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Abstract. The probabilistic solutions of the nonlinear stochastic dynamic (NSD) sys-
tems with polynomial type of nonlinearity are investigated with the subspace-EPC
method. The space of the state variables of large-scale nonlinear stochastic dynamic
system excited by white noises is separated into two subspaces. Both sides of the
Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system is then
integrated over one of the subspaces. The FPK equation for the joint probability den-
sity function of the state variables in another subspace is formulated. Therefore, the
FPK equation in low dimensions is obtained from the original FPK equation in high
dimensions and it makes the problem of obtaining the probabilistic solutions of large-
scale NSD systems solvable with the exponential polynomial closure method. Exam-
ples about the NSD systems with polynomial type of nonlinearity are given to show
the effectiveness of the subspace-EPC method in these cases.
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1 Introduction

FPK equations have been widely used in statistical mechanics and other areas of science
and engineering since it was formulated almost one century ago [1–4]. It is known that
practical problems are frequently described as multi-degree-of-freedom (MDOF) or high-
dimensional systems with random excitations. Therefore, the probabilistic solutions of
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nonlinear stochastic dynamic MDOF systems are needed in many areas of science and
engineering. However, only in some limited cases, the exact probabilistic solutions of
two-degree-of-freedom systems are obtainable [4, 5]. It is well known that even the so-
lutions of nonlinear single-degree-of-freedom (SDOF) systems attracted much attention
in the last decades [6–24]. The challenge in analyzing the nonlinear stochastic dynamic
(NSD) systems lies in the difficulties in obtaining the probability density function (PDF)
of the system responses. Even if the probabilistic solution of a NSD system is governed
by FPK equation, it is still difficult to obtain the exact solution if the MDOF system is
nonlinear. Therefore, some methods were proposed for the approximate solutions of
FPK equations. The most frequently employed approximation method is the equivalent
linearization (EQL) procedure [3, 6, 7]. The advantage of the EQL method is that it can
be used for analyzing large-scale NSD systems, but it is considered unsuitable when the
system is highly nonlinear or multiplicative random excitations are present, because in
either case the probability distribution of the system response is usually far from being
Gaussian. To improve the accuracy of the approximate solution, various approxima-
tion methods were proposed, such as non-Gaussian closure method with Gram-Charlier
series or Hermite-polynomial approximation [8, 9], maximum entropy method [10, 11],
stochastic average method [12, 13], perturbation method [14–16], equivalent nonlinear
system method [17–19], finite element method [20, 21], finite difference method [21, 22],
and exponential polynomial closure (EPC) method [23–25]. It is well known that all these
methods are only suitable for analyzing the one, two or at most few-degree-of-freedom
systems. Monte Carlo simulation (MCS) is versatile [26, 27], but the amount of compu-
tation with it is usually unacceptable for estimating the PDF solutions of the responses
of large-scale NSD systems, especially for small probability problems. The numerical
convergence and stability are also challenge problems for analyzing nonlinear stochastic
dynamic systems with MCS. It is seen that the problem of obtaining the PDF solutions
of large-scale NSD systems has been a challenge in this area for decades. There is no
effective methods available for obtaining the acceptable approximate PDF solutions of
large-scale NSD systems with high nonlinearity. Recently, a new method named sub-
space method was proposed for the approximate PDF solutions of large-scale nonlinear
stochastic dynamic systems [28]. In this paper, the subspace method is applied to ana-
lyze the nonlinear stochastic dynamic systems with polynomial types of nonlinearities to
further examine the effectiveness of the subspace method in these cases. With subspace
method, the problem of solving the FPK equation in high-dimensions is reduced to the
problem of solving some FPK equations in low-dimensions. Thereafter, the EPC method
can be employed to solve the FPK equation in low-dimensions. Hence the whole so-
lution procedure is named subspace-EPC method. The solution procedure is presented
and numerical examples are given for the systems with various system nonlinearities.
The numerical results obtained with the subspace-EPC method are compared with those
from MCS and EQL to show the effectiveness of the subspace-EPC method in analyzing
various highly nonlinear systems.
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2 Problem formulation

In the following discussion, the summation convention applies unless stated otherwise.
The random state variable or vector is denoted with capital letter and the corresponding
deterministic state variable or vector is denoted with the same letter in low case.

