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Abstract. A moment method with closures based on Gaussian quadrature formulas is
proposed to solve the Boltzmann kinetic equation with a hard-sphere collision kernel
for mono-dispersed particles. Different orders of accuracy in terms of the moments of
the velocity distribution function are considered, accounting for moments up to sev-
enth order. Quadrature-based closures for four different models for inelastic collision-
the Bhatnagar-Gross-Krook, ES-BGK, the Maxwell model for hard-sphere collisions,
and the full Boltzmann hard-sphere collision integral-are derived and compared. The
approach is validated studying a dilute non-isothermal granular flow of inelastic par-
ticles between two stationary Maxwellian walls. Results obtained from the kinetic
models are compared with the predictions of molecular dynamics (MD) simulations
of a nearly equivalent system with finite-size particles. The influence of the number of
quadrature nodes used to approximate the velocity distribution function on the accu-
racy of the predictions is assessed. Results for constitutive quantities such as the stress
tensor and the heat flux are provided, and show the capability of the quadrature-based
approach to predict them in agreement with the MD simulations under dilute condi-
tions.
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1 Introduction

The behavior of a granular flow can be described by the Boltzmann-Enskog kinetic equa-
tion [4, 14, 35], in terms of the velocity distribution function. Depending on the value of
the Knudsen number of the flow, defined as the ratio between the molecular mean free
path and a characteristic length scale of the system under consideration, it is often pos-
sible to find a simplified set of equations to describe the flow [4, 12, 13, 35]. In particular,
when the Knudsen number is zero, a granular flow of elastic particles behaves as an in-
viscid flow and can be described by the Euler equation. When the Knudsen number is
between zero and 0.01, the Navier-Stokes-Fourier (NSF) equations, computed with no-
slip boundary condition, represent a simplified set of equations, derived considering the
lower-order moments of the kinetic equation. When the Knudsen number is between 0.01
and 0.1, the NSF equations require the introduction of partial-slip boundary conditions
to account for rarefaction effects due to the presence of a significant Knudsen layer near
the walls. For even larger Knudsen numbers, higher-order solutions of the Boltzmann-
Enskog kinetic equation are required to obtain satisfactory results, since the rarefaction
effects extend from the walls to the bulk of the fluid, and cannot be treated with the
simple modification of the boundary conditions.

Different strategies have been developed to find solutions of the kinetic equation. A
possible strategy is to directly discretize the seven-dimensional phase space [2,11], in or-
der to reconstruct the velocity distribution function. However, the high dimensionality of
the equation often makes the direct approach impractical due to its high computational
cost. An alternative approach to solve the kinetic equation is given by discrete methods,
where the trajectory of the particles and their interactions are tracked. In particular, the
Direct Simulation Monte Carlo (DSMC) method [4], which relies on notional particles
and a statistical description of their interaction, has been widely applied in rarefied gas
dynamics to obtain solutions of the kinetic equation for point particles (Boltzmann equa-
tion). Molecular dynamics (MD) has been used to compute granular flows of finite-size†

particles [23], providing solutions of the complete Boltzmann-Enskog kinetic equation.
These approaches are efficient for systems with a relatively low number of particles (or-
der of millions), but become intractable for systems of larger scale, related to industrial
applications of granular flows and fluid-particle flows.

An interesting and more computationally efficient approach for complex flows is rep-
resented by the method of moments, where the idea of reconstructing the velocity dis-
tribution is usually abandoned in favor of tracking the spatial and temporal evolution of
a finite set of its moments. Moment methods have been widely studied in the literature
and a good summary can be found in [35]. The main difficulties in moment methods are

†With finite-size particles we indicate particles that are not assumed to be points. Finite-size particles cannot
overlap, as it happens with point particles. In the framework of kinetic theory, point particles are described by
the Boltzmann collision integral, while finite-size particles are described by the Boltzmann-Enskog collision
integral. In terms of the moment equations, the point-particle approximation neglects the contribution due
to the collisional fluxes.
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providing closures for the moment transport equations and formulating boundary condi-
tions for the high-order moments. An alternative approach using partial reconstruction
of the velocity distribution is the quadrature method of moments (QMOM), originally
developed to deal with population balance equations [31, 33, 38], and recently extended
to deal with kinetic equations [15,21] and the Boltzmann equation [18,19]. In QMOM, the
source terms and the moment spatial fluxes in the moment transport equations are closed
using Gaussian quadrature formulas. The velocity distribution function is reconstructed
from the moments as a set of Dirac delta function, uniquely defined by a quadrature in-
version algorithm [18, 19], which allows the set of transported moments to be correlated
with a unique set of quadrature weights and abscissas.

The objective of this work is to construct quadrature-based closures for a bounded
conductive system, constituted by a non-isothermal granular flow between two walls
at different temperatures, using a kinetic description with four different collision mod-
els (BGK [3], ES-BGK [28], Maxwell model [32] and complete Boltzmann). The QMOM
results are validated against molecular dynamics (MD) simulations [23]. The elasticity
properties of the particles are described by a restitution coefficient, whose value varies
between 0.90 and 1, and particle volume fractions set to 0.025 and 0.05, corresponding
to Knudsen numbers of 0.191 and 0.095, respectively. Quadrature-based moment meth-
ods of third-, fifth- and seventh-order, obtained by increasing the number of quadrature
nodes from 8 to 27 and 64 respectively, are considered.

The remainder of this work is organized as follows. In Section 2 the Boltzmann ki-
netic equation is introduced, the moment transport equations are presented, and the four
models for the collision term are described. Further details concerning the derivation
of the collision models are given in the appendices. In Section 3 the quadrature-based
moment method is discussed and the expressions for the quadrature-based closure of
the moment fluxes and collision terms are reported. In Section 4 the solution algorithm
for the moment transport equations is briefly reviewed. Section 5 describes the conduc-
tive bounded system under examination, and introduces the statistical quantities used to
compare the QMOM and MD simulations. Results obtained with the proposed method
are presented and discussed in Section 6, and conclusions are drawn in Section 7.

2 Moment methods for the Boltzmann kinetic equation

The kinetic equation describing a dilute granular flow can be written in the form

∂t f +v·∂x f +∂v ·
(

f
F

mp

)

=C, (2.1)

where f (v,x,t) is the velocity-based density function, v is the particle velocity, F is the
force acting on each particle, mp is the particle mass, and C is the Boltzmann-Enskog
collision term described in Appendix A, representing the rate of change in the velocity
distribution function due to inelastic particle-particle collisions. Without loss of general-
ity, hereinafter we will assume that f has been normalized so that its zero-order moment
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is equal to the particle volume fraction αs. In the case under examination, no external
force is present in the system, so the term containing F can be dropped. To be consis-
tent with the molecular dynamics (MD) simulations used for model validation, inelastic
hard-sphere collisions between mono-disperse particles with diameter dp and restitution
coefficient e are considered. The local Knudsen number is defined by Kn = dp/(6αsL),
where L is the system size. In this work, the particle diameter is small relative to the sys-
tem size (dp/L=1/35), but the solids volume fraction is small enough for Knudsen effects
to be important. As described in Appendix A, the Boltzmann-Enskog collision term can
be expanded in powers of dp/L and the zero-order approximation is the Boltzmann col-
lision integral, which does not account for finite-size particle effects present in the MD
simulations. In particular, the collisional-flux contribution contained in the first-order
terms of the Boltzmann-Enskog collision integral is neglected in the Boltzmann collision
integral used in this work.

For inelastic hard-sphere collisions, the integral of the Boltzmann collision term used
to compute the moments of f does not appear in closed form. In order to overcome this
difficultly, a kinetic model can be used to approximate the Boltzmann collision integral
in terms of a closed set of lower-order moments [13, 35]. In Appendix B, two types of
kinetic models are introduced for inelastic hard-sphere collisions. The first is the inelas-
tic Maxwell model [5, 10] wherein the collision cross-section is simplified to remove its
explicit dependence on the instantaneous velocity difference g. This simplification, first
proposed by [32] for elastic collisions, is particularly interesting for inelastic collisions be-
cause it retains the exact dependence on the restitution coefficient through the parameter
ω =(1+e)/2. In the second type of kinetic model, the collision term is approximated as
a linear function of the velocity distribution (see Appendix B for details):

C=
1

τ
( f ∗− f ), (2.2)

where τ=ζ
√

πdp/(12g0αs

√
T) is the characteristic collision time and f ∗ is an anisotropic

Gaussian distribution defined by

f ∗=
αs

[

det(2πλ)
]1/2

exp
[

− 1

2
(vi−Upi)(λ

−1)ij(vj−Upj)
]

, (2.3)

where repeated Roman indices imply summation. In this expression, Up is the mean
particle velocity and λ is a second-order tensor defined by

λ= ζω2TI+(ζω2−2ζω+1)σ , (2.4)

in which σ is the velocity covariance tensor, T is the granular temperature (equal to one
third the trace of σ), and ζ is a parameter whose value must be between 0 and 3/2 to
ensure that λ is positive definite. It can be shown that, for e=1, ζ is related to the Prandtl
number Pr by ζ=1/Pr (see [35]), and thus ζ can be chosen to fix Pr. The radial distribution
function on contact g0, appearing in the collision time, is a function of αs and accounts
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for finite-size effects in the dense limit. Note that τ is proportional to Kn, and Knudsen
effects occur when the collision time is the same order of magnitude as the time scale for
the spatial transport term in the kinetic equation.

