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Abstract. A data-driven model reduction strategy is presented for the representation
of random polycrystal microstructures. Given a set of microstructure snapshots that
satisfy certain statistical constraints such as given low-order moments of the grain
size distribution, using a non-linear manifold learning approach, we identify the in-
trinsic low-dimensionality of the microstructure manifold. In addition to grain size,
a linear dimensionality reduction technique (Karhunun-Loéve Expansion) is used to
reduce the texture representation. The space of viable microstructures is mapped to
a low-dimensional region thus facilitating the analysis and design of polycrystal mi-
crostructures. This methodology allows us to sample microstructure features in the
reduced-order space thus making it a highly efficient, low-dimensional surrogate for
representing microstructures (grain size and texture). We demonstrate the model re-
duction approach by computing the variability of homogenized thermal properties
using sparse grid collocation in the reduced-order space that describes the grain size
and orientation variability.
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1 Introduction

Mathematical representation of microstructures is essential in many tasks including the
exploration of the process/structure/property triangle [1] and optimizing microstruc-
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tural topology for achieving optimal properties [2]. In this paper, we are interested in
exploring the variability of homogenized thermal properties of microstructures induced
by the random nature of the microstructure topology. Computing error-bars of materials
properties induced by microstructural uncertainty was examined earlier in [3, 4] using
Maximum Entropy methods. The microstructure uncertainty can be introduced in many
ways. Here, we assume that we are given a finite set of microstructure snapshots that
share some common features, usually in terms of low-order statistical moments of grain
size and texture. With this data, we are interested to build a probabilistic model of the un-
derlying random microstructures that share these given statistical features. To efficiently
utilize this large scale experimental data, it is important to efficiently compress the data
into low-dimensional models.

A polycrystalline microstructure is herein described by its grain size and texture. We
are interested in constructing reduced-order representations of polycrystalline microstructure
based on available experimental or simulation-based data (microstructural snapshots). Given a
set of microstructures having the same constituent elements and the same processing his-
tory, each microstructure will satisfy some statistical correlations that inherently define
its material distribution (volume fraction of one constituent element) and/or the process-
ing history (a specific grain size distribution and/or preferred texture). A reduced-order
model that satisfies these statistical correlations while efficiently encoding and quantify-
ing the variations in this data set would significantly accelerate and simplify analysis.

In [5], a (linear) model reduction scheme based on Principle Component Analysis
(PCA) was developed for two-phase composite microstructures. However, polycrys-
talline microstructures contain nonlinear structures that are not captured by PCA. In [6],
a nonlinear dimensionality reduction (NLDR) strategy was proposed to embed data vari-
ations into a low-dimensional manifold. This methodology was used to construct a
reduced-order model of homogenized thermal diffusivity of a two-phase microstructure.
Our emphasis here is to extend this NLDR methodology to develop a low-dimensional
representation of polycrystalline microstructures defined in terms of their grain size and texture
distribution. This problem poses significant challenges: (a) reconstruction of microstruc-
tures from the low-dimensional space is a difficult task in essence requiring interpolation
from the neighboring microstructures while at the same time satisfying all given mani-
fold properties, and (b) NLDR requires a notion of distance between microstructures [6].

Besides the grain size distribution, material properties of polycrystalline microstruc-
tures are also highly-dependent on texture. Rodrigues parametrization is often used to
describe the orientations of grains. This axis-angle parametrization is convenient when
certain symmetries are known in the crystal [7] and therefore a fundamental zone in
Rodrigues space exists (e.g., cubic, hcp crystals). The Orientation Distribution Func-
tion (ODF) defined in Rodrigues space was used in our earlier work to represent tex-
ture [8–10]. If no prescribed information is provided, the orientation of a grain can be
totally random. In reality, materials acquire certain preferred texture after processing.
This introduces correlations among grain orientations and enable us to perform model
reduction techniques on the texture. Some linear approaches have shown success in re-
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ducing ODF of cubic crystals when texture samples were known to be collected from
a sequence of processes [8–10]. In a general case, the most common representation of
an orientation is using Euler angles. In this paper, a discrete microstructure model (n
grains) is adopted for an orthotropic material, in which the texture is consisted of finite
number of orientations. When a number of snapshots of texture are given, the under-
lying correlation between the grain orientations can be extracted using the Karhunun-
Loéve Expansion. In this manner, a high-dimensional texture representation, constituted
of n three-component orientations, can be reduced to a low-dimensional representation,
where most properties of the texture samples are preserved. The grain size feature is
assumed to be independent of texture. Thus, model reduction can be applied to them
independently. After reducing both grain size and texture, the low-dimensional repre-
sentation of the given microstructure data define a convex hull that can be transformed
to a unit hypercube. Any point on this hypercube corresponds to a viable microstruc-
ture. Using sparse grid collocation techniques [11], we can sample efficiently this space
and generate stochastic interpolants of the microstructure and its material properties of
interest.

Our interest here is in computing the variability (e.g., the probability distribution
function (PDF)) of thermal conductivity of polycrystalline microstructures whose grain
size distribution is given in terms of several moments (e.g., 1st-moment refers to mean
volume, 2nd-moment determines standard deviation and higher order moments further
constrain the grain size distribution), and its texture is given by a number of samples
generated from some random processes. Here, we consider that the property of interest
F is a function of grain size distribution and texture, F(GS,TX). We are interested in com-
puting the PDF P(F). The sparse grid collocation method appropriately selects points in
the hypercube that correspond to different microstructure realizations. For each of them,
one can compute their homogenized properties (e.g., the thermal conductivity) using ap-
propriate multiscale models of thermal diffusion. The sparse grid collocation method
hierarchically builds an interpolant for these properties in the random space of grain size
and texture. From this interpolant, one can immediately evaluate the property of ad-
ditional microstructures and using such information construct the PDF through Kernel
Density Estimation [12].

The outline of this paper is as follows: In the next section, the central idea of the
nonlinear dimension reduction strategy is described. Section 3 introduces a grain size
based representation of a microstructure and a methodology for interpolating polycrys-
tal microstructures leading to a viable microstructure that satisfies the statistical grain-
distribution correlations. Section 4 introduces the Karhunun-Loéve Expansion on texture
space represented by Euler angles. Section 5 briefly reviews the adaptive sparse grid
collocation method for solving stochastic PDEs. The anisotropic heat conduction deter-
ministic solver is described in Section 6. Section 7 presents several examples demonstrat-
ing the propagation of the microstructural uncertainty in the variability of homogenized
thermal conductivity and temperature field of a random microstructure. We conclude in
Section 8 with a brief discussion.
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2 Model reduction theory

Features of polycrystals are composed of two aspects: topology and texture. The first
aspect regards geometry characters, such as grain shape and grain size, while the second
is the orientation distribution of grains. For a polycrystalline microstructure, its material
properties are mostly determined by grain size and orientation distribution. In order to
investigate the property variability of microstructures, both features are considered as
random fields. Model reduction techniques are applied to grain size and texture sepa-
rately, and then their low-dimensional representations are combined to fully represent
a microstructure. In this section, focus is on introducing a nonlinear model reduction
scheme for the grain size feature. The model reduction on texture is introduced in Sec-
tion 4.

