and bisection line search
technique [31] to solve MM. The stopping criterion is

( 1

N

N

∑
i=1

∣∣∣
∂E

∂yk

∣∣∣
2) 1

2
<TOL.

The CB elasticity model is approximated by hexahedral element with the standard eight-
point Gauss numerical integration scheme. The resulting minimization problem is solved
by the Newton-Raphson method with line search [13]. The stop criterion is

( 1

|Ω|
∫

Ω
|∇E|2 dx

) 1
2
<TOL.

We test tension in [111] (principal) direction and shear in [112̄](111) direction, and set
the tolerance as TOL = 1E−8. The [112̄], [1̄10] and [111] directions are chosen as x, y
and z axis, respectively. We impose Dirichlet boundary condition on z direction, while
periodic boundary condition on the other two directions. Ghost atoms are introduced in
z direction as that in one dimensional case. The Hessian matrices arising from this test
are still sparse but not in n-diagonal form. Therefore, we replace the solver MUMPS by
BoomerAMG [20] which is a linear-scaling iterative solver.

For both cases, we plot the stress-strain curves in Fig. 7. The linear-scaling property
is preserved at • but lost at H. To clarify this point, we extract one step marked by •
from the curves and report the log-log plot of CPU time in terms of the system size in
Fig. 8, which shows that our method is indeed linear-scaling for both tensile and shear
deformation. At H, the loss of linear-scaling property is triggered by elastic instability of
the perfect crystal at finite strain as suggested in [25] and rigorously proved in [12].

0 0.04 0.08 0.12 0.16 0.2
0

2

4

6

8

10

Strain

S
tr

es
s(

G
P

a)

Stress−strain curve
Linear scaling lost

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

Strain

S
tr

es
s(

G
P

a)

Stress−strain curve
Linear scaling lost

Figure 7: Stress-strain curves for Al. Left: tension; Right: shear.
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Figure 8: CPU time vs. system size for Al (Log-log plot). Left: tension; Right: shear.

4 Inhomogeneous deformation

4.1 Vacancy

Consider a system including 196608 Al atoms interacting through EAM potential with an
atom missing at the center. The occupied domain Ω is approximately 158.0Å×91.2Å×
223.5Å. Let the displacement for the right-most layer of atoms in [111] direction be 2.235Å
and that for the left-most layer of atoms be 0.

Table 4: Iteration numbers on different levels with the current method.

Level Coarsest Internal Atomistic
Iteration number 17 1 14

We firstly use the proposed method to study this example. The number of iterations
on each level of the nested meshes can be found in Table 4. Most of the cost is spent
on the atomistic level. Moreover, the number of iterations increases dramatically as the
number of atoms increases, which implies our method is not linear-scaling any more. In
order to understand the result, we plot the component of yCB−y in the [111] direction in
Fig. 9, and find that the error is localized. Based on this observation, we introduce a local
correction step into the method.

The modified method is described as follows:

Step 1. Compute y
CB

by the CB elasticity model over the whole domain Ω.

Step 2. Choose a box Ωbox around the void. Fix atoms outside Ωbox and minimize MM over Ωbox

with y
CB

as the initial guess to obtain ỹ
local

.

Step 3. Define

ỹ=

{
y
CB

, outside Ωbox,
ỹ
local

, inside Ωbox,

and minimize MM with ỹ as the initial guess over Ω.
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Figure 9: Difference between the CB elasticity and MM in [111] direction.
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Figure 10: CPU time vs. system size for vacancy (Log-log plot).

In the simulation, the center of Ωbox is the void and Ωbox contains 17 layers of atoms
in each direction. In Table 5, we report the number of iterations on each level with the
modified method. We did not solve MM after the local correction step since ỹ satisfies
the stopping criterion. This means that the solution of the CB elasticity model is still a
good initial guess for MM except in the box, since the influence of the void is localized
and the system is still elastically deformed. We show the log-log plot of CPU time versus
the system size in Fig. 10 and conclude that the method is still linear-scaling.

Table 5: Iteration numbers on different levels with additional local correction.