In the elastic limit (ω=1), setting ζ =1 [7,8] in Eq. (2.4) recovers the Bhatnagar-Gross-
Krook (BGK) collision model [3]. The BGK collision model correctly degenerates to the
Maxwellian limit at equilibrium, it satisfies the requirements of mass, momentum and
energy conservation and the positivity criterion for the entropy production (H-theorem).
However, the BGK model does not provide the correct value of Pr, which should be 2/3
for a mono-atomic gas [35]. The problem of achieving the correct Prandtl number was
addressed by [28], who proposed the ellipsoidal statistical BGK (ES-BGK) model, given
by Eqs. (2.2) and (2.4) with ω=1 and ζ =3/2. For simplicity, hereinafter we will continue
to refer to inelastic cases with ζ = 1 as the BGK model and with ζ = 3/2 as the ES-BGK
model. A similar collision model, with ζ 6=1, was proposed in [16].

In moment methods, the kinetic equation is not solved directly for the velocity distri-
bution function, but the evolution in space and time of its moments is tracked through the
solution of moment transport equations [35]. Using the same notation adopted in [19],
the moments of the velocity distribution function f (v;x,t) can be defined as

M
γ
ijk(x,t)=

∫

vi
1v

j
2vk

3 f (v;x,t)dv, (2.5)

where γ= i+ j+k is the order of the moment, and the non-negative integer values of i, j,k
indicate the order of each velocity component. Starting from Eq. (2.1), moment transport
equations are derived using the definition in Eq. (2.5). Neglecting the force term for the
reason explained above, this leads to the transport equation for the γ-order moment:

∂t M
γ
ijk+∂x1

M
γ+1
i+1jk+∂x2 M

γ+1
ij+1k+∂x3 M

γ+1
ijk+1 =C

γ
ijk, (2.6)

where C
γ
ijk is the source term due to the moments of the collision operator. Eqs. (2.6) are

not in closed form, because they contain the moment spatial fluxes, represented by the
last three derivatives on the left-hand side of the equation. Moreover, the collision source
term, in general, is not an explicit expression of the moments up to order γ. As will be
discussed in detail later, the inelastic Maxwell, BGK, and ES-BGK collision models allow
C

γ
ijk to be computed explicitly in terms of the moments, whereas this is not possible for

the Boltzmann collision integral. As a consequence, for the Boltzmann collision integral
it is necessary to derive consistent closures for C

γ
ijk, to be able to proceed in the solution

of Eq. (2.6). This task is achieved in this work using Gaussian quadrature formulas, as
explained in Section 3.

2.1 Boundary conditions

Moment methods require the wall distribution function to be specified in terms of the
velocity distribution function next to the wall and the properties of particles after they
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collide with the wall. Maxwell [32] proposed a generalized boundary condition for the
velocity distribution function at the wall in the form [35]

fw =

{

χ feq,w+(1−χ) fr,w

(

−|v−Up|⊥,w

)

, if |v−Up|⊥w >0,

fr,w

(

|v−Up|⊥,w

)

, if |v−Up|⊥,w 60,
(2.7)

where |v−Up|⊥,w represents the magnitude of the particle peculiar velocity normal to
the wall, and χ is the accommodation coefficient. For χ = 0, the boundary condition
returns the specular reflective wall condition with distribution fr,w, which corresponds to
a change in sign of the particle velocity normal to the wall, while for χ=1, the distribution
feq,w corresponds to the Maxwellian at the wall temperature Tw, which defines the diffuse
reflective with full accommodation boundary condition. In this work we assume χ=1 to
be consistent with the MD simulations. Note that by using the definition of the moments
in Eq. (2.5), it is straightforward to compute the moments at the walls given fw.

It is worth noting that in hydrodynamic models for granular flow, based on an ex-
pansion valid for small Knudsen numbers [14], the boundary conditions are expressed in
terms of the gradients of the hydrodynamic variables. However, it is difficult to derive
boundary conditions that yield the correct behavior for all types of particle-wall interac-
tions (e.g., specular reflections) for these models. In particular, the boundary conditions
break down for granular flows with Knudsen layers and must be modified to account for
phenomena like slip and temperature jump at walls. In contrast, in moment methods,
since the boundary conditions for the moments are found from the velocity distribution
function at the wall fw, they are, in principle, valid for arbitrary Knudsen numbers and
any type of particle-wall interaction.

3 Quadrature-based moment method

In quadrature-based moment methods [18, 19], Gaussian quadrature formulas are used
to provide closures for the spatial fluxes and source terms in the moment transport equa-
tions, by introducing a set of weights ρα, which are positive as a consequence of proper-
ties of the Gaussian quadrature formulas, and a set of abscissas Uα =(u1α,u2α,u3α). The
weights and abscissas are determined from the moments of the distribution function us-
ing an inversion algorithm, which was developed in [18,19], and is briefly outlined in this
section. Once the weights and abscissas are computed, the velocity distribution function
can be represented by a sum of Dirac delta functions:

f (v)=
N

∑
α=1

ραδ(v−Uα). (3.1)

Through the moment-inversion algorithm, this distribution function is uniquely deter-
mined for a given set of velocity moments, and, as shown below, it can be used to close
the moment transport equations.
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The definition of the moment-inversion algorithm is done in terms of the rotated cen-
tral moments R

γ
ijk, obtained from the moments in M

γ
ijk by applying a linear transforma-

tion L, so that the moments are translated with respect to the mean velocity and rotated
so that the velocity covariance matrix becomes diagonal. This operation is required to
ensure that the inversion algorithm produces positive weights when the velocity covari-
ances are far from zero [19], which is likely to happen under conditions far from the
equilibrium. In the following discussion, the set of N =n3 abscissas in the rotated central
frame are

Rα =(r1α,r2α,r3α),

where n is the number of quadrature nodes used in each spatial direction. It is worth
noting that the quadrature weights ρα are not affected by the transformation, while the
velocity abscissas in the original frame Uα can be recovered from

Uα =LTRα+Up. (3.2)

Also, due to the lack of mean velocity gradients in the system under consideration in this
work, the velocity covariance matrix will be diagonal. Thus, the matrix L will be diagonal
for all the cases considered in Section 6.

The multi-dimensional quadrature formula is defined by considering a set of 2n mo-
ments in each direction (e.g., R0

000,··· ,R2n−1
002n−1), which are used to compute a set of n

univariate weights and abscissas in each spatial direction, using one of the flavors the
product-difference (PD) algorithm [27, 33, 37]. The velocity abscissas Rα are then defined
through the tensor product of the univariate abscissas in each direction. The last opera-
tion consists in finding the weights ρα, which are computed by solving a system of n3 lin-
ear equations. The first 3n−2 linear equations are obtained by imposing that the weights
of the multidimensional quadrature formula satisfy the univariate weight constraints,
while the remaining n3−3n+2 equations come from fixing the set of mixed moments
with indices up to n−1 (e.g., R2

110,··· ,R3n−3
n−1n−1n−1) and by expressing them in terms of the

quadrature weights and abscissas [19]. Once weights and abscissas are known, Eq. (3.2)
is applied to find the abscissas in the original frame, and then the velocity moments can
be evaluated as

M
γ
ijk =

N

∑
α=1

ραui
1αu

j
2αuk

3α. (3.3)

As discussed below, any other unclosed term in the moment equations (e.g., the Boltz-
mann collision integral) can be expressed in terms of the weights and abscissas. By virtue
the properties of the algorithm, Eq. (3.3) is an identity for the n3 moments used in the
moment-inversion algorithm. For the remaining moments, Eq. (3.3) provides an optimal
approximation in the sense of Gaussian quadrature [27, 33, 37].
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3.1 Closure of moment spatial fluxes

The moment spatial fluxes are closed according to their kinetic description [15, 18, 34].
First, the moments involved in the spatial fluxes are decomposed in two contributions:

M
γ+1
i+1jk =Q−

1,ijk+Q+
1,ijk, (3.4a)

M
γ+1
ij+1k =Q−

2,ijk+Q+
2,ijk, (3.4b)

M
γ+1
ijk+1 =Q−

3,ijk+Q+
3,ijk, (3.4c)

with

Q−
n,ijk =

∫

min(en ·v,0)vi
1v

j
2vk

3 f (v)dv, (3.5a)

Q+
n,ijk =

∫

max(en ·v,0)vi
1v

j
2vk

3 f (v)dv, (3.5b)

where en is the Cartesian unit vector in direction n. The integrals in the definition of the
two components Q−

n,ijk and Q+
n,ijk are then approximated by replacing the integrals in (3.5)

with the corresponding quadrature approximation using (3.1):

Q−
n,ijk =

N

∑
α=1

ρα min(en ·uα,0)ui
1αu

j
2αuk

3α, (3.6a)

Q+
n,ijk =

N

∑
α=1

ρα max(en ·uα,0)ui
1αu

j
2αuk

3α. (3.6b)

The reader should note that the decomposition of the moment involved in the evalua-
tion of the spatial fluxes in two components is only necessary for the numerical solution
of the moment transport equations. By definition, kinetic-based fluxes combined with
a finite-volume method ensure the realizability of the transported moments and exactly
reproduce particle trajectory crossing [15]. This would not be generally true if traditional
interpolation methods were used to compute the moment spatial fluxes. It is worth not-
ing that the realizability condition of the transported moments is guaranteed if a first-
order interpolation scheme is employed to evaluate the cell-face values of weights and
abscissas used in the computation of the fluxes [15]. However particular care has to be
taken when adopting high-order interpolation schemes, since the condition of moment
realizability is not automatically satisfied. High-order realizable interpolation schemes
for quadrature-based moment methods are developed in [36].