(a) (b) (c)

Figure 1: Slices of 3D microstructures satisfying different grain size distribution. (a) constant mean grain

size (0.0185mm3), (b) constant mean grain size (0.0185mm3) and second-order moment (3.567×10−4mm6),

and (c) constant grain size (0.0185mm3), second-order moment (3.567×10−4mm6) and third-order moment
(7.265×10−6mm9).

Fig. 1 shows multiple microstructures that satisfy some given statistics of grain size
distribution. Each microstructure that satisfies the given statistics of the grain size distri-
bution is a point that lies on a curve (manifold) embedded in a high-dimensional space.
The manifold learning problem is as follows: Given a set of N unordered points belonging to a
manifold M embedded in a high-dimensional space R

n, find a low-dimensional region A⊂R
d1

that parameterizes M, where d1≪n.

In most cases of interest, the manifold is nonlinearly embedded in the input space,
making the classical methods of dimensionality reduction (e.g., Principle Component
Analysis (PCA), Karhunun-Loéve expansion (KLE), multidimensional scaling (MDS) [13])
highly approximate. We focus our attention in the current work to non-linear dimen-
sion reduction [14–17]. We will consider the global methods of non-linear dimension re-
duction and in particular using the Isomap and its numerous variants which attempt to
preserve geometry at all scales. They ensure that nearby points on the manifold (with
distance defined via a suitable metric) map to nearby points in the low-dimensional
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space and faraway points map to faraway points in the low-dimensional space. The
distance between original points is identical to that between their low-dimensional coun-
terparts. Geodesic distances reflect the true low-dimensional geometry of the manifold.
The geodesic distance between two points on a manifold can be intuitively understood
to be the shortest distance between the two points along the manifold.

Subsequent to the construction of the geodesic distance between the sample points
{xi} in the high-dimensional space, the Isomap [16] algorithm constructs the low-
dimensional parametrization as a set of points {yi} in a low-dimensional space that most
accurately preserve the geodesic distance. With the Isomap algorithm, given a set of N-
unordered points belonging to a manifold M embedded in a high-dimensional space R

n, a low-
dimensional region A∈R

d1 is computed which is isometric to M, with d1≪n. We approximate
the geodesic distance using the concept of graph distance DG(i, j). This approximation,
DG(i, j), asymptotically matches the actual geodesic distance DM(i, j) in the limit of large
number of samples [6]. Since the important feature we are looking to embed and recreate
is the grain size distribution, we choose this feature to define our distance metric (see
Section 3).

Having computed the pairwise distance matrix between the given microstructures,
one can compute the location of N points in a reduced-order surrogate space, yi∈R

d1 such
that the distance between these points is arbitrarily close to the given distance matrix.
Multi Dimensional Scaling (MDS) allows this mapping [6]. The intrinsic dimension d1

of an embedded manifold is linked to the rate of convergence of the length-functional of
the minimal spanning tree of the geodesic distance matrix of the unordered data points
in the high-dimensional space [6]. The rate of change of the length functional as more
number of points are chosen is related to the dimensionality of the manifold via a simple
relation log(L)= alog(N)+ǫ, where a=(d1−1)/d1. The intrinsic dimensionality, d1, can
be estimated by finding the length functional for different number of samples N and
subsequently finding the best fit for a.

The procedure above results in N points in a low-dimensional space R
d1 and a low-

dimensional convex region A⊂R
d1 , given as A= convex hull(yi). We consider that all

possible microstructures that satisfy the given constraints are equiprobable. One can
then map the convex hull A to a unit hypercube with the same dimensionality d1. Ev-
ery point in the hypercube corresponds to a point on A and thus after reconstruction
to a microstructure in M. Since microstructures are equiprobable, we consider each of
the dimensions of the hypercube as defining an independent uniform random variable.
These random variables define our stochastic support space. A serves as the surrogate
space of M. We can access the variability in M by sampling over A, or equivalently
the hypercube, which is the sampling space in the sparse grid collocation method [11].
The microstructure reconstruction A→M will be discussed in Section 3.2. The overall
steps of the procedure are summarized in Fig. 2. The sparse grid collocation method has
been shown to be an efficient method that uses deterministic solvers of e.g., deformation,
diffusion, flow, etc. in heterogeneous (but deterministic) media, to compute the varying
response and homogenized properties of random microstructures.
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Figure 2: The various steps in a data-driven model reduction of polycrystal microstructures. The high-
dimensional microstructures are mapped to a low-dimensional region A. This convex region is mapped to
a unit hypercube. Each sampling point on this hypercube corresponds to a microstructure that needs to be
reconstructed using the given data. The sparse grid collocation method uses samples from the hypercube (thus
microstructures) to create interpolants of properties of random microstructures.

3 Microstructure representation and reconstruction

methodologies

3.1 Microstructure representation: grain size vector of a microstructure

The high-dimensional representation of a microstructure topology feature in this paper
is chosen to be the grain size distribution, namely the volume of grains. A polycrys-
talline microstructure contains finite number of grains and each grain has its own size.
If the size of each grain is given, the microstructure is not uniquely determined. The
only differences in geometry of these microstructures are the shape and arrangement of
the grains, which have less influence on the material properties in comparison to grain
size. We treat microstructures having the same grain size distribution to be the same (or
more accurately belonging in the same class). Given a vector containing the size infor-
mation of each grain, we can construct realizations of the microstructure using a grain
growth method [18]. In this paper, the microstructure representation is chosen as the
grain size (in terms of grain volume) vector sorted by ascending order (we refer to it as
the ”sorted grain size vector”). In the following, the grain size will be described in terms
of the voxel numbers belonging to each grain. This facilitates the grain growth method
for constructing a digital model of microstructures. For example, let us consider a cubic
microstructure that contains 4 grains whose volumes are given as GS = {30,20,40,10}
pixels. Rearranging the grain size in ascending order, the new representation of this
microstructure is GS = {10,20,30,40}. This resulting vector is chosen as the representa-
tion of this kind of microstructure. After being sorted, microstructures belonging to the
same class result in the same grain size vector, while different classes give different vec-
tors. This microstructure representation is selected as it is easy to express and satisfy the
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Figure 3: (a) Microstructure measurement represented by sorted grain size vector. (b) The difference between
the two microstructures.

given constraints on grain size (mean, standard deviation, higher-order moments, etc.)
and in addition, the (non-unique) reconstruction of a microstructure with given moment
constraints on the grain size distribution is rather straightforward using the phase field
method. To estimate the difference between two microstructures A∈M and B∈M, we
first sort their grain sizes by ascending order and then measure their distance DG(A,B)
as follows:

DG( A, B)=
( n

∑
i

(GSA
i −GSB

i )2
)

1
2
. (3.1)

Fig. 3 shows an example of using sorted grain size vector to measure the difference be-
tween two 54-grain microstructures. Fig. 3(a) depicts the sorted grain volume distribu-
tion of two microstructures having the same mean grain size. Fig. 3(b) measures the
difference in each grain between the microstructures, which also tells how much mi-
crostructure A is different from microstructure B. The dimension of this grain size vector
is determined by the number of grains in the microstructure. For a microstructure con-
taining 54 grains, the dimensionality of its representation is n = 54 dimensional. As the
mean size is fixed, there are only 53 independent dimensions. If more constraints are
added, the dimensionality will be further reduced.