A lot of problems in science and engineering can be described with the following
stochastic dynamic system:

d

dt
Xi = fi(X)+gijWj(t), i=1,2,··· ,nx; j=1,2,··· ,m (2.1)

in Ito’s form, where X∈ℜnx ; Xi (i=1,2,··· ,nx), are components of the state vector process
X; fi(X) : ℜnx →ℜ. Function fi(X) are generally nonlinear and their functional forms
are assumed to be deterministic. In this paper, we consider the case that fi(X) are the
polynomial in the state variables X. The excitations Wj(t) are the white noises with zero
mean and cross-correlation

E
[

Wj(t)Wk(t+τ)
]

=Sjkδ(τ), (2.2)

where δ(τ) is Dirac function and Sjk are constants representing the cross-spectral density
of Wj and Wk.

The state vector process X is Markovian and the PDF p(x,t) of the Markov vector
is governed by FPK equation. Without loss of generality, consider the case when the
white noises are Gaussian. In this case, the stationary PDF p(x) of the Markov vector is
governed by the following reduced FPK equation [1]:

∂

∂xj

[

f j(x)p(x)
]

−
1

2

∂2

∂xi∂xj

[

Gij p(x)
]

=0, (2.3)

where x is the deterministic state vector, x∈ℜnx , and Gij =Slsgil gjs.
It is assumed that the solution of Eq. (2.3) fulfills the following conditions:

lim
xi→±∞

fi(x)p(x)=0 and lim
xi→±∞

∂p(x)

∂xi
=0, i=1,2,··· ,nx. (2.4)

3 Subspace method

Separate the state vector X into two parts X1∈ℜnx1 and X2∈ℜnx2 , i.e., X={X1,X2}∈ℜnx =
ℜnx1 ×ℜnx2 .

Denote the PDF of X1 as p1(x1). In order to obtain p1(x1), integrating both sides of
Eq. (2.3) over ℜnx2 gives

∫

ℜnx2

∂

∂xj

[

f j(x)p(x)
]

dx2−
1

2

∫

ℜnx2

∂2

∂xi∂xj

[

Gij p(x)
]

dx2 =0. (3.1)
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Because of Eqs. (2.4), we have

∫

ℜnx2

∂

∂xj

[

f j(x)p(x)
]

dx2 =0, xj ∈ℜnx2 , (3.2a)

∫

ℜnx2

∂2

∂xi∂xj

[

Gij p(x)
]

dx2 =0, xi or xj ∈ℜnx2 . (3.2b)

Eq. (3.1) can then be expressed as

∫

ℜnx2

∂

∂xj

[

f j(x)p(x)
]

dx2−
1

2

∫

ℜnx2

∂2

∂xi∂xj

[

Gij p(x)
]

dx2 =0, xi,xj∈ℜnx1 , (3.3)

which can be further expressed as

∂

∂xj

[

∫

ℜnx2

f j(x)p(x)dx2

]

−
1

2

∂2

∂xi∂xj

[

∫

ℜnx2

Gij p(x)dx2

]

=0, xi,xj ∈ℜnx1 . (3.4)

Separate f j(x) into two parts as

f j(x)= f I
j (x1)+ f I I

j (x). (3.5)

Substituting Eq. (3.5) into Eq. (3.4) gives

∂

∂xj

[

f I
j (x1)p1(x1)+

∫

ℜnx2
f I I
j (x)p(x)dx2

]

−
1

2

∂2

∂xi∂xj

[

∫

ℜnx2
Gij p(x)dx2

]

=0, xi,xj∈ℜnx1 . (3.6)

Denote f I I
j (x) = ∑k f I I

j (x1,zk), in which zk ∈ℜnzk ⊂ℜnx2 . nzk
is the number of the state

variables in zk. Therefore, Eq. (3.6) can be expressed as

∂

∂xj

[

f I
j (x1)p1(x1)+∑

k

∫

ℜ
nzk

f I I
j (x1,zk)pk(x1,zk)dzk

]

−
1

2

∂2
[

Gij p1(x1)
]

∂xi∂xj
=0, xi,xj∈ℜnx1 , (3.7)

in which pk(x1,zk) denotes the joint PDF of {X1,Zk}. The summation convention not
applies on the indexes k in Eq. (3.7) and in the following discussions.

