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Abstract. A conservative modification to the ghost fluid method (GFM) is developed
for compressible multiphase flows. The motivation is to eliminate or reduce the conser-
vation error of the GFM without affecting its performance. We track the conservative
variables near the material interface and use this information to modify the numerical
solution for an interfacing cell when the interface has passed the cell. The modification
procedure can be used on the GFM with any base schemes. In this paper we use the
fifth order finite difference WENO scheme for the spatial discretization and the third
order TVD Runge-Kutta method for the time discretization. The level set method is
used to capture the interface. Numerical experiments show that the method is at least
mass and momentum conservative and is in general comparable in numerical resolu-
tion with the original GFM.
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1 Introduction

Compressible multiphase flow problems are of great interest in applications, including
the study of the stability of shock-interface interaction, underwater explosion and many
others. Many modern Eulerian schemes exist for single phase flows. However, when
solving multiphase flows, an unmodulated conservative shock capturing scheme may
easily generate nonphysical oscillations near the material interfaces due to the smeared
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density and radical change in the equation of state (EOS) across the interface. There-
fore, a special treatment of the material interface is often necessary [1,2]. There are two
approaches to handle this problem: the front tracking method and the front capturing
method. In the front tracking method, the interface is tracked as an internal moving
boundary and a non-smeared interface can be materialized [8,9]. Front capturing method
is easier to implement, usually the interface is implicitly tracked by using a level set func-
tion equation [3,20,21,24] or other representative function equation.

The ghost fluid method (GFM), developed by Fedkiw et al. [6,7], is a flexible way to
treat compressible two-phase flows. The GFM captures the material interface by solving
the level set equation and treats the interface as a boundary that separates a real fluid
on one side and its corresponding ghost fluid on the other side. Both ghost fluid and
real fluid exist at the grid cells and the problem near the interface essentially becomes
two single-fluid problems. With properly defined ghost fluid, numerical oscillations are
generally eliminated. The GFM is simple, easy to extend to multi-dimensions and can
yield a sharp interface with little smearing. It can be used for two fluids of vastly different
EOS. There are subsequently developed variants of the GFM which are capable of treating
more extreme situations and finding wider applications [4,5,14-17,22,28].

One major drawback of the GFM is that it is a non-conservative method. The moti-
vation of this paper is to reduce its conservation errors. We make a modification of the
algorithm to obtain at least mass and momentum conservation. The original GFM uses
the ghost fluid as the numerical solution for an interfacing cell at one side of the interface
when the interface has left the cell. The main idea of our method is to track the conserva-
tive variables near the interface and use them to replace the numerical solution when the
interface has moved away from the cell. The present method is still a GFM since the mod-
ification does not occur at every time step and does not affect the actual performance of
the GFM in the interface cells. The modification procedure can be used on the GFM with
any base scheme. In this paper we use the fifth order finite difference WENO scheme [12]
for the spatial discretization and the third order TVD Runge-Kutta method [26] for the
time discretization.

In Section 2, we introduce the governing equation and the equation of state. The
ghost fluid method is also reviewed in this section. In Section 3, our numerical method
and the algorithm are presented. Numerical examples including one dimensional and
two dimensional test cases are given in Section 4. Section 5 contains concluding remarks.

2 The ghost fluid method

2.1 Governing equations

We consider both the one and two dimensional Euler equations. The two dimensional
version is given as
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where p is the density, u and v are velocity components in the x and y directions, p is the
pressure and E is the total energy (the sum of the internal energy and the kinetic energy),
given by

E:pe-i—%p(uz-i-vz). (2.2)

For a closure of the system, we use the y-law as the equation of state.

pe=p/(y—1). (2.3)

The one-dimensional Euler equations can be obtained by setting v =0 and dropping the
third term in Eq. (2.1).