3.2 Closure of the collision term

The BGK and ES-BGK collision models allow explicit expressions for the rates of change
of the moments due to collisions to be found by applying the moments definition (2.5) to
Eq. (2.2):

C
γ
ijk =

1

τ
(∆

γ
ijk−M

γ
ijk), (3.7)
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where ∆
γ
ijk is the set of moments of order γ of the equilibrium distribution function, which

is obtained by replacing f with f ∗ in Eq. (2.5). Explicit closures cannot be obtained for
the Boltzmann collision integral. However, it is possible to approximate the collision
integral using the weights and abscissas of the quadrature approximation. The procedure
to derive the closure with hard-sphere collisions is fairly complicated, and is explained
in [22]. Only the resulting moment source terms are reported here.

The moments of the hard-sphere Boltzmann collision integral can be written in the
form

C
γ
ijk =

6g0

dp

∫

R3

∫

R3
gIijk(ω,v1,g) f (v1) f (v2)dv1dv2, (3.8)

where

Iijk =
1

πg

∫

S+

[

(v′1,1)
i(v′1,2)

j(v′1,3)
k−(v1,1)

i(v1,2)
j(v1,3)

k
]

|g·n|dn, (3.9)

g=v1−v2 the relative velocity vector with magnitude g, n the unit vector along the line
containing the two colliding particles centers, v′

1 = v1−ω(g·n)n, and ω =(1+e)/2. The
inelastic Maxwell model (see Appendix B) has the same form as Eq. (3.8), but with g
replaced by the average value 〈g〉.

The integral over the collision cross-section S+ in Eq. (3.9) can be evaluated explicitly
for non-negative values of i, j and k by writing it in terms of multinomial expansions.
To achieve this result, an orthonormal transformation Lc(g) is applied to transform the
laboratory frame of reference x into the collision frame of reference x†, so that x† = Lcx.
Conventionally we assume the relative velocity vector g to be aligned with the x†

3 direc-
tion, leading to the following transformation matrix:

Lc =





sinφ1 −cosφ1 0
cosθ1cosφ1 cosθ1sinφ1 −sinθ1

sinθ1cosφ1 sinθ1sinφ1 cosθ1



, (3.10)

where 06 θ1 6 π, and 06 φ1 6 2π are spherical angles related to g by g1 = gsinθ1cosφ1,
g2=gsinθ1sinφ1, and g3=gcosθ1. By means of this transformation, the integral in Eq. (3.9)
is rewritten as an integral over the collision angles θ and φ:

Iijk =
1

π

∫ 2π

0

∫ π
2

0

[

(v′1,1)
i(v′1,2)

j(v′1,3)
k−(v1,1)

i(v1,2)
j(v1,3)

k
]

cosθsinθdθdφ, (3.11)

where
v′

1 =v1−(ωgcosθ)LT
c n†, and n† =(sinθcosφ,sinθsinφ,cosθ).

Rewriting the powers of the post-collisional velocity components (e.g., (v′1,1)
i) as multi-

nomial expansions, functions of the pre-collisional velocities, the relative velocity and the
collision angles, and explicitly integrating over the collision angles, Eq. (3.11) becomes

Iijk =
i

∑
i1=0

j

∑
i2=0

k

∑
i3=0

(−ωg)i1+i2+i3 Si1i2i3(θ1,φ1)

(

i

i1

)(

j

i2

)(

k

i3

)

vi−i1
1,1 v

j−i2
1,2 vk−i3

1,3 , (3.12)
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where S000 =0, and for i1+i2+i3 >0,

Si1i2i3 =
i1

∑
j1=0

i2

∑
j2=0

i3

∑
j3=0

j1

∑
k1=0

j2

∑
k2=0

j3

∑
k3=0

(

i1
j1

)(

i2
j2

)(

i3
j3

)(

j1
k1

)(

j2
k2

)(

j3
k3

)

L
i1−j1
c,11 L

i2−j2
c,12 L

i3−j3
c,13 L

j1−k1

c,21 L
j2−k2

c,22 L
j3−k3

c,23 Lk1
c,31Lk2

c,32Lk3
c,33Kijk, (3.13)

with i = i1+i2+i3, j = j1+ j2+ j3 and k = k1+k2+k3. The constants Kijk resulting from
integration over the collision angles are defined as

Kijk = Ai−1,j−kBi+k,i−k,

where

Aa,b≡
1

π

∫ 2π

0
(cosφ)a(sinφ)bdφ=

[

1+(−1)a
][

1+(−1)b
] 1

2π
B
( a+1

2
,
b+1

2

)

, (3.14a)

Bc,d≡
∫ π

2

0
(cosθ)c+1(sinθ)d+1dθ =

1

2
B
( c+2

2
,
d+2

2

)

. (3.14b)

B(x,y) is the beta function, defined in terms of Euler gamma function as

B(x,y)=
Γ(x)Γ(y)

Γ(x+y)
.

At this point, Iijk can be computed for any given values of ω, v1, and g. We can now apply
the quadrature formula (3.1) to evaluate the two integrals over the velocity distribution
function in (3.8). Doing so, the collision source term for the moment equations becomes

C
γ
ijk =

6g0

dp

N

∑
α=1

N

∑
β=1

ραρβgαβ Iijk(ω,uα,gαβ), (3.15)

where gαβ=uα−uβ, and gαβ=|gαβ|. Using (3.15), the inelastic hard-sphere Boltzmann col-
lision integral can be approximated in the moment transport equations once the quadra-
ture weight and abscissas are known. Note that, because the integrals over the collision
angles were carried out explicitly, the approximation in (3.15) inherits all of the conserva-
tion properties of the Boltzmann collision integral. For a homogeneous system, the long-
time solution found using (3.15) has isotropic central moments. However, as discussed
in Appendix C, the non-zero central moments of orders higher than two are Gaussian
only in the ”limN→∞” due to the discrete representation of the distribution function. The
inelastic Maxwell model is computed from Eq. (3.15) by replacing gαβ with 〈g〉, where

〈g〉= 1

α2
s

N

∑
α=1

N

∑
β=1

ραρβgαβ (3.16)

is computed using quadrature. For homogeneous elastic systems, the central moments
found from the inelastic Maxwell model are Gaussian. We should note that, relative to the
BGK model, calculation of C

γ
ijk via (3.15) is computationally expensive due to the double

summation over N and the complexity of Iijk for higher-order moments.
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3.3 Quadrature-based boundary conditions for the moments

The implementation of the diffuse reflective with full accommodation boundary condi-
tion in the quadrature-based moment method is obtained by initially considering the set
of isotropic Gaussian moments with unit variance at the wall up to the order of moments
considered. From this set of moments, a corresponding temporary set of weights ρwα and
abscissas Uwα at the wall are found by applying the moment-inversion algorithm. This
set of abscissas is then rescaled to obtain the correct wall temperature:

Uwα→Uwα

√
Tw. (3.17)

In the case of moving walls, the wall tangential velocity would be added to the abscissas
in the corresponding direction. However, in this work only stationary walls are consid-
ered, and this step is unnecessary.

At this point, the incoming and outgoing fluxes normal to the wall are computed in
terms of the weights and abscissas. The formulation for plane walls is presented here.
Let w be the unit wall-normal vector pointing into the fluid. The incoming flux from the
fluid to the wall is given by

Gw,in =−
N

∑
α=1

min(0,w·U∗
α)ρ∗α, (3.18)

while the outgoing flux from the wall to the fluid is

Gw,out =
N

∑
α=1

max(0,w·Uwα)ρwα, (3.19)

where U∗
α is the velocity abscissa in the fluid adjacent the wall and ρ∗α is the corresponding

quadrature weight. Once the fluxes Gw,in and Gw,out are known, the temporary quadra-
ture weights at the wall are rescaled to satisfy the continuity constraint:

ρwα→ρwα
Gw,in

Gw,out
, (3.20)

and the moments are recomputed from (3.3) using the updated set of weights and abscis-
sas. Note that this procedure is equivalent to representing the equilibrium wall distribu-
tion function by

feq,w(v)=
N

∑
α=1

ρwαδ(v−Uwα). (3.21)

By construction, feq,w is Maxwellian and conserves the normal mass flux at the wall.
The implementation of the diffuse reflective condition explained above must be mod-

ified slightly when the full Boltzmann collision model is used. As mentioned earlier, the
quadrature closure of the Boltzmann collision integral does not generate Gaussian mo-
ments (maximum relative difference equal to 3.2% for N =64 and e=1, see Appendix C).



A. Passalacqua et al. / Commun. Comput. Phys., 10 (2011), pp. 216-252 227

As a consequence, to be consistent with the quadrature closure used in the interior of the
domain, a homogeneous case with elastic mono-dispersed particles interacting due to
collisions was used to compute the velocity moments at the wall. The moments provided
by the quadrature closure of the Boltzmann collision integral were computed when the
system reached a self-similar state, and this set of moments was used to replace the set
of Maxwellian moments at the wall when the Boltzmann collision model was adopted.
Note that this modification will ensure that when e = 1 and the walls all have the same
temperature (i.e., an isothermal, elastic system), the velocity distribution function in the
fluid will be the same as the for the walls.