From Eq. (3.7), it is seen that the coupling of X1 and X2 comes from f I I
j (x1,zk)pk(x1,zk).

Express pk(x1,zk) as

pk(x1,zk)= p1(x1)qk(zk;x1), (3.8)

where qk(zk;x1) is the conditional PDF of Zk for given X1 =x1.
Substituting Eq. (3.8) into Eq. (3.7) gives

∂

∂xj

{[

f I
j (x1)+∑

k

∫

ℜ
nzk

f I I
j (x1,zk)qk(zk;x1)dzk

]

p1(x1)
}

−
1

2

∂2
[

Gij p1(x1)
]

∂xi∂xj
=0, xi,xj∈ℜnx1 . (3.9)
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Approximately replace the conditional PDF qk(zk;x1) by that from EQL, then Eq. (3.9) is
expressed as

∂

∂xj

{[

f I
j (x1)+∑

k

∫

ℜ
nzk

f I I
j (x1,zk)qk(zk;x1)dzk

]

p̃1(x1)
}

−
1

2

∂2
[

Gij p̃1(x1)
]

∂xi∂xj
=0, xi,xj∈ℜnx1 , (3.10)

where qk(zk;x1) is the conditional PDF of Zk from EQL for given X1 =x1 and p̃1(x1) is the
approximate PDF of X1. Denote

f̃ j(x1)= f I
j (x1)+∑

k

∫

ℜnzk

f I I
j (x1,zk)qk(zk;x1)dzk. (3.11)

Then Eq. (3.11) can be expressed as

∂

∂xj

[

f̃ j(x1) p̃1(x1)
]

−
1

2

∂2

∂xi∂xj

[

Gij p̃1(x1)
]

=0, xi,xj ∈ℜnx1 , (3.12)

which is the approximate FPK equation for the joint PDF of the state variables in the sub
state space ℜnx1 .

If X1 only contains few state variables, the EPC method can be employed to solve
Eq. (3.12) (see [23]). Therefore, the whole solution procedure is named Subspace-EPC
method in the following discussions.

4 Examples and numerical analysis

From the above discussion, it is seen that the subspace-EPC method is not limited by the
number of state variables in the system. Four systems are analyzed with the above so-
lution procedure in the following numerical analysis. The first example is about a NSD
system with 10-DOF and nonlinear terms in displacements. There are 20 state variables
for this system. The second example is same as the first one except that the nonlinear
terms in displacements are replaced by the nonlinear terms in velocities. The third exam-
ple is also same as the first one except that the nonlinear terms are in both displacements
and velocities. The fourth example is about the random vibration of a flexural beam sup-
ported by nonlinear springs and excited by dynamic force. The results obtained with the
subspace-EPC method are compared with those from MCS and EQL to verify the effec-
tiveness of the presented solution procedure in these cases. The sample size is 107 in MCS.
In the presented figures, the results corresponding to ”EPC n=4” are the results obtained
from subspace-EPC when the polynomial order equals 4 in the EPC solution procedure,
σyi

denotes the standard deviation of Yi from EQL, and σẏi
denotes the standard deviation

of Ẏi from EQL.

4.1 System with nonlinear terms in displacements

Consider the following 10-degree-of-freedom system with highly nonlinear terms in dis-
placements.