2.2 Level set equation

We use the level set equation [3,20,21,24] to track the moving fluid interface
i+ 10, 0. 4

The fluid interface is tracked as the zero level set of ¢, which starts as the signed distance
function. We use a fifth order finite difference WENO method [11] with the third order
TVD Runge-Kutta time discretization to solve the level set equation (2.4). In order to
keep the level set function to be (approximately) a signed distance function to control the
quality of the zero level set and to define the ghost fluid values via extrapolation in the
normal (to the interface) direction, we need to reinitialize it by marching

$e+5(0) (/93493 —1) =0 25)

through the pseudo-time 7, where

S(¢)= \/ﬁ (2.6)

is the approximate sign function. Details of this procedure can be found in [19, 27].
Eq. (2.4) is solved independently from and concurrently with the Euler equations (2.1),
using the velocity field obtained from the Euler equations.
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2.3 The GFM algorithm

Given a level set function, we obtain two separate domains for the two fluids correspond-
ing to the sign of the level set function, with the zero level set being the fluid interface.
The GFM defines a ghost cell at every point in the computational domain (One can also
define ghost points only near the interface to form the so-called narrow-banded GFM).
Then at every point, we have two fluids: one is the real fluid and the other is the ghost
density, momentum and energy for the other fluid. The ghost fluid values are used by
the algorithm only near the interface.

Since the pressure and normal velocity are continuous across an interface without the
surface tension, GFM sets the pressure and normal velocity of the ghost fluid equal to
the real fluid values. Combined with the technique of isobaric fix [6,7], the density of the
ghost fluid is defined by using one sided extrapolation of the entropy into the other side
of the interface, as shown in Fig. 1.

Intertace
_ Fluid 2
p =pressure
v =velocity i+1 14+2 43
S =entropy ")

plv plv plv

S

1—2 i—1 1

Fluid 1 Ghost Fluid

Figure 1: Ghost fluid method.

To be more specific, in the one-dimensional case, in order to solve Fluid 1 with the
fifth order WENO scheme, we need to construct the ghost fluid at the nodes i+1, i42,
i+3 for Fluid 1, see Fig. 1. The pressure and velocity at the nodes i+1, i+2, i+3 are taken
as those from Fluid 2. To define the value of density, the entropy of Fluid 1 at the node
i—1 is used to perform a constant extrapolation. The isobaric fix technique is also used
here by changing the value of entropy at the node i to be equal to the entropy at the node
i—1. Similar procedure is used for solving Fluid 2.

In the multi-dimensional case, GFM defines the pressure and normal velocity compo-
nent of the ghost fluid in the same way as in the one dimensional case. In order to apply
the isobaric fix technique and define ghost fluid, one needs to solve a partial differential
equation for a constant extrapolation in the normal direction

V¢
I+ =+-VI=0, (2.7)

Vel
where ¢ is the level set function, I is the isobaric fix variable (which is entropy and ve-
locity here), and T is the pseudo-time. The sign + in Eq. (2.7) is used for extrapolating
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entropy and velocity from the region where ¢ <0 to the region where ¢>0. In this process,
in order to apply the isobaric fix, we evolve Eq. (2.7) in pseudo time 7 for the entropy and
velocity while keeping its value in the region ¢ < —1.5Ax unchanged. Effectively, this is
to extrapolate the value of entropy from the region ¢ < —1.5Ax to the region ¢ > —1.5Ax.
The sign — in Eq. (2.7) is used for the extrapolation in the other direction. Note that we
only need to solve Eq. (2.7) for several pseudo-time steps.

The ghost velocity is defined by setting its normal component to be the local normal
velocity and its tangential component to be the extrapolated velocity vector projected
onto the local tangential direction [6]. After defining the ghost fluid at every point in the
computational domain, we can solve each fluid separately. That is, we solve two single
fluid problems at all points (in effect the values of the ghost fluid are needed only near
the interface), and then update the level set function. Finally, using the sign of the level
set function we can decide which is the real solution at each point.

The GFM is very simple to implement and can be used on any type of EOS. The
method is also easy to implement in multi-dimensions.

3 Conservative modification to GFM

3.1 Conservative error near the interface

The GFM is not a conservative method because it solves two single fluid problems in-
stead of the two-phase problem and the numerical flux is no longer single-valued at the
interface. In order to see more clearly when and how the conservation error occurs, we
implement the GFM to a shock tube problem and track the total mass conservation error.