Because the quadrature-based moment method results in an explicit representation of
wall distribution function fw in terms of the weights and abscissas, it is straightforward
to derive the moment boundary conditions for moments of arbitrary order. The general
procedure for an arbitrary wall distribution function is as follows: (i) compute all of
the central moments needed for the moment-inversion algorithm from fw, (ii) apply the
moment-inversion algorithm to find ρwα and Uwα, (iii) use these weights and abscissas
to approximate the distribution function at the wall that appears in the expression of the
boundary condition (Eq. (2.7)). This allows any form of boundary condition written in
terms of the velocity distribution function to be implemented in the quadrature-based
moment method. Note that phenomena such as partial slip at the walls for the mean
velocity and temperature are not imposed, but rather are a result of the model. The
definition of the moment-inversion algorithm, of the source term closures for the moment
transport equations and of the boundary conditions provided in this section lead to a
closed set of partial differential equations, which can be solved numerically.

4 Solution algorithm for the moment transport equations

The moment transport equations can be solved using the finite-volume method [15, 17].
For sake of simplicity, we denote the set of moments M

γ
ijk by M, the set of weights and

abscissas by N = [ρα,Uα], the spatial fluxes computed as a function of the weights and
abscissas by Q− and Q+, and the collision terms by C. With this new notation, Eq. (2.6)
can be rewritten as

∂tM+∂x ·(Q−+Q+)=C. (4.1)

Due to the nature of the collision term, this equation can be solved by using a time-
splitting scheme wherein the spatial fluxes and collisions are treated sequentially.

The spatial fluxes need to be treated with special care, to ensure the realizability of
the set of moments. If we denote the flux function by

G(N−,N+)=Q−+Q+,

the updated moments M∗ can be computed from

M∗=M− ∆t

∆x
·
[

G(N−
r ,N+

r )−G(N−
l ,N+

l )
]

,
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where the subscripts l and r refer to the direction considered when performing the inter-
polation of the weights and abscissas at the left and right cell faces, respectively. Because
a first-order interpolation scheme is known to guarantee realizable moments [15], this
scheme is used in this work to approximate the values of weights and abscissas on cell
faces.

The change in the set of moments due to collisions is then computed by evaluating
the local collision time as a function of M and explicitly integrating the collision term
over time, solving

dM∗

dt
=C.

Integration in time is performed using a two-step explicit Runge-Kutta method, deter-
mining the time step on the basis of the collision time τ and of the Courant number based
on the maximum velocity abscissa [15]‡. In the collision models, the radial distribution
function is approximated by a slight variation of the model for rigid spheres [9]:

g0 =
2−c

2(1−c)3
+1.1603c, (4.2)

where c = αs/αmax, and αmax = 0.63 is the maximum packing limit for the solids volume
fraction. In this work we are interested in dilute flows with αs≤0.05, and the second term
on the right-hand side of (4.2) was fitted to the MD data of [1] for g0 at αs =0.0501.

5 Description of the system and simulation conditions

The system under examination in this work, investigated previously using MD simula-
tions [23], is constituted by a quiescent granular flow made of spherical, frictionless and
inelastic particles between two stationary walls of constant set temperatures TC and TH,
with TC 6 TH, as schematically represented in Fig. 1. The remaining four walls are pe-
riodic. Particles are not influenced by any external force, as a consequence the system
is characterized by the absence of mean motion. In the QMOM results the walls are de-
scribed as diffuse reflective with full accommodation boundary conditions [12], meaning
that particles are reflected by the walls with a velocity sampled from a Maxwellian dis-
tribution, consistent with the set wall temperature. At the beginning of each simulation,
αs is distributed uniformly in the system with an average volume fraction α depending

‡The simulations performed in this work admit a steady state. As a consequence, a steady-state solver could
be used instead of integrating in time. This would significantly reduce the computational cost. This was
not done in the present work, since the computational cost of the unsteady simulation is low as discussed
elsewhere in this manuscript, and the code where QMOM was implemented is unsteady. As an indication,
the computational time required to perform one unsteady simulation with 64-node QMOM, using a Matlab
code, on a quad-core Intel Xeon processor at 3 GHz, with real time plotting of the results at each time step,
is of about 30 minutes to achieve the full steady state, with BGK-like models. Each case of MD simulations
required an average of 2 days of computational time on a single Pentium IV at 2.53 GHz processor with a C
code compiled with the GNU C compiler (gcc).
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Figure 1: Schematic representation of the bounded conduction system.

on the case considered (see Table 1). A linear temperature profile is used as initial con-
dition for the simulations, whose slope depends on the temperature of the two walls. A
Maxwellian distribution is adopted for the initial velocity distribution function. Results
provided by QMOM are reported once the numerical solution reached steady state and
compared to the MD simulations described elsewhere [23].

Table 1: Simulation test cases and corresponding conditions and particle properties.

Case TC TH α e Kn
1 0.5 1 0.05 1 0.095
2 0.5 1 0.05 0.99 0.095
3 2/3 2/3 0.025 0.99 0.191
4 2/3 2/3 0.025 0.96 0.191
5 2/3 2/3 0.025 0.9 0.191

The significant parameters of the simulation are the wall temperatures TC and TH,
the average particle volume fraction α, and the restitution coefficient e for collisions be-
tween particles. The characteristic length of the system is L =1, and L/dp =35 in all the
MD simulations [23]. Different conditions were examined as reported in Table 1, where
the average Knudsen number is defined as Kn = dp/(6αL). One-dimensional QMOM
calculations were performed with the four different collision models described in Sec-
tion 2. A finite-volume method with a uniform spatial discretization of 120 grid cells in
the direction orthogonal to the walls was employed. As described in Appendix A, the
zero-order approximation to the Boltzmann-Enskog collision integral does not include
finite-size-particle effects and thus, strictly speaking, is comparable to MD simulations
with L/dp ≫ 1. In order to judge the magnitude of the finite-particle effects in the MD
simulations with L/dp =35, for some of the statistics we will present MD results for the
kinetic and collisional-flux parts separately. The latter are computed as described in [23].
For the QMOM calculations, only the kinetic parts of the velocity statistics are included
in the collision models.
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In the QMOM calculations, the solids volume fraction is found directly from the zero-
order moment. All other statistics are reported in dimensionless form using a charac-
teristic granular temperature equal to one. The mean particle velocities are defined by
Up=(M1

100,M1
010,M1

001)/αs. The mean velocities parallel to the walls are null for all times,
while the wall-normal component of the mean velocity (Up1) becomes null only at steady
state. The granular temperature components and the granular temperature are computed
as

T1 =
M2

200

αs
−

( M1
100

αs

)2
, T2 =

M2
020

αs
−

( M2
010

αs

)2
, (5.1a)

T3 =
M2

002

αs
−

( M3
001

αs

)2
, T =

1

3
(T1+T2+T3). (5.1b)

By symmetry, the components parallel to the walls are equal (T2 = T3). The kinetic con-
tribution to the diagonal stress tensor components are then evaluated by multiplying the
temperature components by the solids volume fraction:

σ11 =αsT1, σ22 =αsT2, σ33 =αsT3, (5.2)

while the off-diagonal components are obtained as

σ12 =αs

( M2
110

αs
− M1

100

αs

M1
010

αs

)

, (5.3a)

σ13 =αs

( M2
101

αs
− M1

100

αs

M1
001

αs

)

, (5.3b)

σ23 =αs

( M2
011

αs
− M1

010

αs

M1
001

αs

)

. (5.3c)

By symmetry, the components parallel to the walls are equal (σ22 = σ33). For the system
under consideration the off-diagonal components should be null for all times, and this
is confirmed by the simulations. For finite-size particles (e.g., the MD simulations), the
stress tensor contains an additional term due to the collisional fluxes [22, 23], not present
in the QMOM calculations, which scales like Tα2

s . Thus, we can anticipate that Eq. (5.2)
will slightly underestimate the MD results for the values of αs considered here. As noted
above, the MD results for the kinetic and collisional-flux parts of the stress tensor will be
plotted separately for comparison with the QMOM results.

The heat flux in the wall-normal direction is calculated as

q1 =
1

2
(M3

300+M3
120+M3

102)+
1

2
αsU3

p1−Up1(M2
200+αsT). (5.4)

At steady state, Up1 =0 within the numerical accuracy of the finite-volume scheme. The
heat fluxes in the directions parallel to the walls should be null for all times, and this is
confirmed by the simulations. As with the stress tensor, the heat flux in the MD data
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contains an additional contribution due to the collisional fluxes [22, 23], not present in
the QMOM calculations. We can again anticipate that (5.4) will underestimate the MD
results.

Depending on the order of the quadrature, the moment method used in this work
computes moments of order higher than three, which have not been reported for the MD
simulations. In all cases, the moment method computes the moments up to second order.
For the 8-node quadrature, only four of the ten third-order moments are computed and
the remaining six are approximated using quadrature. For 27-node quadrature, all of the
moments up to third order are computed, along with some moments up to sixth order.
For 64-node quadrature all moments up to fourth order are computed, along with some
moments up to ninth order. In order to quantify the degree of non-Gaussian behavior,
we define the standardized central moments as

Q
γ
ijk =

(

αsT
i
2

1 T
j
2

2 T
k
2

3

)−1
∫

(v1−Up1)
i(v2−Up2)

j(v3−Up3)
k f (v)dv, (5.5)

which at steady state reduces to Q
γ
ijk = M

γ
ijk

(

αsTi/2
1 T

j/2
2 Tk/2

3

)−1
. Some of the non-zero,

steady-state, standardized moments found from the QMOM calculations will be com-
pared to the Gaussian values for selected cases.

6 Results and discussion

Results obtained from the QMOM calculations in the five different cases under examina-
tion are reported in this section and compared to results from the MD simulations.