Ÿ(t)+CẎ(t)+KY(t)+H(Y)=F(t), (4.1)
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in which

Y(t)=
{

Y1,Y2,··· ,Y10

}t
, H(Y)=0.3

{

Y3
1 ,Y3

2 ,··· ,Y3
10

}t
, F(t)=

{

1,1,··· ,1
}t

W(t),

W(t) is Gaussian white noise with power spectral density being 0.04; and

K=

































1.50 −0.50 0.25 −0.12 0 0 0 0 0 0
−0.50 1.40 −0.50 0.25 −0.12 0 0 0 0 0
0.25 −0.50 1.30 −0.50 0.25 −0.12 0 0 0 0
−0.12 0.25 −0.50 1.20 −0.50 0.25 −0.12 0 0 0

0 −0.12 0.25 −0.50 1.00 −0.50 0.25 −0.12 0 0
0 0 −0.12 0.25 −0.50 1.00 −0.50 0.25 −0.12 0
0 0 0 −0.12 0.25 −0.50 1.20 −0.50 0.25 −0.12
0 0 0 0 −0.12 0.25 −0.50 1.30 −0.50 0.25
0 0 0 0 0 −0.12 0.25 −0.50 1.40 −0.50
0 0 0 0 0 0 −0.12 0.25 −0.50 1.50

































, (4.2a)

C=

































0.30 −0.03 0 0 0 0 0 0 0 0
−0.03 0.30 −0.03 0 0 0 0 0 0 0

0 −0.03 0.30 −0.03 0 0 0 0 0 0
0 0 −0.03 0.30 −0.03 0 0 0 0 0
0 0 0 −0.03 0.30 −0.03 0 0 0 0
0 0 0 0 −0.03 0.30 −0.03 0 0 0
0 0 0 0 0 −0.03 0.30 −0.03 0 0
0 0 0 0 0 0 −0.03 0.30 −0.03 0
0 0 0 0 0 0 0 −0.03 0.30 −0.03
0 0 0 0 0 0 0 0 −0.03 0.30

































. (4.2b)

The stationary PDFs obtained with the subspace-EPC method, MCS and EQL methods
are compared in order to show the effectiveness of the subspace-EPC method in analyz-
ing the large-scale NSD systems with high nonlinearity in displacements. Because there
are 10 degrees of freedom or 20 state variables, it is not possible to present all the results
in this paper. Only the PDFs and logarithmic PDFs of Y2, Ẏ2, Y3, Ẏ3, Y5, and Ẏ5, are shown
and compared in Figs. 1-3 in view that the system is symmetric. With the subspace-EPC
method, the stationary PDFs p̃1(X1i) are obtained by taking X1i = {Yi,Ẏi}, (i = 2,3,5). It
is seen that the PDFs and the tails of the PDFs of Yi and Ẏi, (i = 2,3,5), obtained with
subspace-EPC, are close to MCS while the PDFs of displacements from EQL method de-
viate much from simulation. Similar behavior of the PDFs and the tails of the PDFs of
other state variables can also be observed without being presented here. It is also ob-
served that the displacements of this system are much non-Gaussian while the velocities
of this system are close to Gaussian in this case. If the state variables, such as the veloci-
ties in this example, are close to Gaussian, EQL method can also give the results close to
simulation.

4.2 System with nonlinear terms in velocities

Consider the following 10-degree-of-freedom system with highly nonlinear terms in ve-
locities:

Ÿ(t)+CẎ(t)+KY(t)+H(Ẏ)=F(t). (4.3)
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Figure 1: Comparison of the PDFs and logarithmic PDFs in example 1: (a) PDFs of displacement Y2; (b)
Logarithmic PDFs of displacement Y2; (c) PDFs of velocity Ẏ2; (d) Logarithmic PDFs of velocity Ẏ2.
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Figure 2: Comparison of the PDFs and logarithmic PDFs in example 1: (a) PDFs of displacement Y3; (b)
Logarithmic PDFs of displacement Y3; (c) PDFs of velocity Ẏ3; (d) Logarithmic PDFs of velocity Ẏ3.
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Figure 3: Comparison of the PDFs and logarithmic PDFs in example 1: (a) PDFs of displacement Y5; (b)
Logarithmic PDFs of displacement Y5; (c) PDFs of velocity Ẏ5; (d) Logarithmic PDFs of velocity Ẏ5.
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 L
og

10
(P

D
F

)

 

 

MCS
EPC n=4
EQL

(c) (d)