We use the well-known shock tube Riemann problem of Sod, with two different gases.
The initial condition is

[ (1.0kg/m30m/s,1x10° Pa,1.4), for x<0.5,
(oopy) = { (0.125 kg/m?,0m/s,1x10* Pa,12), for x>0.5. G1)
We monitor the total mass conservation error in the computational domain at every time
step and plot the result in Fig. 2.

The conservation error consists of two parts. The first part is from the non-uniqueness
of the numerical flux for the cell which contains the interface, due to the GFM algorithm.
The GFM treats the problem as two single-fluid problems separately at every time step
and the numerical flux at the cell boundary near the interface is not unique because it
is computed from two separate single-fluid problems. This error occurs at every time
step. The second part of the error is from the ghost fluid replacement. When the interface
moves out of the cell, GFM directly sets the computational values of the cell to be that of
the ghost fluid defined before. This part of the error does not occur at every time step —
it occurs only at the time step when the material interface moves out of the interfacing
cell. From Fig. 2 we can see, for this problem, these two parts of the errors have opposite
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Figure 2: Mass conservation error of the two-phase Sod's shock tube problem using GFM.

signs and they counteract with each other, resulting in a total conservation error which
oscillates around zero and does not become big.

Since we aim for a slight modification to the GFM, we do not want to do anything to
the first part of the conservation error. The idea is to change the ghost fluid replacement
procedure to make the second part of the error cancel with the first part. Notice that
the second part of the error does not occur at every time step, hence our modification
is not activated at every time step. Also, this modification does not affect the actual
performance of a GFM in the interfacing cells since it is applied only after the interface
has moved out of the interfacing cell. The computational method is thus still a GFM
essentially.

3.2 Conservative modification procedure

We would like to change the second part of the error by using a more accurate value of the
conservative variables rather than directly using the values of the ghost fluid when the
interface moves out of a cell. We define a unique numerical flux from the two single-fluid
problems at each cell boundary near the interface, and use these unique fluxes to update
and obtain values of the conservative variables which are usually distinct from values of
either fluids. We denote these values as from “Fluid e”. When the interface moves out of
a cell, we will use the values of “Fluid e” to be the numerical solution. When we track the
conservation errors, we also use the values of “Fluid e” as the numerical solution for the
cell which contains the interface. It should be noted that these values of the conservative
variables of “Fluid e” are however not immediately used during the GFM evolution.

In the one dimensional case, the modification procedure is to track the more accurate
values of the conservative variables in “Fluid e” for the cell which contains the interface.
If the interface does not move out of this cell during the current time step, we define the
left numerical flux as that of Fluid 1 (which is located to the left of the interface) and
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the right numerical flux as that of Fluid 2. The single valued numerical flux is calculated
more carefully when the interface moves across the cell boundary during the current time
step.

Ghost Fluid 2 P Fluid 2
) j?Q
i=3 it+3
[ |  —

Ae Ae
fj,% .--—-Ifj+%

/) fg‘l%

i=3

Fluid 1 Ghost Fluid 1

Figure 3: Conservative modification.

Specifically, we would like to track more accurately the values of the conservative
variables in the cell which contains the interface, denoted by I; in Fig. 3. The ¢(t) is the
interface position. If the interface position (¢) does not cross the cell boundary from #"
to "1, we can define a unique numerical flux from the two single-phase problems as
follows:

e _ 71 e _ @2
fig=hiy STl (5.2)
On the other hand, if the interface position () does cross the cell boundary X1 at the

instant +* for #" < t* <#"*1. We use linear interpolation to obtain this instant when the
interface passes by the cell boundary, so

* l/)(t*)—l/)<tn) n
SRR
xi+%_¢(tn) .

= S g M (3.3)

Then we define the numerical flux at x i1 as
2

~ (t*—tn)f?+%+(tn+l—t*)f;l+

i+ i+l _n

GNP )~ g
) P9 | .

Nl

N|—

These single valued fluxes fA].i] are used to obtain (presumably more accurate) values of
2

the conservative variables, denoted as “Fluid e”, which may be distinct from those of
either fluid. In actual implementation, we only need to track the values of “Fluid e” in
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several cells near the interface. Since the unique numerical flux fe ! is defined as one

of the numerical fluxes of single fluid problems (defined by the GFM) away from the
interface, accuracy is not affected.