3.2 Microstructure reconstruction

Given a set of samples {xi}, i = 1,··· ,N, in grain size feature space M, the non-linear
dimension reduction strategy (Section 2) converts these points into a set of points {yi},
i =1,··· ,N belonging to a convex set A⊂R

d1 defining the reduced representation of the
space of microstructures. As A is the surrogate space of M, one can access the complete
variability in the topology and property distribution of grain size in M by simply sam-
pling over the region A. For a useful reduced-order model of the microstructure space,
an explicit mapping F−1 from A to M has to be constructed.

As shown in Fig. 2, the reduced-dimensionality space A is used as the surrogate space
from which acceptable microstructures need to be sampled (at arbitrary points). The
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procedure of reconstructing a microstructure (here we mean the grain size feature of a
microstructure) x∈M from the low-dimensional space A⊂R

d1 is as follows: (1) select a
point in the low-dimensional space y∈A, (2) find the m nearest neighbors of y and denote
them as yi, i=1,··· ,m, (3) find the microstructures xi, i=1,··· ,m in the high-dimensional
space M⊂R

n that are corresponding to yi, i = 1,··· ,m. Based on isometry, x could be
computed following a linear interpolation algorithm:

x=
m

∑
i=1

Wixi, Wi =
1

D(yi,y)

[ m

∑
j=1

1

D(yj,y)

]−1
. (3.2)

Note that the distance metric between nearest neighbors in the reduced space A⊂R
d1

is the Euclidean distance and the points xi ∈M were the sorted grain size vectors de-
fined earlier. The above equation demonstrates that the new generated grain size vector
can be interpolated by its nearest neighbors weighed by the reciprocal distances between
their corresponding low-dimensional points. The mean grain size of the interpolated mi-
crostructure automatically equals the required value because of the linearity of Eq. (3.2).
However, when the microstructures on the manifold are constrained by higher-order
moments, the resulted microstructure by interpolation cannot satisfy all the constraints,
which means it slightly deviates from the manifold. To compute a microstructure satis-
fying all the given moments, we need to modify the grain sizes obtained with Eq. (3.2).
This procedure is referred to as projecting the image onto the manifold [6].

An algorithm that can adjust the grain size distribution to satisfy constraints on the
second and third moment of the grain size distribution is briefly described below. Con-
trolling grain size distribution satisfying the second-order moment is straightforward.
Given a grain size vector whose mean size is M1, we would like to adjust the grain sizes
so that its second-order moment is M2. To do this, we first transform the original grain
size vector to one that has zero mean by subtracting M1 from each component. We then
weight each component with the ratio of the expected standard deviation to current stan-
dard deviation. The algorithm is as follows:

Step 1. E1 = 1
n ∑

n
i=1 Si = M1;

Step 2. Si =Si−M1;

Step 3. E2 =
∑

n
i=1 S2

i
n ;

Step 4. a=

√

M2−M2
1

E2
;

Step 5. Si = aSi.

Having the zero-mean grain size vector satisfying the expected standard deviation,
the final grain size vector that satisfies both the mean size and second-order moment can
be obtained by adding M1 to its components, i.e., Si = M1+aSi, for i=1,··· ,n.

The control the third-order moment is more complicated. Two iterative processes are
needed to accomplish this task. The basic idea is to find an intersection vector of two
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surfaces. One surface is composed of microstructures satisfying the first two moments
and the other one is defined by the third-order moment M3. Still, the mean size M1 is
subtracted from the grain size vector. The first three target moments of the zero mean
grain size vectors are then equal to M̂1 =0, M̂2 = M2−M2

1, and M̂3 = M3−3M1M2+2M3
1,

respectively. The complete algorithm is as follows:

Step 1. Ŝi =Si−M1;

Step 2. Ŝ′
i = Ŝi , and E1 = 1

n ∑
n
i=1Si;

Step 3. Ŝi = Ŝi−E1;

Step 4. E2 = 1
n ∑

n
i=1S2

i ;

Step 5. Ŝi = Ŝi

√

M̂2
E2

;

Step 6. loop

• δi =
3Ŝ2

i
n ;

• d=∑i=1nδ2
i , E3 = 1

n Ŝ3
i ;

• m= M̂3−E3;

• Ŝi = Ŝi +
m
d δi;

• if |m|<cutoff, break;

Step 7. error=norm(Ŝ′
i−Ŝi);

Step 8. if error<cutoff, go to Step 9, else go to Step 1;

Step 9. Si = M1+Ŝi, i=1,··· ,n.

The grain size vector {Si, i=1,··· ,n} now satisfies the three given moment constraints.
Given a set of grain size vectors satisfying the prescribed constraints, realizations

of polycrystalline microstructures can be constructed. This is an essential step to allow
us to compute their thermal or other properties. Techniques commonly used to gener-
ate microstructures are based on the phase-field and level set methods, and on Voronoi
tessellations. In this work, we utilize first the Voronoi tessellation method to give an ap-
proximate microstructure with grain sizes that nearly satisfy the expected distribution.
Then using this microstructure as a starting point, we utilize the phase field method as
a smoothing operation to optimize the initial microstructure forcing it to better satisfy
the desired grain size distribution. The grain size is measured by the number of voxels
within each grain.

To generate a Voronoi tessellation that results in microstructures close to the de-
sired grain distribution, we follow the work in [19]. The algorithm implemented makes
enough space for each grain while minimizing the ”competition” between neighboring
grains. For a microstructure M, we denote the ith grain as M(i), its size as M(i)·GS, and
the coordinates of its nucleus is M(i)·x. First the microstructure domain is populated
with points whose coordinates are sampled using a quasi-random sequence (the Sobel
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sequence). This sequence ensures that newly sampled points maximally avoid the points
sampled before. The number of points, which indicates the number of grains, is decided
by the expected mean grain size of the microstructure: n=Size(M)/E(M(i)·GS). Assum-
ing all the grains are spheres in 3D (or circles in 2D), we can compute the desire radius
M(i)·r of each grain region from its expected size M(i)·GS. Let d=dis(M(i)·x,M(j)·x) be-
ing the distance between the nuclei of two grains M(i) and M(j), and a=M(i)·r+M(j)·r.
The forcing function between grains is then defined as

F(i, j)=

{

0, d> a,

n(j,i)(a−d), otherwise,
(3.3)

where F(i, j) is the force exerted by point j on point i along the direction n(j,i) which starts
at j and points at i. Minimizing the sum of all the forces exerting on all the grains with
respect to the Voronoi nuclei locations will lead to a proper (based on the desired grain
sizes) space for each grain. This optimization problem is solved in a periodic domain
using a conjugate gradient approach with line search. After updating the points using
the forcing function defined above, a Voronoi cell tessellation is computed using these
points as the centers.