6.1 Effect of the number of quadrature nodes

The accuracy of the quadrature-based moment method as a function of the number of
quadrature nodes was studied using the BGK model for Cases 1 and 2 of Table 1. The
solids volume fraction, granular temperature, and heat-flux profiles are reported in Fig. 2.
Note that the temperature slip at the walls (i.e., the difference between the wall and fluid
temperatures) is not an input to the moment method, but rather a prediction that follows
from the prescribed boundary conditions. For all cases investigated, the temperature slip
is well predicted by QMOM. However, due to finite-size effects in the MD simulations,
one should expect some differences near the walls (i.e., the impinging particles change
temperature at a finite distance dp/2 from the walls due to the size-exclusion effect [23]).

With elastic collisions (Case 1), the QMOM calculations provide satisfactory results
for the solids volume fraction profile in all the cases considered with 8, 27 and 64 quadra-
ture nodes with a slight improvement in the predictions with a higher number of nodes
(Fig. 2(a)). A similar trend is observed in the predictions of the temperature profiles
for the same conditions (see Fig. 2(c)). However, the introduction of a slight degree of
in-elasticity (Case 2) shows that the 8-node quadrature closure leads to erroneous pre-
dictions in the shape of the solids volume fraction profile (Fig. 2(b)), with a peak in the
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Figure 2: Profiles for solids volume fraction, granular temperature, and heat flux in Cases 1 and 2 for QMOM
calculations with the BGK collision model using 8, 27, and 64 quadrature nodes.

particle concentration away from the cold wall, and to the under-estimation of the tem-
perature (Fig. 2(d)), which indicates that either the energy dissipation is overpredicted or
the heat flux from the walls in underpredicted. The accuracy in the solids volume frac-
tion and temperature profiles observed in the case of elastic collisions is recovered with
a higher number of nodes, with very satisfactory agreement between MD and QMOM
calculations results with 64 nodes.

Insight into the reasons for the discrepancy observed with the 8-node quadrature can
be obtained by examining the heat flux, whose profiles are reported in Fig. 2. Most re-
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markably, despite the lack of the collisional-flux term due to finite-size effects, the 27-
and 64-node quadratures yield good predictions for the heat flux for Case 2. The heat
flux depends on the third-order moments of the velocity distribution function, which are
not completely controlled by the 8-node quadrature approximation due to the constraints
imposed by the quadrature formula§. Moreover the third-order moment transport equa-
tions depend on the fourth-order moment spatial fluxes, which are only approximated
by the 8-node quadrature [19]. This source of approximation is not present with the
higher-order quadratures considered in this work, because 27-node quadrature allows
moments up to the fifth order to be controlled, and 64-node quadrature increases the or-
der of controlled moments to seven, allowing all the third- and fourth-order moments to
be controlled. Consequently only the 64-node quadrature is considered in the remainder
of this work. However, we should note that 27-node quadrature provides reasonably
accurate predictions at relatively lower cost than 64-node quadrature, and that the poor
predictions of the heat flux with 8-node quadrature are consistent with previous obser-
vations [19].

6.2 Comparison of the four collision models

In this section the predictions obtained with the four collisions models (BGK, ES-BGK,
inelastic Maxwell, full Boltzmann) in the QMOM calculations are compared to establish
their accuracy with respect to the MD results. Cases 1 and 2 have an imposed mean
temperature gradient. As shown in Fig. 3, very similar predictions for the solids volume
fraction and temperature are obtained with all four collision models in Case 1, and all col-
lision models are in good agreement with the MD simulations. Results for Case 2, where
the collisions between particles are slightly inelastic, show that the ES-BGK model pro-
vides results for the particle temperature profile in slightly better agreement with the MD
data than the other collision models (Fig. 3(d)). However, the inelastic Maxwell model
leads to very good predictions. We can conclude that all four collision models perform
adequately for Case 2, although the full Boltzmann model tends to underpredict the tem-
perature. Overall, for both cases with imposed mean temperature gradients the QMOM
calculations exhibit good agreement with the MD simulations, accurately predicting the
shape of the profiles and the temperature slip at the walls.

Cases 3-5 have isothermal walls with no imposed mean temperature gradients. Re-
sults for these cases are reported in Fig. 4. For Case 3, the four collision models provide
similar predictions for the solids volume fraction and granular temperature profiles. It
is worth noting that the value of the solids volume fraction in the QMOM calculations
in Fig. 4(a) is slightly lower than in the MD simulations. This is due to finite-size effects,
whose role is investigated in Section 6.7. For Case 4, the collision models all predict simi-
lar values of the solids volume fraction, as shown in Fig. 4(c), with the Boltzmann models
predicting a slight upturn near the walls. The BGK model predicts very closely the tem-

§The 8-node quadrature formulation allows fourteen of the twenty transported moments to be con-
trolled [18].
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Figure 3: Solids volume fraction and granular temperature profiles for cases with an imposed mean temperature
gradient predicted by QMOM calculations with the four collision models.

perature profile for Case 4, as shown in Fig. 4(d). The full Boltzmann model generally
underpredicts the temperature and has a flatter profile. For Case 4, the ES-BGK model
provides results similar to BGK, while the inelastic Maxwell model overpredicts temper-
ature near the center of the domain. In Case 5, the degree of in-elasticity of collisions
between particles is further increased by lowering the restitution coefficient to e = 0.9.
As shown in Fig. 4(e), the BGK model better predicts the maximum in the solids volume
fraction, while the other models predict much flatter profiles. As shown in Fig. 4(f), the
inelastic Maxwell model properly predicts the granular temperature trend near the walls,
but it overpredicts the temperature values at the center of the channel. Granular temper-
ature values are systematically under-predicted by the full Boltzmann model, especially
near the walls. In comparison, the BGK model yields very good predictions of the tem-
perature profile and accurately captures the ”temperature slip” at the walls for all cases.
In Case 5, all collision models overpredict the temperature at the center of the channel.
This suggests that the model for the collision time τ used in the linearized models, which
is exact in the limit e=1, could be improved by including a weak dependence on e. More
precisely, if τ were smaller for decreasing e, then the temperature at the center of channel
would be lower when e<1.

Alternatively, the over-prediction of the granular temperature near the centerline in
the QMOM calculations consistently observed in Cases 3-5 might be explained by con-
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Figure 4: Volume fraction and granular temperature profiles for cases with isothermal walls predicted by QMOM
calculations with the four collision models.

sidering that the collision frequency predicted by the Boltzmann kinetic equation (and
hence the temperature dissipation rate) is lower than in the MD simulations, due to the
lack of consideration of finite-size effects (see Section 6.7). It is also worth noting that,
as discussed in more detail below, the standardized central moments become more and
more non-Gaussian as e decreases, with values for even-order central moments that are
larger than the Gaussian values. Unlike with the BGK and ES-BGK models, in the two
Boltzmann collision models, the values of all moments affect the collision term for any
given moment through the values of the weights and abscissas. Thus, the two Boltzmann
collision models will be more sensitive to the shape of the velocity distribution function
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(and hence the values of the moments) than the other two collision models.

In general, in order to capture highly non-Gaussian behavior with a moment method,
it is necessary to include a larger set of moments. In the quadrature-based moment
method using the moment-inversion algorithm described in Section 3, highly non-
Gaussian moments can result in negative weights if more than eight quadrature nodes
are employed. For 64-node quadrature and moderate Kn, negative weights begin to oc-
cur for e<0.9 for this system (the exact value of e depends on the collision model). Thus,
in order to go to smaller values of e, the moment-inversion algorithm would need to be
modified to eliminate the negative weights [39].

6.3 Temperature-component predictions

The model predictions for the granular temperature components are shown in Fig. 5 for
Case 5, the case for which the differences between components is largest. In general,
the QMOM calculations predict that the component in the wall-normal direction (T1) is
flatter than the other components. In comparison, the MD simulations show very small
differences between the two components. In the QMOM calculations, the components
T1 and T2 are equal a short distance from the wall, while at the centerline T1 is slightly
larger than T2. This effect is less evident for the BGK results, which are closest to the MD
simulations. In contrast, the full Boltzmann model predicts that T1 is almost flat.
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Figure 5: Granular temperature components predicted by QMOM calculations with the four collision models in
Case 5.

6.4 Stress-tensor predictions

Stress-tensor components predicted by QMOM calculations are compared with MD re-
sults in this section. The stress-tensor components σ22 and σ33 are equal, as a consequence
only the first one is reported in the figures. Likewise, as noted earlier, for this system with
no mean velocity gradients the off-diagonal components of the stress tensor are null. For
the MD results, three curves are plotted in Fig. 6, corresponding to the total stress and
its two components due to kinetic and collisional-flux contributions. As noted earlier,
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Figure 6: Stress-tensor components in Cases 2 and 4 predicted by QMOM calculations with the four collision
models. MD results for the total stress and the kinetic and collisional-flux contributions are shown separately.

the collisional-flux contribution is a finite-size effect that is not included in the QMOM
calculations. Nevertheless, in all cases the QMOM calculations do remarkably well in
predicting the kinetic contribution to the stress tensor. This observation is not completely
unexpected. Indeed, all the moments sets used for quadrature include the second-order
velocity moments, and all collision models provide a (nearly) exact description of the
changes in the second-order moments due to collisions.