Since we are using the finite difference WENO method for the spatial discretization,
this modification procedure can be extended to higher dimension straightforwardly. In
the two dimensional case, the conservative modification is done dimension by dimen-
sion. Similar to the one dimensional case, the interface position in the x-direction is
known at each time step by the level set function. We define the crossing instant ¢; by us-
ing linear interpolation and then define the unique numerical flux in the x-direction in the
same way as in the one-dimensional case. The procedure is likewise for the y-direction.

3.3 Algorithm

For spatial discretization, we use the fifth order finite difference WENO method in [12].
Then the semidiscrete scheme is written as

U;=L(U) (3.5)

which is discretized in time by the third order TVD Runge-Kutta method [25,26]

uW =ur+atL(um), (3.6a)
u® = zuuiuﬂwimd(um), (3.6b)
= %un+§u<2)+§AtL(u<2)). (3.60)

Assuming that the numerical solution at ¢t =t" is known, and we would like to com-
pute the solution at the next time step ¢ =#"*1, the algorithm is as follows:

1. Compute the time step size based on the CFL condition.

2. Solve the level set equation (2.4) and the re-initialization equation (2.5) by using the fifth order
finite difference WENO scheme to obtain the new interface location.

3. Define the ghost fluid at every cell using the isobaric fix described in Section 2.3.
4. Solve the flow field for Fluid 1 using the WENO scheme.
5. Solve the flow field for Fluid 2 using the WENO Scheme.

6. Compute the single valued numerical flux described in Section 3.2 and the modified flow field for
“Fluid e".

7. Obtain the numerical solution according to the new location of the interface, using the results
of Steps 4 and 5.

8. Repeat Steps 3 through 7 for each stage of the Runge-Kutta time discretization given in (3.6).
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9. Using the flow field for “Fluid €” obtained in Step 6 to replace the numerical solution in the cells
which do not contain the interface.

Remark 3.1. The difference between our algorithm and the original GFM is the addi-
tional Steps 6 and 9. Note that we do not use the flow field for “Fluid e” obtained in Step
6 immediately. These “conservative modifications” get activated at Step 9 when the inter-
face has just moved out of the relevant cell, so the modification does not change the GFM
algorithm at the interface, hence retaining the advantages of GFM such as eliminating
spurious oscillations near the interface.

Remark 3.2. In the one dimensional case, Step 9 does not need to be carried out at every
time step. It is needed only when the interface moves into a new cell.

4 Numerical examples

In the following numerical examples, the “fully conservative modification” refers to the
numerical method which is conservative in mass, momentum and energy, while the “par-
tially conservative modification” means that the numerical method for this example is
conservative in mass and momentum but not in energy (that is, our conservative mod-
ification is not applied to the energy equation), to retain better stability of the original
GFM. The conservation error of the total mass at £, is defined as the difference between
total mass at t, and the initial total mass (tp) by adding the inflow mass and taking out
the outflow mass from ¢y to t,

n—1
2 (pf"uf’ =7 u") A, (41)

m=0

error(ty) =Y _piAx—Y p)Ax—

where p/" and u]" are the inflow density and velocity on the inflow boundary of the do-
main at time t,,, and p}" and u;" are the outflow density and velocity on the outflow
boundary of the domain at time ¢,,.

In the two dimensional case, the conservation error is defined in a similar way.

Example 4.1. This is the well-known shock tube problem of Sod, with two different
species. We solve this Riemann problem with a Im domain and the following initial
conditions:

(1.0 kg/m3,0m/s,1x10° Pa,1.4), for x<0.5,

(00,p,7) = { (0.125 kg/m?,0 m/s,1x10* Pa,1.2), for x>0.5. (4.2)

We run the original GFM and the partial conservative modification to a final time of
0.0007s, using a uniform 200 cells mesh. The results are plotted on top of the exact so-
lution in Fig. 4. There are slight overshoots near the interface in our partial conserva-
tive numerical results. However, comparing with traditional conservative methods, the
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Figure 4: Example 4.1. Left: Result of GFM; Right: Result of GFM with partial conservative modification.
CFL=0.4.
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overshoots here are more localized and much milder. For stable interface flows, the over-
shoots will also become smaller under mesh refinement. From the last picture in Fig. 4,
we can see our modification is conservative for mass. The conservative error of the mo-
mentum is also the same, which we do not plot here.