Voronoi tessellations, however, cannot provide a microstructure that exactly satisfies
the desired grain size distribution. The phase-field method [18, 20, 21] is introduced to
smooth the resulting microstructure so that the expected grain size distribution can be
accurately achieved. In a phase-field model, the grain boundary is approximated as a
diffuse interface. At each point r in the microstructure, a finite number of continuous
order parameters (i.e., field variables) ρq(r,t), q=1,··· ,Q are defined at a given time t. The
total free energy F of the microstructure is defined as the function of the field variables
and their gradients. The growth dynamics of the phase field approach drives, as the
simulation proceeds, the total free energy to approach its minimum, where only a single
field variable within each grain takes a value of 1 while all others are 0. The main process
of simulating grain growth with a phase-field method proceeds as follows:

1. Initialize ρq(r,t),q=1,··· ,Q on each node r in a grid at t=0.

2. Using the time-dependent Ginzburg-Landau equations, compute:

∂ρq(r,t)

∂t
=−Lq

∂F

∂ρq
=−Lq

(

−αρq+βρ3
q+2γρq

G

∑
s 6=q

ρ2
s −κq▽

2ρq

)

, q=1,··· ,Q. (3.4)

3. Update the value of ρq(r,t) on the next time step

ρq(r,t+∆t)=ρq(r,t)+
∂ρq(r,t)

∂t
∆t. (3.5)

4. If t<Tmax go to Step 2, else the simulation is complete.
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If state q leads to the highest value of ρq(r,t) at position r, then the state q will be the
one assigned to location r. Here the parameters: α,β,γ,κq,Lq are chosen as: α= β=γ=1,
κq =0.5, Lq =1, see [18,20,21]. To control the grain sizes during the grain growth process,
we dynamically change the parameter α that makes the only positive contribution to the
growth of ρq. For a grain q, we take α as the ratio of its desired size to its temporary size
on each time step. When the current size of the grain is smaller than the desired size,
then α will be larger than 1, and the grain q will grow larger. The opposite effect will take
place when α<1. Notice that, when we change the parameter α, the value of ρq(r,t) may
not be limited between 0 and 1. For this reason, normalization of ρq(r,t) is performed via

ρq(r,t)=
ρq(r,t)

∑
Q
i=1ρi(r,t)

.

To initialize the phase field smoothing process, we use the resultant model from the
Voronoi tessellation algorithm. Denote V(r) the grain ID at location r. V(r) should be
an integer such that 1≤V(r)≤G. Then field variables are set as

ρq(r,0)=

{

0, q 6=V(r),

1, q=V(r).
(3.6)

If there are Q = G variables of ρq(r,t) on each position, the computational cost will be
extremely high. Thus, a sparse data structure of storing the variables ρq(r,t) as proposed
in [22] is adopted. Finally, we note that although the phase field approach alone (without
using the Voronoi tessellation method for initialization) can be used to directly obtain a
microstructure satisfying the desired grain size distribution, the method initialized with a
coarse Voronoi tessellation structure is found to be much more efficient. The microstruc-
ture will serve as the finite element model to the deterministic solver, so that the thermal
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Figure 4: A realization of microstructure containing 54 grains (mean volume is 500 voxels). The total voxel
number of the microstructure domain is 27000.
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properties of the polycrystal can be analyzed. A visualization of a microstructure having
54 grains is shown in Fig. 4, where the total voxel number is 27000 and only the mean
grain size is constrained to be 500 voxels.

4 Texture modeling

Besides grain size, the properties of anisotropic materials are highly dependent on their
texture. For the case of discrete microstructure containing moderate number of grains,
the texture effect is usually much more significant than the grain size effect. To exam-
ine the effect of variability in texture on the property of the microstructure, the texture
is defined as a random field, whose variables are orientations of individual grains. In
this paper, the orientation of a grain is defined by a series of rotations around its crystal
coordinate axes, which are known as the Euler angles: {φ,θ,ψ}. Coordinate system is a
composition of rotations from a reference frame. If a property tensor in the local (crys-
tal) coordinate system is given as KL, then its representation in global (microstructural)
coordinate system is

KG =RKLRT, (4.1)

where R is the rotation matrix defined as

R=BCD. (4.2)

B,C,D correspond to three rotations illustrated in Fig. 5.

D=





cosφ sinφ 0
−sinφ cosφ 0
0 0 1



, C=





1 0 0
0 cosθ sinθ
0 −sinθ cosθ



, B=





cosψ sinψ 0
−sinψ cosψ 0
0 0 1



. (4.3)

Writing the Euler angles of all the grains in a vector format, we can define the texture of
a microstructure as

τ =
{

φ1,θ1,ψ1,φ2,θ2,ψ2,··· ,φn,θn,ψn
}T

, (4.4)

where n is the total number of grains.
Considering the symmetry of orthorhombic, tetragonal and cubic crystals, the funda-

mental interval of Euler angles can be reduced as

φ∼U[0,π], θ∼U[0,π], ψ∼U[0,π]. (4.5)

Here, we assume that our texture samples are obtained from a random process, which
results in microstructures with texture that are close to certain preferred pattern, but with
certain perturbation. Assume the target texture is specified as a deterministic one. The
texture samples can then be modeled by adding a white noise to each of the components

of the target. For example, let the target texture be τ0 =
{

φ1
0,θ1

0 ,ψ1
0,··· ,φn

0 ,θn
0 ,ψn

0

}T
. The

components of texture sample τ i can then be modeled as

φ
j
i =φ

j
0+ǫ

j
φ, θ

j
i = θ

j
0+ǫ

j
θ , ψ

j
i =ψ

j
0+ǫ

j
ψ, (4.6)
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Figure 5: Three Euler rotations. (a) The first rotation is by an angle φ about the z-axis using D, (b) the second
rotation is by an angle θ∈ [0,π] about the former x-axis (now x′) using C, and (c) the third rotation is by an
angle ψ about the former z-axis (now z′) using B.