Figure 4: Comparison of the PDFs and logarithmic PDFs in example 2: (a) PDFs of displacement Y2; (b)
Logarithmic PDFs of displacement Y2; (c) PDFs of velocity Ẏ2; (d) Logarithmic PDFs of velocity Ẏ2.
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Figure 5: Comparison of the PDFs and logarithmic PDFs in example 2: (a) PDFs of displacement Y3; (b)
Logarithmic PDFs of displacement Y3; (c) PDFs of velocity Ẏ3; (d) Logarithmic PDFs of velocity Ẏ3.
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Figure 6: Comparison of the PDFs and logarithmic PDFs in example 2: (a) PDFs of displacement Y5; (b)
Logarithmic PDFs of displacement Y5; (c) PDFs of velocity Ẏ5; (d) Logarithmic PDFs of velocity Ẏ5.
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This system is same as that in the above example except H(Ẏ)=0.5{Ẏ3
1 ,Ẏ3

2 ,··· ,Ẏ3
10}

t.
The stationary PDFs obtained with the subspace-EPC, MCS, and EQL are compared

in order to further show the effectiveness of the subspace-EPC method in analyzing the
large-scale NSD systems with nonlinear terms in velocities. Similar to the above example,
it is not possible to present all the results here because there are too many state variables
in this system. Only the PDFs and logarithmic PDFs of Y2, Ẏ2, Y3, Ẏ3, Y5, and Ẏ5 are shown
and compared in Figs. 4-6. With the subspace-EPC method, the PDF solutions are also
obtained by taking X1i ={Yi,Ẏi}, (i=2,3,5), in order to obtain the PDFs p̃1(x1i), (i=2,3,5).
It is seen from Figs. 4-6 that the PDFs and the tails of the PDFs of Y2, Ẏ2, Y3, Ẏ3, Y5, and Ẏ5,
obtained from subspace-EPC when the polynomial order equals 4 in the EPC procedure
are still close to MCS. On the other hand, the PDFs from EQL method deviate much from
simulation. Similar behavior of the PDFs and the tails of the PDFs of other state variables
can also be observed without being presented here. It is seen that the displacements of
this system are close to Gaussian though not being Gaussian while the velocities of this
system are much non-Gaussian.

4.3 System with nonlinear terms in both displacements and velocities

Consider the following 10-degree-of-freedom system with highly nonlinear terms in both
displacements and velocities:

Ÿ(t)+CẎ(t)+KY(t)+H(Y,Ẏ)=F(t). (4.4)

This system is same as that in the above example except H(Y,Ẏ)=0.3{Y3
1 ,Y3

2 ,··· ,Y3
10}

t+
0.5{Ẏ3

1 ,Ẏ3
2 ,··· ,Ẏ3

10}
t.

The stationary PDFs obtained with the subspace-EPC, MCS, and EQL are compared
in order to further show the effectiveness of the subspace-EPC method in analyzing the
large-scale NSD systems with the nonlinear terms in both displacements and velocities.
Similar to the above examples, it is not possible to present all the results here. Only the
PDFs and logarithmic PDFs of Y2, Ẏ2, Y3, Ẏ3, Y5, and Ẏ5 are shown and compared in
Figs. 7-9. With the subspace-EPC method, the PDF solutions are also obtained by taking
X1i = {Yi,Ẏi}, (i = 2,3,5), in order to obtain the PDFs p̃1(x1i), (i = 2,3,5). It is seen from
Figs. 7-9 that the PDFs and the tails of the PDFs of Y2, Ẏ2, Y3, Ẏ3, Y5, and Ẏ5, obtained
from subspace-EPC method when the polynomial order equals 4 in the EPC procedure
are still close to MCS. On the other hand, the PDFs from EQL method deviate much
from simulation. Similar behavior of the PDFs and the tails of the PDFs of other state
variables can also be observed without being presented here. It is also observed that both
the displacements and velocities of the system are much non-Gaussian.