Level Coarsest Internal Local correction Atomistic
Iteration number 17 1 15 0

4.2 Nanoindentation

In this subsection, the method is employed to study the nanoindentation problem. Con-
sider a system with 24576 Al atoms interacting through EAM potential. The domain Ω
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Figure 11: Schematic representation of nanoindentation along dislocation direction.
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Figure 12: Load-displacement curve for nanoindentation. Left: full picture; Right: local picture after zooming
in the ellipse.

is approximately 55.9Å×39.5Å×182.5Å. The width of the indenter is 6.98Å. The setup
is similar to that in [33]. We simulate the nanoindentation process of Al in [1̄10] (disloca-
tion) direction with a rectangular indenter (Fig. 11). The [111],[112̄] and [1̄10] directions
are chosen as x,y and z axis, respectively. We impose periodic boundary condition on
both x and y directions, while Dirichlet boundary condition on the top surface under the
indenter and the bottom surface in z direction, and Neumann boundary condition on the
remaining part of the top surface.

We plot the load-displacement curve for nanoindentation in Fig. 12. To illustrate the
generation of dislocation, we choose an ellipse over the region where the slope of the
curve is noticeably changed. After zooming in, we select four representative points la-
beled by A, B, C and D sequentially, among which C is the transition point with the
largest value of load. We visualize the atomic configuration by Atomeye [24] for state
A, B, C and D in Figs. 13-16, respectively. We name the number of atoms touching the
given atom as its coordinate number. For an ideal face-centered cubic crystal, the ones
with coordinate number 12 are called regular atoms, while the others are called irregular
atoms. Especially, the coordinate number of atoms associated with the dislocation here is
13. To make the generation of dislocation clearer, we shall also show the configurations
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Figure 13: Atomic configuration of state A. Left: full configuration; Right: irregular atoms.

Figure 14: Atomic configuration of state B. Left: irregular atoms; Right: atoms with coordinate number 13.

Figure 15: Atomic configuration of state C. Left: irregular atoms; Right: atoms with coordinate number 13.

Figure 16: Atomic configuration of state D. Left: irregular atoms; Right: atoms with coordinate number 13.

by omitting the regular atoms but only reserving the irregular ones. There is no dislo-
cation for state A. Dislocation has occurred from state B. At state C, dislocation grows
but still sticks to the indenter. Dislocation leaves the indenter and propagates along the
dislocation direction at state D. Before the load-displacement curve decreases, disloca-
tion indeed occurred (state B). Therefore, one cannot decide the onset of plasticity by this
curve. This study reveals the deficiency of the commonly used criterion for dislocation
nucleation, and it is conforming with the experiment result in [29] and the numerical
result based on cylindrical indenter in [22], although the system we test here is small.
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Table 6: Iteration number of CG method vs. displacement.

Displacement (Å) 0.55 1.64 1.91(A) 2.00(B) 2.03(C) 2.55(D)
Iteration number 70 138 342 341 1825 911

In our simulation, the iteration number of Newton method for the CB elasticity model
is smaller than 2. Table 6 shows the iteration number of CG method for MM. This problem
has local singularity around the indenter. Since state C has the strongest singularity, the
largest iteration number is required. While the dislocation leaves the indenter, it carries
away certain plasticity and the singularity is weakened. This explains the fact that the
iteration number at state D is smaller than that at state C.

5 Conclusions

In this work, we presented an efficient multigrid method to solve the molecular mechan-
ics model of atomic solids. The method exhibits linear-scaling computational complexity
for the problems under homogeneous deformations, and is insensitive to parameters of
iterative solvers. Moreover, it automatically surmounts many unphysical local minima
due to the hierarchical structure of the algorithm. Our method also works for problems
with localized defects by including a correction step. However, the method is not so effi-
cient for dislocation due to its nonlocality [27], while it is still qualitatively in agreement
with the experiment results.

The present method is under development to broaden its versatility. For instance, it
is straightforward to test the critical mechanical response of the crystalline solids with
complex lattice structure because the consistency between the CB elasticity model and
the molecular mechanics model has been proved in [12]. Further work will involve ex-
tensions to problems with point defects, dislocations and grain boundaries, molecular
systems and problems at finite temperature. The first step may be a systematic study of
the continuum models associated with the molecular system of interest. The Cauchy-
Born elasticity model has to be modified to include more ingredients that account for the
effect of the defects, since the Cauchy-Born elasticity model only applies to perfect crystal
as shown in [12]. More efforts are also devoted to incorporate the present method with
more sophisticate multigrid machinery to improve the efficiency when problems with the
inhomogeneous deformation are considered; see cf. [28].
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