where i = 1,··· ,N is the texture sample ID, j = 1,··· ,n is the grain ID in the texture. In
the above equations, the ǫ’s are sampled independently from a Gaussian distribution
N(0,σ2). By repeating this process, N new texture samples τ j, j = 1,··· ,N are obtained
that are used as the texture input model for stochastic analysis. Notice that all three Euler
angles obtained by Eq. (4.6) are within the interval [0,π]. Thus, these angles are in a
one-to-one relationship with their corresponding cotangent values. To facilitate model
reduction on texture samples, instead of using the Euler angles directly, we represent the
orientation of each grain i as:

τi1
j =cot(φi

j), τi2
j =cot(θi

j), τi3
j =cot(ψi

j). (4.7)

It has been observed that these transformed texture samples can be more effectively re-
duced by the Karhunun-Loéve Expansion (KLE). Given a set of texture samples, the un-
biased estimate of the covariance matrix of these texture vectors is

C̃=
1

N−1

N

∑
i=1

(τ i−τ̄)T(τ i−τ̄), τ̄ =
1

N

N

∑
i=1

τ i. (4.8)

τ i is the i-th realization of τ∈T , and N is the total number of known realizations, namely
the sample number. The truncated Karhunun-Loéve Expansion of the random vector τ

is then written as

τ(r,ω)= τ̄(r,ω)+
d2

∑
i

√
λiφi(r)ηi(ω), (4.9)

where φi, λi are the i-th eigenvector and eigenvalue of C̃, respectively; {ηi(ω)} is a set of
uncorrelated random variables having the following two properties

E(ηi(ω))=0, E(ηi(ω)η j(ω))=δij, i, j=1,··· ,d2, (4.10)
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and their realizations are obtained by

ηi
j =

1√
λi

〈

τ j−τ̄,φi
〉

, j=1,··· ,N, i=1,··· ,d2, (4.11)

where 〈·,·〉 denotes the scalar product in R
n. Since the covariance function is symmetric

and positive definite, all the eigenvalues are positive real numbers and the eigenvectors
are mutually orthogonal and they span the space in which τ(r,ω) belongs to. The sum-
mation in Eq. (4.9) is mean square convergent and usually truncated after few dominant
terms, which preserves most information of the vector τ.

The truncated realizations of {ηj}∈Γ⊂R
d2 are treated as reduced texture representa-

tions, which is analogous to the reduced grain size samples {yi}∈A. The only constraint
that we know about the random variables {ηj} is from Eq. (4.10). Without assuming any
other information, the distribution of η should satisfy the uncorrelated constraints while
as close as possible to the uniform distribution. This distribution can be easily derived
using Maximum Entropy Principle (MaxEnt) [10] and is well known as the uncorrelated
Gaussian distribution with mean vector {0} and correlation matrix I. Only in very few
special cases, the uncorrelated Gaussian distribution random variables are not indepen-
dent [23] and our example is not in that category. Therefore, here we treat η as a set
of independent random variables that are normally distributed around 0. A convenient
method to transform η to random variables ζ that are uniformly distributed within the
hypercube [0,1]d2 is the Rosenblatt transformation [24]. The distribution of ζ is in fact the
cumulative distribution functions (CDF) of η

ζ1 =Φη1(η1), (4.12a)

ζ2 =Φη2|η1(η2|η1)=Φη2(η2), (4.12b)

...

ζd2
=Φηd2 |η1···ηd2−1(ηd2 |η1 ···ηd2−1)=Φηd2 (ηd2), (4.12c)

where Φ(·) is the standard normal CDF and in current case is

Φη i(ηi)=
1

2

[

1+er f
( ηi

√
2

)]

. (4.13)

For a given point in the hypercube ζ∈ [0,1]d2 , its corresponding point η from the original
distribution is naturally found to be

ηi =Φ−1(ζi), i=1,··· ,d2, (4.14)

which can be immediately recovered to a texture vector using Eq. (4.9). The correspond-
ing Euler angles are obtained through inversion of Eqs. (4.7).

Based on the analysis above, each microstructure h(x,τ) (with both grain size and
texture features) that belongs to high-dimensional stochastic space H=M×T , now, can
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be presented by l(y,η) in the low-dimensional surrogate space L = (A×Γ) ⊂ R
d (d =

d1+d2).

Remark 4.1. In this work, we have decoupled the grain size and texture effects. In fact,
one can assign any orientation to any grain. Indeed this is the source of the grain size
effect in our work in [19]. This grain size/texture coupling effects will introduce an ad-
ditional variation into the macroscopic response of the microstructure and this will not
easily allow us to identify the individual effects of grain size or texture. Treating the
grain size and texture as correlated variables is of course an important approach to be
considered.

A mapping from L to H can be constructed for sampling allowable microstructure
features. Define the stochastic model for the feature variation as F−1(ξ) :L→H, where
ξ={ξ1,··· ,ξd} is a random vector chosen from L. This low-dimensional stochastic model
F−1 for the microstructure is the input to the SPDEs defining the thermal diffusion prob-
lem of interest in this paper. For grain size feature, this mapping is described in Sec-
tion 3.2; for texture, the mapping is directly performed by Eq. (4.9), where F−1(η) :η→τ.

Mapping the low-dimensional representation to a hypercube having the same di-
mensionality [6], the uncertainty of the thermal property of the microstructure can be
efficiently investigated using the Adaptive Sparse Grid Collocation (ASGC) method. It
is a stochastic collocation procedure that solves stochastic partial differential equations
(SPDEs) by computing the solution at various sample points, ξ, from this space, L. Each
of the sample points corresponds to a microstructure that can be interrogated to evaluate
its thermal response. The space grid collocation approach will then create an interpolant
of the thermal response in the d-dimensional stochastic space of random microstructures.

5 Sparse grid collocation

In the previous sections, the grain size and texture of a polycrystalline microstructure
have been reduced to a set of lower dimensional representations that will serve as the in-
put to the stochastic simulation. A highly efficient, stochastic collocation based solution
strategy is used to solve for the thermal response. This section briefly reviews the adap-
tive sparse grid collocation method for solving SPDEs. For details, the interested reader
is referred to [11].