Example 4.2. This is a problem of a shock wave refracting at an air-helium interface with
a reflected rarefaction wave. For this test, we use a Im domain. A right going shock is
located at 0.05 and an interface is at 0.5. The left, middle, and right states are defined as:

(o,0,p,7)
(1.3333 kg/m3, 0.3535v/10°m/s, 1.5x10°Pa, 14), for x<0.05,
=< ( 10kg/m?, Om/s, 1x10°Pa, 14), for 0.05<x<05, (4.3)
(0.1379 kg/m?, Om/s, 1x10°Pa, 1.67), for x>0.5.

We run the original GFM and the fully conservative modification to a final time of 0.0012s,
using a uniform 200 cells mesh. The result with the GFM method from [6] and our mod-
ified scheme are shown in the Fig. 5. Again, there are some overshoots for the fully
conservative modification, especially in density, near the material interface, but these
overshoots are localized and limited in their strength. In fact, the fully conservative mod-
ification is in better agreement with the exact solution for the shock, as can be seen clearly
in the plots of velocity and pressure.

Example 4.3. This example is similar to Example 4.2, except that here we increase the
strength of the shock. For this test, we use a Im domain. A right going shock is located
at 0.05 and an interface is at 0.5. The left, middle, and right states are defined as:

(0,0,p,7)
(4.3333 kg/m?, 3.2817/10° m/s, 1.5x10°Pa, 1.4), for x<0.05,
=< ( 1.0kg/m?3, Om/s, 1x10°Pa, 1.4), for 0.05<x<0.5, (44)
(0.1379 kg/m?3, Om/s, 1x10°Pa, 1.67), for x>0.5.

We again run the original GFM and the fully conservative modification to a final time
of 0.0005s, using a uniform 200 cells mesh. The results with the GFM from [6] and the
conservative results with our method are shown in Fig. 6. The comparison is similar to
that for the previous example.

Example 4.4. This is a gas-water shock tube problem. We solve this Riemann problem
with a 1m domain and the following initial conditions:

(1270 kg/m3,0 m/s,8x10°% Pa,1.4), for x<0.5,

(oopy) = { (1000 kg/m?,0 m/s,1x10° Pa,7.15), for x>0.5. (4.5)

We run the code to a final time of 0.00016s, using a uniform 200 cells mesh. In this exam-
ple, in order to minimize the adverse effects of the conservative modification, we perform
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Figure 5: Example 4.2. Left: Result of GFM; Right: GFM with fully conservative modification. CFL=0.4.
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Figure 7: Example 4.4. Left: Result of GFM; Right: GFM with partially conservative modification. CFL=0.4.
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only partially the conservative modification procedure to density and momentum, but
not to energy. As a result, our modified schemes are conservative in mass and momen-
tum but not conservative in energy. The results with the GFM from [6] and the partially
conservative results with our method are shown in Fig. 7. The comparison is similar to
those in previous examples.

Example 4.5. This is another gas-water shock tube problem with stronger pressure jumps.
We solve this Riemann problem with a 1m domain and the following initial conditions:

(1630 kg/m3,0 m/s,7.81x10° Pa,1.4), for x<0.5,

(00,p,7) = { (1000 kg/m3,0 m/s,1x10° Pa,7.15),  for x>0.5. (4.6)

We run the code to a final time of 0.00016s, using a uniform 200 cells mesh. Similar to the
previous example, we perform only partially the conservative modification procedure to
density and momentum. The results with the GFM from [6] and the partially conserva-
tive results with our method are shown in Fig. 8. We again observe quite satisfactory
results for our partially conservative scheme.

Example 4.6. This is the case 1 in [17]. The problem simulate a strong shock impacting on
a gas-gas interface. The interface is initially located at x = 0.4 and the shock is at x=0.3.
The initial condition is:

(0.3884, 27.1123,/(10%), 1.0x 107, 2), for x<0.3,
(o, 0,pv)=4 (0.1,0,1x10% 3), for 0.3<x<04, (4.7)
(1,0, 1x10% 1.4), for x>0.4.