In Figs. 6(a) and 6(c) it can be observed that the total stress component in the wall-
normal direction is constant (at steady state). This property follows directly from the
moment transport equations for the zero- and first-order moments in the x1 direction,
written removing the unsteady term:

dM1
100

dx1
=0, (6.1a)

dM2
200

dx1
=0. (6.1b)

From (6.1a), it follows that M1
100 is zero, because the walls are assumed to be impermeable

to the particles, leading to a zero particle flux through the boundaries. From (6.1b), M2
200

has to be constant. As a consequence, by considering the definition of σ11 in terms of the
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moments:

σ11 = M2
200−αs

( M1
100

αs

)2
, (6.2)

the first term is constant, and the second term is zero, leading to the conclusion that σ11

must be constant. In general, Eq. (6.1b) will contain the total stress component in the
wall-normal direction, hence, it will be constant even when the collisional-flux contribu-
tion is included. This fact can be observed for the MD results appearing in Fig. 6. It is
worth noting that similar considerations cannot be applied for σ22, because M2

020 does not
produce a flux.

For all four collision models, the results for Case 1 (not shown) with e =1 yield σ11 ≈
σ22 ≈0.036, which agrees with the MD results for the kinetic stress, while the MD results
for the total stress are σ11 ≈ σ22 ≈ 0.046. For the solids volume fraction used in Case 1,
the collisional-flux contributes approximately 15 % of the total stress. The same is true
for Case 2, where the stress-tensor components are shown in Fig. 6. As in Case 1, both
components of the total stress are nearly constant, but now there are some differences
between the four collision models. In general, the three linearized models (BGK, ES-
BGK, inelastic Maxwell) yield the closest prediction of the kinetic stresses found from the
MD simulations. Also, the fact that the three linearized models predict nearly the same
kinetic stresses is not surprising since the collision terms for the second-order moments
are exactly the same (see Appendix B).

The results for stress components for Case 4 are also shown in Fig. 6. In addition to
the finite-size effects, it can be observed that with e = 0.96 the two total stress compo-
nents are distinctly different for the collision models and the MD results. As expected,
σ11 is constant, but now σ22 exhibits a minimum at the centerline of the domain. In gen-
eral, although the four collision models yield slightly different predictions for the kinetic
stresses, the QMOM calculations are in very good agreement with the MD results in all
cases.

Note that if our main objective was to reproduce the total stress, the QMOM results for
the diagonal stress components could be increased by decreasing the collision frequency
(the effective viscosity is proportional to the Knudsen number [35]). However, such a
modification would also change the heat flux and, indirectly, the solids volume fraction
and temperature profiles. Overall, we can conclude that even without the collisional-flux
contributions due to finite-size particles the zero-order kinetic model should be adequate
to model dilute granular flows with solids volume fractions less than approximately 2-
4%.

6.5 Heat-flux predictions

It is well known in kinetic modeling that correctly capturing the heat flux is an important,
yet difficult requirement to meet for finite Knudsen numbers [23], mainly because as a
third-order moment it depends on fourth- and higher-order moments that are difficult
to close. Predicting the heat flux correctly is, however, important for the overall model
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Figure 7: Heat flux profiles in Cases 1-4 predicted by QMOM calculations with the four collision models. MD
results for the total heat flux and the kinetic and collisional-flux contributions are shown separately.

since it determines the granular temperature distribution, which in turn has a strong
influence on the solids volume fraction profiles. As seen earlier, the 64-node quadrature-
based moment method has generally good predictions for the solids volume fraction and
granular temperature profiles. We can thus anticipate that the heat-flux predictions must
be in relatively good agreement with the MD data. The collisional-flux contribution to
the heat flux in the MD results is relatively small (see Fig. 7); hence we will mainly discuss
the comparison between the QMOM and MD results for the kinetic part of the heat flux.

In Cases 1 and 2, a mean temperature gradient is imposed on the granular flow. For
Case 1 the predicted profiles of the heat flux are shown in Fig. 7(a). For this case, due to
conservation of energy when e = 1, the total heat flux must be constant at steady state.¶

The ES-BGK and inelastic Maxwell models provide results in good agreement with the
MD data. As expected, due to the larger Prandtl number, the BGK model predicts a
smaller (in magnitude) heat flux than the ES-BGK model. It is noteworthy that heat flux
predicted by the full Boltzmann model, even though in theory should be more accurate,

¶In general, it is easily shown that at steady state ∂1q1 =(C2
200+2C2

020)/2. The second-order moments of the
collision term and a boundary condition thus determine the kinetic heat flux. By symmetry, when TC = TH,
q1(1/2)=0. From kinetic theory, ∂1q1≈−γTT3/2, with temperature dependence being exact for the linearized
collision models. From the MD data and the model, at steady state the temperature dissipation is nearly
constant, consistent with the observed weak variation in T.
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is almost the same as the heat flux predicted by the BGK model. For Case 2, the ES-BGK
and inelastic Maxwell models predict values of the heat flux (Fig. 7(b)) close to the MD
results, while the full Boltzmann and BGK models results are slightly farther from the
MD results. The differences observed in Case 2 between the BGK and ES-BGK models
can be again attributed to the difference in the Prandtl numbers predicted by the two
models.

In Cases 3 and 4, the walls are isothermal and the temperature gradients are created
by inelastic collisions. For both cases, the three linearized models predict essentially the
same heat flux, while the full Boltzmann model is closest to the MD results (see Figs. 7(c)
and 7(d)). For Case 5 (not shown), the accuracy of the heat flux predictions are very
similar to Cases 3 and 4. Note that for the cases with isothermal walls, the collisional-flux
contribution to the heat flux is very small relative to the kinetic contribution.

Overall, the model predictions for the heat flux in all cases considered are remarkably
good. It is worth noting that unlike in ”standard” hydrodynamic models for granular
systems [6, 24–26, 29, 30] that require a constitutive equation for the stress tensor and the
heat flux (as well as consistent boundary conditions for the solids volume fraction, mean
velocity and temperature), the quadrature-based moment closure is fully self contained
and self consistent. The principle factor (besides the level of quadrature) that determines
the accuracy of a moment model is the degree to which the starting kinetic equation (2.1)
and the collision model describes the system. Based on the observed agreement between
the QMOM and MD simulation results, we can conclude that the Boltzmann kinetic equa-
tion with a zero-order collision model is adequate to capture Knudsen number effects in
dilute granular flows.

6.6 Non-Gaussian moments due to inelastic collisions

It is well known [8] that in the homogeneous cooling state the velocity moments of a
granular flow show small deviations from the Gaussian values for e <1. In comparison,
for the system studied in this work, the inelastic collisions generate moments that are
much farther from the Gaussian values due to the presence of the mean temperature gra-
dients. To illustrate how significant is the non-Gaussian behavior, we present results for
selected standardized central moments for Case 5 (e=0.9). In the homogeneous case (see
Appendix C and [8]) the odd-order moments are null. In Fig. 8 two odd-order moments
Q3

300 and Q5
500 are compared with the Gaussian values of zero for the four collision mod-

els. From these plots, it is obvious that the underlying velocity distribution function is
highly skewed along the v1 direction with the largest skewness near the walls, changing
signs at the centerline. The corresponding odd central moments are zero in the v2 and
v3 directions. The three linearized collision models predict approximately the same de-
gree of skewness, while for the full Boltzmann model it is considerably larger. Overall,
we can conclude that the odd-order moments are non-zero due to the mean temperature
gradient in the x1 direction generated by inelastic collisions.

In Fig. 8, a selected set of even-order central moments (Q4
400, Q4

040, Q6
600, Q6

060) are
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Figure 8: Standardized central moments predicted by QMOM calculations with the four collision models in case
5. Gaussian values are shown by the dashed lines.

compared with their Gaussian values. As can be clearly observed, the even-order central
moments have values near the walls that are much larger than the Gaussian values. For
the even-order moments of the velocity component in the direction of the mean temper-
ature gradient (v1), the BGK and ES-BGK results are largest at the centerline and smallest
at the walls. The opposite trend is observed for the two Boltzmann models, with the full
Boltzmann model predicting sub-Gaussian moments at the center of the domain. For the
even-order moments of the velocity component in the other direction (v2), the results for
all collision models are lower at the centerline and peak near the walls. It is noteworthy
that the wall-normal velocity components are not Gaussian at the walls for any of the
collision models, even though the wall boundary condition is Gaussian. This is caused
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by ”moment slip” due to the finite Knudsen number of the flow. The non-Gaussian be-
havior is absent for e = 1, and increases rapidly with decreasing e. In principal, because
they include terms for all of the moments, the two Boltzmann models should be more
accurate for moments shown in Fig. 8, and the full Boltzmann model should be more
accurate than the inelastic Maxwell model.

6.7 A simple correction for finite-size effects

The collision models considered in this work assumes particles to have zero effective
volume during wall collisions, while the MD simulation considers finite-size particles.
Finite-size effects at the walls are responsible for the lower value of the solids volume
fraction predicted by QMOM calculations, for example in Case 4 (Fig. 4(c)). In [23], the
ratio between the channel width L and the particle diameter dp is set to 35, as a conse-
quence the center of a particle can be at a minimum distance from the wall equal to dp/2.
For point particles where all of the particle volume is assigned to the center point, this is
equivalent to considering a system with a dimensionless length of 1−dp/L=0.972. Since
the total volume of the particle phase is fixed (Lᾱ is constant), the effective average solids
volume fraction in the MD simulations is thus equal to αs,eq = ᾱ/(1−dp/L), which, for
Cases 3-5, is αs,eq =0.0257.