The basic idea of sparse grid collocation is to approximate the multi-dimensional
stochastic space L using interpolating functions on a set of collocation points {ξ i}M

i=1∈L.
The collocation method collapses the multi-dimensional problem (based on the Smolyak
algorithm) to solving M (M is the number of collocation points) deterministic problems.
One computes the deterministic solution at various points in the stochastic space and
then builds an interpolant function that best approximates the required solution. No-
tice, during the process, the mapping F−1 from the low-dimensional surrogate L space
to the high-dimensional microstructure space H needs to be implemented, so that the
deterministic (heat conduction) solver can be used.
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In the context of incorporating adaptivity, the Newton-Cotes grid is utilized with
equidistant support nodes. A hierarchical basis is used in constructing the interpolant.
The function of interest u(t,ξ) can be approximated by

ûd,q(t,ξ)= ∑
‖i‖≤d+q

∑
j∈Bi

ωi
j(t)·ai

j(ξ). (5.1)

The mean of the random solution is evaluated as:

E(ûd,q(t))= ∑
‖i‖≤d+q

∑
j∈Bi

ωi
j(t)·

∫

L
ai

j(ξ)dξ, (5.2)

where q is the depth (level) of sparse grid interpolation and d is the dimensionality of
stochastic space. Bi is a multi-index set. ωi

j is the hierarchical surplus, which is the dif-

ference between the function value u(t,ξ) at the current point ξ and interpolation value
ûd,q−1(t,ξ) from the coarser grid in the previous level. ai

j is the d-dimensional multilinear
basis functions defined by tensor product. For the estimation of higher-order moments
(k-th order) of the function of interest, we only need to change u to uk. The function of in-
terest u and its interpolation û in the current work are the temperature of each point of the
microstructure and the homogenized effective thermal conductivity of the microstruc-
ture.

With increasing level of interpolation, new support nodes are added if the error indi-
cator

γi
j =

‖ωi
j ·

∫

Lai
j(ξ)dξ‖L2

‖E‖i‖−d−1‖L2

(5.3)

is larger than the threshold ǫ. The new collocation points will be generated locally in the
next level. The error indicator γi

j measures the contribution of each term in Eq. (5.2) to
the integration (mean) value relative to the overall integration value computed from the
previous interpolation level.

After the ASGC has been performed, the thermal response (temperature field and
homogenized effective thermal conductivity) of random microstructures is obtained. Us-
ing the high-dimensional interpolant of the homogenized thermal conductivity, one can
compute statistical quantities of interest such as realizations, moments and the probabil-
ity density function (PDF) using kernel density estimation [12].

6 Deterministic solver

The physics of interest in the current work is the variability of macroscopic thermal con-
ductivity and temperature distribution of anisotropic polycrystalline microstructures due
to the uncertainty in grain size and texture. The deterministic solver solves a steady-state
heat conduction problem using the finite element method (FEM) and calculates the effec-
tive thermal conductivity of the microstructure. The heat conduction is governed by the
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generalized Fourier’s Law of anisotropic materials, which (without heat generation) can
be written as

∇·
(

K∇T
)

=0, (6.1)

where K is the thermal conductivity tensor and T the temperature field. In isotropic
materials, K is a diagonal matrix with three identical components. Therefore, it can be
treated as a scalar. However, in the case of anisotropic materials, the thermal conductiv-
ity varies in different directions. To compute the thermal conductivity in certain direction
of a crystal, the crystal orientation is required to be known. Suppose the thermal con-
ductivity tensor of a single crystal is K′ in its local coordinate system, which is rotated
by R according to the reference coordinates. The transformed conductivity tensor K of
this crystal in the global (microstructural) coordinates is then calculated from Eq. (4.1).
K = RK′RT is the conductivity represented in the sample coordinate system. The weak
form of the governing equation can be written as

∫

Ω
∇wTK∇TdV =−

∫

Γq

q̄wds, (6.2)

in which, w = 0 on the boundary where Dirichlet condition (specified temperature) is
prescribed and Γq is the boundary where Neumann condition (specified flux) is applied.

Solving this heat conduction equation by the FEM, the temperature field and flux can
be found over the microstructure domain. The effective thermal conductivity tensor Ke f f

of the entire microstructure is defined by

〈K∇T〉=Ke f f 〈∇T〉, (6.3)

where

〈 f 〉= 1

V
∫

V
f dV (6.4)

is the volume average of f over the microstructure domain. In practice [25], one solves
Eq. (6.3) by considering three different cases in which a temperature gradient is imposed
via temperature boundary conditions in the x, y, and z, respectively. Denote these solu-
tions by Tj, j=1,··· ,3. Then for this case, we can write Eq. (6.3) as follows:

〈K∇T1〉=Ke f f 〈∇T1〉, 〈K∇T2〉=Ke f f 〈∇T2〉, 〈K∇T3〉=Ke f f 〈∇T3〉. (6.5)

These equations can be used to compute the effective conductivity Ke f f . The developed
deterministic solver is applicable to any materials having ortho-symmetry, such as tetrag-
onal, orthorhombic or/and cubic crystals. An example of 3D tetragonal symmetric Tin
microstructure (Fig. 4) is considered to verify the reliability of the deterministic solver.
A unit cubic (volume = 1mm3) microstructure with 54 grains is meshed by 29×29×29
brick elements. The thermal conductivity along the three orthogonal lattice directions are
ka = 0.0742Wmm−1K−1, kb = 0.0742Wmm−1K−1, kc = 0.0515Wmm−1K−1, see [26]. Three
different boundary conditions are applied to compute the effective thermal conductivity
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tensor. In each case, the temperature on both sides along one of the directions (x, y, or z)
is fixed at 0.5◦C and −0.5◦C, respectively. All other boundaries are kept insulated. With
this manner, a linear system of equations with the 9 components (only 6 independent
values because of symmetry) of the effective conductivity tensor as the unknowns can be
constructed and solved. Assigning random texture to the microstructure, the computa-
tional effective thermal conductivity is

Ke f f =





0.068071 −0.000538 0.000120
−0.000538 0.067672 −0.000435
0.000120 −0.000435 0.062403



Wmm−1K−1. (6.6)

The diagonal components are close to the experimental value (0.0666Wmm−1K−1) and
simulation value (0.0684Wmm−1K−1) given in [26]. Notice that the effective thermal
conductivity tensor is symmetric positive definite. The temperature field and flux dis-
tribution of the microstructure when the temperature boundary condition is applied in
the y direction are plotted in Fig. 6. As expected, the flux in the y direction is larger
than in the other two directions. However, due to anisotropy, the fluxes in the x and z

directions cannot be neglected.
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Figure 6: (a) Temperature field of Tin microstructure given temperature boundary conditions. (b) Flux field of
Tin microstructure in the x direction. (c) Flux field of Tin microstructure in the y direction. (d) Flux field of
Tin microstructure in the z direction.
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Since Ke f f is a function of the microstructure configuration (grain size and texture),
given various microstructures that share some statistical features, a stochastic diffusion
problem can be solved to predict the temperature variability on the underlying random
microstructures. For this task, we employ the sparse grid collocation method.

7 Numerical examples

In this section, several examples are presented to study the statistics of thermal response
and variability of conductivity of polycrystalline microstructures based on the model re-
duction techniques and sparse grid collocation method introduced earlier. The statistics
of the temperature field and the distribution of the effective thermal conductivity over
the microstructure domain are of interest. The deterministic solver uses the finite ele-
ment anisotropic polycrystal heat conduction model introduced in the previous section.
The macroscopic effective thermal conductivity tensor is evaluated by Eq. (6.5). In the fol-
lowing numerical examples, Tin, having Tetragonal symmetry, is studied. The method-
ology is also applicable to other materials such as orthorhombic or cubic polycrystals.
The thermal conductivity along the three lattice directions are ka = 0.0742Wmm−1K−1,
kb =0.0742Wmm−1K−1, kc =0.0515Wmm−1K−1, see [26]. The microstructure of interest is
a unit (edge length 1mm) cube with grains satisfying certain constraints. The boundary
conditions considered are the same as those in Section 6.