4.4 Nonlinear random vibration of a flexural beam

Consider a flexural steel beam with pin support at one end and roller support at another,
supported by nonlinear springs, and excited by uniformly distributed load being Gaus-
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Figure 7: Comparison of the PDFs and logarithmic PDFs in example 3: (a) PDFs of displacement Y2; (b)
Logarithmic PDFs of displacement Y2; (c) PDFs of velocity Ẏ2; (d) Logarithmic PDFs of velocity Ẏ2.
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Figure 8: Comparison of the PDFs and logarithmic PDFs in example 3: (a) PDFs of displacement Y3; (b)
Logarithmic PDFs of displacement Y3; (c) PDFs of velocity Ẏ3; (d) Logarithmic PDFs of velocity Ẏ3.
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Figure 9: Comparison of the PDFs and logarithmic PDFs in example 3: (a) PDFs of displacement Y5; (b)
Logarithmic PDFs of displacement Y5; (c) PDFs of velocity Ẏ5; (d) Logarithmic PDFs of velocity Ẏ5.

sian white noise. The beam is shown in Fig. 10 and the mechanical model for vibrational
analysis of the beam is shown in Fig. 11.

The vertical displacement of mass mi is denoted as Yi. The beam length is 5m, The
young’s modulus is 2.1×1011Pa, The area of the cross section of the beam is 8.61×10−3m2,
the moment inertia of the cross section is 2.17×10−4m4, The mass density of the beam

��� ��� ��� ��� ��� ��� ��� �������
Figure 10: Flexural beam supported by nonlinear springs.

��	 ��	 ��	 ��	 ��	 ��	
� 
� 
 
������ ����� ���� �� ��� �����
� 
� 
������ �������	 ��	
Figure 11: Model for dynamic analysis of the flexural beam.
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material is 7850kg/m2, and the uniformly distributed load q(t)=5×103W(t)kg/m where
W(t) is Gaussian white noise with unit power spectral density. Then the governing equa-
tions for the vertical displacements can be obtained with flexibility method as follows:

Ÿ(t)+CẎ(t)+KY+H(Y)=F(t), (4.5)

in which Y(t)={Y1,Y2,··· ,Y7}t; H(Y)=2×106{Y3
1 ,Y3

2 ,··· ,Y3
7 }

t; cii =1000 (i=1,2,··· ,7) and
cij =0 (i 6= j; i, j=1,2,··· ,7) in C; and

K=





















4363.7 −4200.7 1835.8 −491.90 131.76 −35.136 8.7839
−4200.7 61995. −4692.6 1967.6 −527.04 140.54 −35.136
1835.8 −4692.6 6331.3 −4727.7 1976.4 −527.04 131.76
−491.90 1967.6 −4727.7 6340.1 −4727.7 1967.6 −491.90
131.76 −527.04 1976.4 −4727.7 6331.3 −4692.6 1835.8
−35.136 140.54 −527.04 1967.6 −4692.6 6199.5 −4200.7
8.7839 −35.136 131.76 −491.90 1835.8 −4200.7 4363.7





















×104, (4.6a)

F(t)=





















449.45
770.49
963.11
1027.3
963.11
770.49
449.45





















×W(t). (4.6b)

This system is analyzed with the above subspace-EPC procedure, EQL, and Monte Carlo
simulation for comparison. Under the action of the excitations, the maximum vertical
displacement of the beam is Y4 which is concerned in structural design. The PDF and
the logarithmic PDFs of Y4 are shown in Figs. 12(a) and (b), respectively. It is observed
that the PDFs and the tails of the PDFs of Y4 obtained from subspace-EPC when the
polynomial order equals 4 in the EPC procedure are also close to MCS for this system,
specially in the tails of the PDFs as shown by the logarithmic PDFs. On the other hand,
the PDFs and the tails of the PDFs obtained from EQL deviate much from simulation. In
practice, the mean up-crossing rate (MCR) of the structural response is frequently used
for structural reliability analysis. The MCR at Yi =yi is defined as