In order to examine whether correcting the solids volume fraction has a significant
effect on the results, Case 4 was run again using αs =0.0257 and L =0.972 with the BGK
collision model. Fig. 9(a) shows that, with the corrected value of the initial solids volume
fraction, excellent agreement with the MD data for the solids volume fraction profile is
obtained. The higher value of the solids volume fraction has only a small effect on the
temperature profiles shown in Fig. 9(b). The stress-tensor components (Fig. 9(c)) exhibit
only very small differences with respect to the QMOM prediction with the original value
of average solids volume fraction. Likewise, the heat flux (Fig. 9(d)) shows only a small
change in slope. Overall, we can conclude that correcting only for the effective solids
volume fraction is adequate to capture the solids volume fraction profiles. However, a
first-order collision model that accounts for finite-size particles during collisions [22] (see
Appendix A) would be required for further improvements in the QMOM predictions for
the stress tensor.

7 Conclusions

A kinetic model using high-order quadrature-based moment methods was applied to
simulate a dilute non-isothermal granular flow bounded between two parallel walls.
Three different orders of approximation were considered by using 8-, 27-, and 64-node
quadrature. Quadrature-based closures were provided for the spatial fluxes of the mo-
ments and four different collision models were investigated. The accuracy of the kinetic
model was validated using MD simulations of a nearly equivalent system.
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Figure 9: Profiles predicted by QMOM calculations with the BGK model in Case 4 with the original (αs =0.025)
and corrected (αs =0.0257) values of the initial solids volume fraction.

First, the accuracy of the quadrature closures was determined as a function of the
number of quadrature nodes, showing that the 8-node quadrature provides limited ac-
curacy for all cases, but especially for cases with inelastic collisions. The reason of this
behavior was identified as the inadequate representation of the spatial fluxes with 8-
node quadrature, in agreement with previous work for other systems [19]. However, it
was shown that higher-order quadrature methods are not affected by this problem, and
provide satisfactory results for all cases investigated.

Next, comparison of the inelastic collision models showed that all four models pro-
vided good results for all the cases considered. However, their predictive accuracy de-
grades when the restitution coefficient is decreased substantially. Surprisingly, use of the
full Boltzmann collision model did not improve the accuracy of the predictions, despite
its substantially higher computation cost. It is likely that this observation will not hold
for other, more complex, granular flows (e.g., multi-component cases). In such cases,
the inelastic Maxwell collision model may offer an attractive alternative to the simpler
BGK-type models.

Finally, the kinetic model was shown to properly predict the kinetic part of the stress
tensor, with a constant component in the wall-normal direction, and good agreement
with the temperature components, related to the diagonal components of the stress ten-
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sor. Differences in the predictions of QMOM and MD simulations can be explained by
the fact that the zero-order collision models neglect finite-size effects present in the MD
results. Since such effects were shown to be relatively small for the heat flux, the QMOM
predictions for the heat flux were generally quite satisfactory. Overall, the quadrature-
based moment method developed in this work appears to be well suited for dealing with
finite-Knudsen-number effects in dilute granular flows.

In closing, we wish to emphasize that a key component of quadrature-based moment
methods is the moment-inversion algorithm that related the weights and abscissas to the
moments. In this work we have used the algorithm proposed in [19] that employs a ten-
sor product of 1-D quadratures to define the abscissas. However, for some cases (e.g.,
infinite Knudsen number with walls at different temperatures), the tensor product for-
mulation can be overly restrictive, leading to negative weights. In order to overcome this
shortcoming, we have recently developed less restrictive moment-inversion algorithms
using conditional moments [39] based on the ”optimal” moments sets reported in [20], for
which non-negative weights are guaranteed for any optimal set of realizable moments.
Results using this conditional quadrature method of moments (CQMOM) will be reported
elsewhere.
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A Boltzmann-Enskog collision integral

For inelastic hard-sphere collisions, the Boltzmann-Enskog collision integral [14] is de-
fined as

C=
6

πdp

∫

R3

∫

S+

[

χ f (2)(x,v′′
1 ;x−dpn,v′′

2 )− f (2)(x,v1;x+dpn,v2)
]

|g·n|dndv2, (A.1)

where f (2) is the pair correlation function, n = (x1−x2)/|x1−x2| is the unit vector in
the direction between the particle centers, g = v1−v2 (with magnitude g) is the velocity
difference before a direct collision, and χ is a factor relating the pre-collision velocities for
direct collisions (v1,v2) to those for inverse collisions (v′′

1 ,v′′
2 ). These velocities are related

by [12, 14]

v1 =v′′
1 −ω(g′′ ·n)n, (A.2)

v2 =v′′
2 +ω(g′′ ·n)n, (A.3)
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where ω = (1+e)/2 and 0≤ e≤ 1 is the coefficient of restitution, and g′′ = v′′
1 −v′′

2 is the
velocity difference before an inverse collision. The surface S+ is the unit half sphere on
which g·n>0 (i.e., velocity differences that result in collisions).

Starting from Eq. (A.1), the source term for the moments [22] can be written as

C
γ
ijk =

6

πdp

∫

R3

∫

R3

∫

S+

[

(v′1,1)
i(v′1,2)

j(v′1,3)
k−(v1,1)

i(v1,2)
j(v1,3)

k
]

f (2)(x,v1;x+dpn,v2)|g·n|dndv1dv2, (A.4)

where v′ denotes velocity vectors after a direct collision. The pair correlation function at
contact is approximated by

f (2)
(

x− dp

2
n,v1;x+

dp

2
n,v2

)

= g0 f1(v1) f2(v2)
(

1+
dp

2
n·∇lnD

)

+O
(

(dp/L)2
)

, (A.5)

where g0(αs) is the radial distribution function depending on the solids volume fraction
αs = M0, and D= ln( f (v2)/ f (v1)). Neglecting gradients in g0, expansion about the point
of contact and rearrangement of the terms on the right-hand side of Eq. (A.4) leads to

C
γ
ijk =Cijk+

dp

2
∇·Gijk +O

(

(dp/L)2
)

, (A.6)

where the collision contribution is defined by

Cijk =
6g0

dp

∫

R3

∫

R3
gIijk(ω,v1,g) f (v1) f (v2)dv1dv2, (A.7)

and the collisional-flux contribution by

Gijk =
6g0

dp

∫

R3

∫

R3
gFl1 l2l3(ω,v1,g) f (v1) f (v2)dv1dv2. (A.8)

Up to first order in dp/L, Iijk in Eq. (A.7) is defined by

Iijk =
1

πg

∫

S+

[

(v′1,1)
i(v′1,2)

j(v′1,3)
k−vi

1,1v
j
1,2vk

1,3

]

|g·n|
(

1+
dp

2
n·∇D

)

dn, (A.9)

and Fijk in Eq. (A.8) by

Fijk =
1

πg

∫

S+
n
[

(v′1,1)
i(v′1,2)

j(v′1,3)
k−vi

1,1v
j
1,2vk

1,3

]

|g·n|
(

1+
dp

2
n·∇D

)

dn. (A.10)

Note that the collisional-flux term in Eq. (A.6) is first order in dp/L, and thus is neglected
in a zero-order collision model.
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In the main text, a zero-order approximation is used to represent the collisions. The
moment source term due to collisions is thus

C
γ
ijk =

6g0

dp

∫

R3

∫

R3
gIijk(ω,v1,g) f (v1) f (v2)dv1dv2, (A.11)

with

Iijk =
1

πg

∫

S+

[

(v′1,1)
i(v′1,2)

j(v′1,3)
k−vi

1,1v
j
1,2vk

1,3

]

|g·n|dn. (A.12)

As discussed in the main text, the integral on the right-hand side of Eq. (A.12) can be
evaluated explicitly, and Eq. (A.11) can be evaluated using quadrature. The kinetic model
given by Eq. (A.11) is referred to in the main text as the full Boltzmann collision model.

B Kinetic models for granular flow

For elastic collision, several different kinetic models have been proposed to close the
Boltzmann hard-sphere collision term [13, 35]. For inelastic collisions (e < 1), one must
correctly account for the dependence of dissipation of granular energy on the value of
e. One method for accomplishing this task is to start from the exact (unclosed) collision
integral in Eq. (A.11). From the definition of Iijk given in Eq. (A.12), it can be shown that

C
∗γ
ijk =

6g0〈g〉
dp

∫

R3

∫

R3
Iijk(ω,v1,g) f (v1) f (v2)dv1dv2 (B.1)

is closed in terms of the moments up to order γ. The mean velocity difference is defined
by

〈g〉= 1

α2
s

∫

R3

∫

R3
|v1−v2| f (v1) f (v2)dv1dv2, (B.2)

and the integrals on the right-hand side of Eq. (B.2) can be evaluated using quadrature.
However, at equilibrium, it is straightforward to show that 〈g〉 = 4

√
T/π. Note that

Eq. (B.1) corresponds to an inelastic Maxwell particle with B= 〈g〉g·n/g, (see [32]), and,
most importantly, it still contains the exact dependence on ω=(1+e)/2. In the main text,
the kinetic model given by Eq. (B.1) is referred to as the inelastic Maxwell collision model.