The methodologies used in solving this stochastic problem are the combination of
the algorithms presented in the previous sections. The overall algorithm is summarized
below:

1. Generate a number of grain size samples {xi}∈M,i=1,··· ,N according to certain information
(prescribed mean size, 2nd- and 3rd-order moments, etc).

2. Utilize NLDR to reduce the dimensionality of the grain size samples. Their low-dimensional
representations are {yi}∈A,i = 1,··· ,N. The optimal dimensionality of the lower space A is
linked to the rate of convergence of the length functional of the minimal spanning tree of the
geodesic distance matrix of the unordered data points in the high-dimensional space. A convex
hull is constructed as the envelope of these data points in the reduced dimensionality space.

3. Generate texture samples consisting of Euler angles using for example a random process. Perform
KLE on these texture samples, {τ i(ω)}, i=1,··· ,N. The low-dimensional representations {ηi}∈
Γ can be obtained by truncating the eigen-spectrum to a desired level.

4. Combine the reduced grain size and texture to form the low-dimensional surrogate of feature
space of microstructures, which is the stochastic input to the sparse grid collocation SPDE
solver.

5. Use ASGC method to construct the stochastic solution. This method solves the deterministic
problem at various collocation points ξ on the stochastic space and constructs an interpolation
based approximation to the stochastic solution. For a given set of stochastic collocation points,
the corresponding microstructures of these points can be found (by the mapping F−1 :L→H)
and used as inputs in the solution of the SPDEs. For each of these deterministic problems,
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the thermal response is computed by FEM for anisotropic polycrystalline materials. The ASGC
method constructs the stochastic interpolant of the thermal response using the deterministic
responses for the appropriately selected sparse grid collocation points.

6. After the corresponding stochastic thermal problem has been solved, the homogenized effective
thermal conductivity for any other microstructure realization in the stochastic support space
can be calculated using the hierarchical interpolating functions. The probability distribution of
the homogenized effective thermal conductivity is constructed using kernel smoothing density
estimation on the histogram of realizations.

7.1 Example 1

In the first example, the effect of the grain size constraints on the microstructure ther-
mal property distribution is examined. One thousand microstructure samples are first
generated. Each sample contains 54 grains whose volume is uniformly distributed in
the interval between 100 and 900 voxels. The mean grain volume of each microstruc-
ture is controlled to be 500 voxels, while higher-order moments are free to vary. These
samples are used as the input database of grain size feature. By applying the NLDR
method (Section 2), we first construct the geodesic distance matrix between points and
then map them to a low-dimensional space through Multi-Dimensional Scaling (MDS)
and Isomap. The number of nearest neighbors is set to be 10. The intrinsic dimension-
ality d1 of the low-dimensional space is estimated by linking to the convergence of the
length functional of the minimal spanning tree (MST) of the neighborhood graph defined
by geodesic distance matrix [6]. To be specific, for various sizes of samples (varying from
20 to 1000), points were randomly picked from the set of samples. The minimal spanning
tree of these sample sets was computed. The length functional of the MST was computed
for each of these sample sets. The optimal dimensionality of the low-dimensional set is
related to the slope of the line representing the relationship between the length functional
and the sample number (in Logarithm form). The slope is computed using a least squares
fit and found to be a=0.6973. The reduced dimensionality is estimated using d1=1/(1−a)
(Section 2), which is rounded to d1 =3. In this way, the original 54 dimensional grain size
representation is reduced to 3.

The prescribed texture samples are generated following the technique introduced in
Section 4. A texture sample i is obtained by adding a Gaussian perturbation to each of
the components of the deterministic one. In this example, we assume that the variance of
the noise is σ2 =0.01:

φ
j
i =φ

j
0+ǫ

j
φ, θ

j
i = θ

j
0+ǫ

j
θ , ψ

j
i =ψ

j
0+ǫ

j
ψ, (7.1)

where

ǫ
j
φ ∼N(0,0.01), ǫ

j
θ ∼N(0,0.01), ǫ

j
ψ ∼N(0,0.01).

The unbiased estimate of the covariance matrix C̃ is constructed. We apply KLE (Sec-
tion 4) using the covariance matrix and set the energy cutoff to be 90%-truncate the eigen-
value and eigenvector number d2 when the ”energy” captured by the first d2 eigenvalues
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is larger than 90%, ∑
d2
i=1λi/∑

n
i=1λi ≥90%. Fig. 8 shows that the first 2 eigenvalues of the

covariance matrix captured 95.7% of the total ”energy” (sum of all eigenvalues). There-
fore, the reduced dimensionality needed to describe the initial texture is 2.

Combining the information from the grain size and texture and assuming they are
independent from each other, we finally map the microstructure features to a five-
dimensional unit hypercube [0,1]5, see [6]. The first 3 dimensions of the hypercube cor-
respond to grain size and the last 2 dimensions correspond to texture features. Adaptive
sparse grid collocation (ASGC) is utilized to investigate the thermal property uncertainty
due to the variation of grain size and texture. During this process, collocation nodes are
generated in the hypercube adaptively. Each node can be mapped to a microstructure
feature set (Sections 3.2 and 4). Given the grain size distribution, a real microstructure



628 B. Wen, Z. Li and N. Zabaras / Commun. Comput. Phys., 10 (2011), pp. 607-634

model can be generated using the grain growth method (Section 3.2). The thermal re-
sponse of the new microstructure is then simulated utilizing the anisotropic polycrystal
heat conduction FEM deterministic solver (Section 6).

The variables of interest are the temperature at each node, as well as the homogenized
effective conductivity of the microstructure. Setting the control error (Eq. (5.3)) to be
0.001, 4915 collocation points are adaptively generated through 7 levels. The computed
temperature field and effective thermal conductivities converge at interpolation level 7
(the maximum error indicator of all the collocation nodes is smaller than the specified
criterion 0.001). As mentioned, the ASGC method decomposes the multi-dimensional
stochastic problem into the solution of a number of deterministic problems. Thus, the
deterministic solver is called at each collocation point to estimate the thermal response.
The mean temperature field of the microstructure during this process is plotted in Fig. 9.
The computed mean effective conductivity tensor estimated by Eq. (5.2) using the ASGC
is

Ke f f =





0.067618 −0.001147 0.001705
−0.001147 0.068098 0.000956
0.001705 0.000956 0.062777



Wmm−1K−1. (7.2)

Constructing the interpolation for the 6 independent components of the macroscopic
effective thermal conductivity tensor, we can obtain the distribution of them by sam-
pling uniformly from the hypercube. According to Eq. (5.1), given a point located in the
hypercube, a corresponding effective conductivity tensor can be evaluated. We generate
sufficient samples (in this case, 10000 points are generated from the interpolant), and then
the histogram of the effective conductivities can be obtained. Utilizing kernel smoothing
density estimation [12], the PDF of the effective thermal conductivity is plotted in Fig. 10.
From Fig. 10, we can observe that the diagonal conductivities are concentrated around
0.065Wmm−1K−1, while the off-diagonal around 0. In addition, the distribution of the
diagonal components is wider then that of the off-diagonal components.