ν
+(yi)=

∫ +∞

0
ẏi p(yi,ẏi)dẏi, (4.7)

where p(yi,ẏi) denotes the joint PDF of Yi and Ẏi, and ν+(yi) denotes the MCR at Yi =yi.
The MCRs and the logarithmic MCRs of Y4 are shown and compared in Figs. 12(c)

and (d), respectively. It is still observed that the MCRs and the tails of the MCRs of Y4

obtained from subspace-EPC when the polynomial order equals 4 in the EPC procedure
are close to MCS, specially in the tails of the MCRs as shown by the logarithmic MCRs,
which is important for structural reliability analysis. On the other hand, the MCRs and
the tails of the MCRs obtained from EQL deviate much from simulation.
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Figure 12: Comparison of PDFs, logarithmic PDFs, MCRs, and logarithmic MCRs in example 4: (a) PDFs of
displacement Y4; (b) Logarithmic PDFs of displacement Y4; (c) MCRs at Y4 = y4; (d) Logarithmic MCRs at
Y4 =y4.

The solution procedure and the numerical results presented in the above four ex-
amples have demonstrated that the subspace-EPC method is not limited by the number
of state variables, the level of system nonlinearity, and the presence of nonlinear terms
in either displacement or velocity. Because the problem of solving the FPK equation in
high-dimensional state space is reduced to the problem of solving some FPK equations in
low-dimensional state spaces, the required computational effort is very small compared
to MCS. Hence it may provide an analytical tool that makes the probabilistic solutions of
some MDOF or large-scale NSD systems obtainable accurately and efficiently.

5 Conclusions

The nonlinear stochastic dynamic systems with various system nonlinearities are ana-
lyzed with a new method named subspace-EPC method. With the subspace-EPC method,
the space of state variables is split into two subspaces. The FPK equation is integrated
over one of the subspaces and the FPK equation in another subspace is derived which
governs the approximate joint PDF of the state variables at choices. Therefore, the prob-
lem of solving the FPK equation in high-dimensions is reduced to the problem of solving
some FPK equations in low-dimensions. The EPC method can then be employed to solve
the FPK equation in low-dimensions. This method is not limited by the number of state
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variables of the systems. Therefore it can be used for analyzing the PDF solutions of
large-scale NSD systems. The effectiveness of the subspace-EPC method is investigated
with the numerical results about the nonlinear systems with nonlinear terms in either dis-
placements or velocities, in both displacements and velocities, and the nonlinear random
vibration of a flexural beam. Numerical results have shown that the PDFs and logarith-
mic PDFs of the system responses obtained with the subspace-EPC method are close to
Monte Carlo simulation even if the systems are highly nonlinear. The tails of the PDFs
obtained from the subspace-EPC method also behave well, which is a challenge prob-
lem with other methods. Hence it can be concluded that the subspace-EPC method is
effective in analyzing the systems with polynomial type of nonlinearity in displacements
and velocities and it provides an effective tool for obtaining the probabilistic solutions of
some practical NSD systems in science and engineering.
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Computational Physics, Lüneburg, Germany, September 29–October 3, 1997, 290–306.

[22] M. Ujevic and P. S. Letelier, Solving procedure for a 25-diagonal coefficient matrix: direct nu-
merical solutions of the three-dimensional linear Fokker-Planck equation, J. Comput. Phys.,
215 (2006), 485–505.

[23] G. K. Er, A consistent method for the solutions to reduced FPK equations in statistical me-
chanics, Phys. A, 262 (1999), 118–128.

[24] G. K. Er, H. T. Zhu, V. P. Iu and K. P. Kou, PDF solution of nonlinear oscillators under external
and parametric Poisson impulses, AIAA J., 46(11) (2008), 2839–2847.

[25] G. K. Er, The probabilistic solution to non-linear random vibrations of multi-degree-of-
freedom systems, ASME J. Appl. Mech., 67 (2000), 355–359.

[26] C. J. Harris, Simulation of multivariate nonlinear stochastic system, Int. J. Numer. Methods
Eng., 14 (1979), 37–50.

[27] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer-Verlag, Berlin, 1995.

[28] G. K. Er and V. P. Iu, A new method for the probabilistic solutions of large-scale nonlinear
stochastic dynamic systems, in IUTAM Symposium on Nonlinear Stochastic Dynamics and
Control, Eds. W. Q. Zhu, Y. K. Lin and G. Q. Cai, Springer-Verlag, Berlin, 2011, 25-34.