A simpler class of kinetic models has the form

C=
1

τ
( f ∗− f ), (B.3)

where (repeated Roman indices imply summation)

f ∗=
αs

[

det(2πλ)
]1/2

exp
[

− 1

2
(vi−Upi)(λ

−1)ij(vj−Upj)
]

, (B.4)
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Up is the mean particle velocity, and λ
−1 is the inverse of the second-order tensor λ, de-

fined such that a given set of velocity moments agrees with Eq. (B.1). Due to conservation
of mass and mean momentum, the first non-zero terms from Eq. (B.1) correspond to the
second-order moments. Letting κ denote the symmetric second-order tensor constructed
from Iijk with i+ j+k=2:

κ=
ω

2

(ωg2

6
I+

ω

2
g⊗g−g⊗v1−v1⊗g

)

, (B.5)

the collision term for the second-order moments is given by

C∗2 =
6g0〈g〉

dp

∫

R3

∫

R3
κ(v1,v2) f (v1) f (v2)dv1dv2. (B.6)

The integral on the right-hand side of this expression can be evaluated explicitly:

C∗2 =
6g0〈g〉ωα2

s

dp

(ωT

2
I+

ω

2
σ−σ

)

, (B.7)

where σ is the velocity-covariance tensor and T= tr(σ)/3. Using ω(ω−1)=(e2−1)/4, it
is straightforward to show that for this collision model the homogeneous granular tem-
perature obeys

dT

dt
=−3g0〈g〉αs(1−e2)

2dp
T, (B.8)

where 〈g〉≈4
√

T/π.

The collision term for the second-order moments found from Eq. (B.3) is

C2 =
αs

τ
(λ−σ). (B.9)

Equating this expression to Eq. (B.7), we find that τ = ζdp/(3g0〈g〉αs) and

λ= ζω2TI+(ζω2−2ζω+1)σ , (B.10)

where 0< ζ ≤ 3/2 is a model constant. In the elastic limit (ω = 1), Eq. (B.3) corresponds
to the ES-BGK model with the Prandtl number given by Pr=1/ζ, and to the BGK model
when ζ = 1. For inelastic collisions, we will refer to the BGK and ES-BGK models as
Eq. (B.10) with the values of ζ used in the elastic limit. The only remaining unclosed
term is 〈g〉. At equilibrium in the elastic limit, g will be Gaussian with zero mean and
covariance 2TI. This fact leads to the approximation 〈g〉 = 4

√
T/π, and thus we use

τ = ζ
√

πdp/(12g0αs

√
T) in the main text.
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C Quadrature-based closure of the full Boltzmann collision

model

The moments of the velocity distribution function computed in the homogeneous case of
mono-dispersed particles colliding without the effect of external forces can be computed
by considering equation

∂t f =C, (C.1)

and by applying the quadrature method presented in Eq. (3.15) to evaluate the rate of
change of f due to collisions. Note that the moments in the homogeneous case with e<1
attain a self-similar state wherein the standardized moments are time invariant. If the
calculation of the self-similar state is performed with the full Boltzmann collision model,
the values reported in Table 2 are obtained for N = 64 and selected values of e, where
the non-zero standardized, isotropic moments are reported and compared to the corre-
sponding Gaussian values (recall that 64-node quadrature requires velocity moments up
to seventh order). In comparison, for the homogeneous case the inelastic Maxwell colli-
sion model yields Gaussian moments with e=1 and central moments slightly larger than
Gaussian for e<1.

Table 2: Non-zero standardized central moments found from the 64-node quadrature closure of the full Boltz-
mann collision model.

Moment mG mq (e=1) E [%] mq (e=0.99) mq (e=0.96) mq (e=0.9) mq (e=0)

Q0
000 1 1 0 1 1 1 1

Q2
200 1 1 0 1 1 1 1

Q4
400 3 2.904926 3.169 2.896908 2.876192 2.847585 2.473231

Q4
220 1 0.998218 0.178 0.995885 0.990243 0.984455 1.125439

Q6
600 15 15.32622 2.175 15.21579 14.95051 14.67770 18.85057

Q6
222 1 0.995733 0.427 0.989091 0.973259 0.957705 1.485397

The relative error between the Gaussian and the quadrature-based values, defined
by E = |mG−mq|/mG, is reported in Table 2 for e = 1, where mG is the moment of the
Gaussian distribution and mq is the value of the corresponding moment computed using
the quadrature closure. The maximum observed error is 3.169% on the fourth-order mo-
ment m040. The deviations from the Gaussian moments exhibit a weak dependence on
e, first becoming more sub-Gaussian as e decreases from unity but then becoming super-
Gaussian for e near zero. The behavior near e=1 is consistent with the known results for
the homogeneous cooling state of a granular flow [8]. Nevertheless, the sixth-order cen-
tral moment with e = 0 is considerably smaller than the corresponding central moment
for Case 5 with e = 0.9 in the main text, indicating that the presence of a mean temper-
ature gradient has a much stronger effect on the non-Gaussian behavior than does the
restitution coefficient.

It is worth noting that the deviation of the moments predicted by QMOM in the case
e = 1 from the Gaussian value is a result of the discretization error introduced by the
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quadrature representation of the distribution function used to close the collision integral.
As discussed in the main text, the continuum distribution function is approximated by a
finite set of Dirac delta function, in number equal to the number of quadrature weights.
The accuracy of this approximation depends on the number of quadrature nodes, and on
the shape of the distribution function to be approximated. In particular, the accuracy of
the quadrature representation of the distribution increases with the number of quadra-
ture nodes.

D The moment-inversion algorithm

The moment-inversion algorithm is key to the quadrature-based moment method, be-
cause it allows the weights and abscissas to be found from the moments. The procedure
is summarized here for the case of third-order quadrature using eight nodes, in order
to give the reader the foundation behind the construction of the quadrature formula;
however, a detailed explanation of higher-order quadrature can be found elsewhere [19].
Recently, a novel moment-inversion algorithm has been developed [39] that guarantees
non-negative weights for realizable sets of higher-order moments. Preliminary computa-
tions suggest that increased accuracy can be obtained with the new algorithm for a given
number of quadrature nodes [39], but otherwise the results are consistent with those pre-
sented in the main text.

The moment-inversion algorithm used in this work [19] is defined in terms of the ro-
tated central moments R

γ
ijk, obtained from the moments M

γ
ijk with a linear transformation

L. The moments are translated with respect to the mean velocity and rotated to diagonal-
ize the velocity covariance matrix. Letting Up denote the mean particle velocity vector,
and σU the velocity covariance matrix, we introduce the vector

X=L−1(v−Up),

where L is the upper Cholesky decomposition of σU (see [18]).
For third-order quadrature, weights and abscissas in each direction are found by ap-

plying the two-node quadrature formulas [27, 37] to the three sets of rotated moments
with respect to the principal directions:

ρi1 =
1

2
+ξi, Xi1 =−

√

1−2ξi

1+2ξi
, (D.1)

ρi2 =
1

2
−ξi, Xi2 =+

√

1+2ξi

1−2ξi
, (D.2)

where

ξi =
m3

i

2
√

4+(m3
i )

2
. (D.3)
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This operation provides the univariate sets of weights and abscissas:
{

ρ11,X11;ρ12,X12

}

,
{

ρ21,X21;ρ22,X22

}

,
{

ρ31,X31;ρ32,X32

}

. (D.4)

The three-dimensional quadrature approximation is defined using the tensor product of
the univariate abscissas, leading to the definition of the following set of weights and
abscissas:

[

(ρ∗1 ,X11,X21,X31),(ρ∗2 ,X12,X21,X31), (ρ∗3 ,X11,X22,X31),(ρ∗4 ,X12,X22,X31),

(ρ∗5 ,X11,X21,X32),(ρ∗6,X12,X21,X32), (ρ∗7 ,X11,X22,X32),(ρ∗8 ,X12,X22,X32)
]

. (D.5)

The weights ρ∗i are determined by constraints consistent with the univariate nodes, by
solving a linear system of equations:

ρ∗1 +ρ∗3 +ρ∗5 +ρ∗7 =ρ11, ρ∗2 +ρ∗4 +ρ∗6 +ρ∗8 =ρ12, ρ∗1 +ρ∗2 +ρ∗5 +ρ∗6 =ρ21, (D.6)

ρ∗3 +ρ∗4 +ρ∗7 +ρ∗8 =ρ22, ρ∗1 +ρ∗2 +ρ∗3 +ρ∗4 =ρ31, ρ∗5 +ρ∗6 +ρ∗7 +ρ∗8 =ρ32, (D.7)

whose rank is four because ρi1+ρi2 = 1, for i = 1,2,3. As a consequence, four additional
equations are required, three of which are obtained by observing that the three second-
order normalized cross moments XiXj are zero, due to the linear transformation applied
at the beginning of the procedure, and the fourth equation is obtained by writing the
third-order moment X1X2X3 in terms of the weights and abscissas, since its value is
known. With the solution of the set of eight linear equations obtained above, the inver-
sion algorithm is defined, and it is possible to compute the set of multi-variate weights
and abscissas from the corresponding set of moments.

It is worth noting that all twenty moments considered in the third-order method, as
well as the number of moments considered in the higher-order methods adopted in this
work, are required to define the moment-inversion algorithm that allows the weights and
abscissas to be computed. In the case of the third-order method:

• Ten pure moments in each spatial direction (M000, M100, M010, M001, M200, M020,
M002, M300, M030, M003) are required to find the univariate weights ρij and abscissas Xij.

• Three second-order cross moments M110, M101, M011 and third-order cross moment
M111 are used to obtain a linear system for the multivariate weights with a unique solu-
tion.

• The remaining six moments (M210, M201, M210, M120, M102, M021 and M012) are
required to have closed expressions of the other third-order moments.

As a consequence, the set of moments required to define the quadrature approxima-
tion with two nodes for each spatial direction is exactly made of the twenty considered
elements. Similar conclusions apply to higher-order methods [19].
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