Microstructures satisfying higher-order moment constraints are examined next. We
first constrain the second-order moment of grain size to be 260000, while the mean size
is maintained at 500. A convex hull having 114 faces is constructed. The texture is taken
to be the same as in the earlier case. Applying the ASGC up to level 7, 4725 collocation
points are adaptively generated when the error indicators converge to less than 0.001.
The mean temperature field of the microstructure is similar to that shown in Fig. 9. The
computed mean effective conductivity tensor estimated by Eq. (5.2) using the ASGC is

Ke f f =





0.068032 −0.001036 0.000933
−0.001036 0.068115 0.001013
0.000933 0.001013 0.062261



Wmm−1K−1, (7.3)

which does not significantly differ from the values computed earlier. The distribution of
the effective thermal conductivity is plotted in Figs. 12(a) and (b).

Finally, the microstructures are constrained by 3 moments. The 3rd-order moment is
set to be 143000000, while keeping the other grain size constraints as in the earlier case.
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Figure 9: (a) (1) Mean temperature field of microstructures satisfying specific constraints on grain size and
texture distributions. The temperature on the boundaries perpendicular to y direction is fixed. (2)-(4) are the
slice plots at x=0.25,0.5, and 0.75 (b) (1) The standard deviation of the temperature distribution. (2)-(4) are
the slice plots at x=0.25,0.5, and 0.75.
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Figure 10: Macroscopic effective thermal conductivity distributions of microstructures whose mean grain size is
fixed. (a) Diagonal components; (b) Off-diagonal components.

In this case, most grain sizes in the microstructure are close but smaller than the mean
size, while a few grain sizes are much larger than the others. If the third-order moment
is set to a higher value, the variation of the grain sizes from sample to sample is quite
small and thus the resulting microstructures tend to have the same grain size vector. A
comparison of sorted grain size vectors among three microstructure samples whose grain
size distributions are constrained by different number of moments is demonstrated in
Fig. 11. We can observe that the microstructure constrained by only the mean grain size
tends to have almost evenly distributed grain sizes. Grain sizes of the case constrained
by two moments are more concentrated around the mean size. In the case that three
moments are constrained, most grain sizes are a little smaller than the mean size, while a
couple of grains have unusually large values.

A convex hull having 100 faces is constructed for the grain size feature. Without vary-
ing the texture distribution, 4690 deterministic problems are adaptively solved in ASGC.
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Figure 12: Macroscopic effective thermal conductivity distributions of microstructures satisfying higher-order
grain size constraints. (a) Diagonal components when first 2 moments are constrained; (b) Off-diagonal com-
ponents when the first 2 moments are constrained. (c) Diagonal components when the first 3 moments are
constrained; (d) Off-diagonal components when the first 3 moments are constrained.
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The mean effective thermal conductivity tensor is computed from the ASGC algorithm
to be

Ke f f =





0.068096 −0.001329 0.001368
−0.001329 0.067939 0.001342
0.001368 0.001342 0.062023



Wmm−1K−1. (7.4)

The distribution of the effective thermal conductivity is also plotted in Figs. 12(c) and (d).
From Figs. 10 and 12, we can observe that the effective conductivity distributions are

very close to each other in these three cases. When higher grain size moments are con-
strained, the thermal conductivity distributions tend to be a little narrower. This implies
that higher-order grain size moments will change the thermal property of microstruc-
tures to some extent but do not have significant effect.

7.2 Example 2

The second example examines the texture effect on the microstructure effective thermal
conductivity. The grain size samples are only constrained by mean grain size, which
is equal to 500 voxels. However, the orientation variation in texture samples is larger
than in the first example. Maintaining the original deterministic texture unchanged, we
increase the transformed Euler angles variance from 0.01 to 0.09:

ǫ
j
φ ∼N(0,0.09), ǫ

j
θ ∼N(0,0.09), ǫ

j
ψ ∼N(0,0.09). (7.5)

Performing KLE on the texture samples, a set of 3-dimensional representations are gener-
ated. The ”energy” captured by the first 3 eigenvalues is 96.8%. Using the ASGC method
up to level 7 with 10082 adaptively computed realizations, the mean macroscopic effec-
tive thermal conductivity distribution is estimated to be

Ke f f =





0.068312 −0.000393 0.000501
−0.000393 0.067750 0.000534
0.000501 0.000534 0.061710



Wmm−1K−1. (7.6)

Sampling from the hypercube [0,1]6, the effective thermal conductivity distribution is
constructed and plotted in Figs. 13(a), and (b). We can observe that the distribution of the
effective thermal conductivity is broadened.

The mean temperature fields for these two situations in which the texture variation
is larger demonstrate more evidently the anisotropy than the first example as shown in
Fig. 14.

8 Conclusions

In this paper, the effect of multiple sources of uncertainties on the macroscopic thermal
conductivity of polycrystal microstructures is studied. A microstructure was considered
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Figure 13: Macroscopic effective thermal conductivity distributions of microstructures with larger texture un-
certainty.
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Figure 14: (a) Mean temperature field of microstructures having intermediate large texture uncertainty; (b)
Mean temperature field of microstructures having large texture uncertainty.

as a combination of random fields consisted of grain size and texture. Given a set of
microstructure samples as the realization of these random fields, dimensionality reduc-
tion techniques were applied to find their underlining correlations. A nonlinear model
reduction based on Isomap was performed on grain size and a linear Karhunun-Loéve
Expansion is applied for texture. Adaptive sparse grid collocation was then introduced
to sample new microstructures from the low-dimensional space and to produce an in-
terpolant in the stochastic space of the thermal response and effective conductivity. The
thermal response of the microstructures satisfying given information was computed us-
ing a FEM based anisotropic heat conduction model and the effective thermal conductiv-
ity distribution is constructed. The effect of texture and grain size randomness is studied.
We have shown that the model reduction techniques greatly simplified the representa-
tion of random microstructure features, while their significant features can be preserved.
The computed variability of the effective (homogenized) thermal conductivity provides
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important guidance in the analysis and design of random heterogeneous materials, and
the analysis and design/control of devices made of heterogeneous materials.

In the current work, the correlation between grain size and texture features was not
taken into consideration. Further studies are currently being conducted to address this
issue.
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