For this example and the next example, when doing modification, we do not only modify
the interfacing cell but also the cells near the interface at the inflow side. We run the code
to a final time of t = 0.0001, using a uniform 200 cells mesh. Similar to the previous
example, we perform only partially the conservative modification procedure to density
and momentum. The results with the GFM from [6] and the partially conservative results
with our method are shown in Fig. 9. Again, our partially conservative results are quite
satisfactory.

Example 4.7. This is another gas-gas shock tube problem with stronger shock impacting
on the interface with a critical condition. It is the case 2 in [17]. The initial condition are
chosen so that there are no reflected wave at the interface. The initial interface is at x=0.2.
We solve this Riemann problem with the following initial conditions:

(3.176, 9.435, 100, 2), for x<0.2,

(0,0,p,7) :{ (1.0, 0, 1.0, 1.2), for x>0.2. (+8)

We run the code to a final time of 0.05, using a uniform 200 cells mesh. We perform only
partially the conservative modification procedure to density and momentum. The results
with the GFM from [6] and the partially conservative results with our method are shown
in Fig. 10. Our partially conservative results are found to be satisfactory once again.
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Example 4.8. This is a two dimensional example, with an initial Mach 1.22 air shock
impacting on a helium bubble. This problem is studied by Haas and Sturtevant ex-
perimentally in [10]. Several numerical studies have been undertaken for this exam-
ple [6,13,18,23].

The computational domain is [0,325] x [—44.5,44.5], the nondimensionalized initial
conditions are:

x> 225 (0,14,0,p,7) = (1.376363,—0.394728,0,1.5698,1.4),
x<225: (p,u,0,p,7)=(1,0,0,1,1.4), 4.9)
(x—175)2+12<625: (o,u,0,p,7) = (0.181875,0,0,1,1.648).

The upper and lower boundary conditions are implemented as nonreflective open bound-
aries. The left and right boundary conditions are the outflow and inflow. The level set
function is initialized as ¢ =/ (x—175)%+y?—25 where ¢ <0 represents helium and ¢ >0
represents the air. The post-shock air state is given for x >225.

We use a 640 x 160 uniform mesh to simulate this problem with a CFL number taken
as 0.3. We run our partially conservative modified GFM with conservative mass and mo-
mentum to a time of 134.8, this corresponds to 674yus in the experimental result of [10].
The conservation error of the total mass is plotted in Fig. 11. We can see clearly that
the original GFM has rather large conservation errors, while the modified GFM is ba-
sically mass conserved. The small deviation from zero for the modified GFM is most
likely due to the error in our evaluation of mass inflow and outflow through the bound-
ary of the physical domain. Fig. 12 compares the experimental result from [10] and our
method at time 32us (Fig. 12(a)), 52us (Fig. 12)(b)), 62us (Fig. 12(c)), 72us (Fig. 12(d)), 82us
(Fig. 12(e)), 102us (Fig. 12(f)), 245us (Fig. 12(g)) and 427us (Fig. 12(h)). We observe quite
satisfactory computational results by our partially conservative modified GFM.

conservative error of mass —e—

0 20 40 60 80 100 120 0 20 40 60 80 100 120
t t

Figure 11: Example 4.8. Conservation errors of mass. Left: the GFM; Right: the partially conservative modified
GFM.



804 W. Liu, L. Yuan and C.-W. Shu / Commun. Comput. Phys., 10 (2011), pp. 785-806

/ 7
P~
(|
\ )
)y
77\
=
Y i
W - O @f/
Q
) i
. )
WF\ - :
N
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obtained by our partially conservative modified GFM. (a) t=32us, (b) t=>52us, (c) t=62us, (d) t=72pus, (e)
t=82pus, (f) t=102us, (g) t=245us, (h) t=427us.
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5 Concluding remarks

In this paper, we have made a conservative modification to the Ghost Fluid Method by
tracking the conservative variables near the interface and using them to replace the nu-
merical solution when the interface has moved away from the cell. From the numerical
examples, our method achieves at least mass and momentum conservation without se-
riously affecting its resolution adversely. In some numerical examples, our conservative
modified method even exhibits better agreement with the exact solution.
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