
Commun. Comput. Phys.
doi: 10.4208/cicp.290610.020211a

Vol. 10, No. 5, pp. 1315-1332
November 2011

On the Importance of the Stokes-Brinkman

Equations for Computing Effective Permeability

in Karst Reservoirs

Marcin Krotkiewski1,∗, Ingeborg S. Ligaarden2,
Knut-Andreas Lie2,3 and Daniel W. Schmid1

1 Physics of Geological Processes, University of Oslo, P.O. Box 1048 Blindern,
NO-0316 Oslo, Norway.
2 SINTEF ICT, Department of Applied Mathematics, P.O. Box 124 Blindern,
NO-0314 Oslo, Norway.
3 Center of Mathematics for Applications, University of Oslo, P.O. Box 1053
Blindern, NO-0316 Oslo, Norway.

Received 29 June 2010; Accepted (in revised version) 2 February 2011

Available online 11 August 2011

Abstract. Cavities and fractures significantly affect the flow paths in carbonate reser-
voirs and should be accurately accounted for in numerical models. Herein, we con-
sider the problem of computing the effective permeability of rock samples based on
high-resolution 3D CT scans containing millions of voxels. We use the Stokes-Brinkman
equations in the entire domain, covering regions of free flow governed by the Stokes
equations, porous Darcy flow, and transitions between them. The presence of differ-
ent length scales and large (ten orders of magnitude) contrasts in permeability leads
to highly ill-conditioned linear systems of equations, which are difficult to solve. To
obtain a problem that is computationally tractable, we first analyze the relative impor-
tance of the Stokes and Darcy terms for a set of idealized 2D models. We find that,
in terms of effective permeability, the Stokes-Brinkman equations are only applicable
for a special parameter set where the effective free-flow permeability is less than four
orders of magnitude different from the matrix permeability. All other cases can be ac-
curately modeled with either the Stokes or the Darcy end-member flows, depending
on if there do or do not exist percolating free-flow regions. The insights obtained are
used to perform a direct computation of the effective permeability of a rock sample
model with more than 8 million cells.
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1 Introduction

Numerical simulation of flow and transport in carbonate reservoirs is a challenging prob-
lem. Carbonate reservoirs are composed of porous material, which contains cavities and
fractures on multiple scales and throughout the entire rock formation. The presence of
these, often relatively large void spaces affects the flow paths in the medium and should
be accurately accounted for in the numerical model.

On the microscale, flow through individual pores and pore throats typically occurs
at relatively low Reynold’s numbers and can hence be described by the incompress-
ible Stokes equation. On the macroscale, one can for obvious reasons not resolve the
flow through individual pores and pore throats, and the flow is instead modelled using
Darcy’s law (and mass conservation). This macroscale description requires a set of effec-
tive petrophysical parameters-porosity and permeability-that describe the average abil-
ity of a rock to store and transport fluids, respectively. Permeability is characteristic for
a given material and scale, and can be obtained from laboratory experiments, analytical
upscaling formulas, or by upscaling flow simulations of rock models on a smaller scale.
Herein, we consider the problem of computing such effective permeabilities for a small-
scale representative elementary volume (REV) consisting of a high-resolution 3D rock
sample obtained from a CT scan. The effective permeability will then be used to pop-
ulate geological models on a larger scale with correct petrophysical parameters, which
may then again be upscaled to enable flow simulations on the scale of the reservoir. This
is typically performed using a coarse model with low numerical resolution. In this ap-
proach, due to the nature of the upscaling, all the information about the fine-scale flow
structure, like fluid-front propagation and stagnant zones (important e.g., for estimating
the residual fluid saturation) is lost. Other methods, such as the multiscale approach [9],
aim at solving flow equations on a coarse model, while still being able to restore the
fine-scale flow structure.

The standard approach to compute effective permeabilities is to solve a single-phase
flow problem with a unit pressure drop applied in each axial directions of the rock sam-
ple. If the rock sample consists of only porous material, the flow inside the REV is de-
scribed using the Darcy equations, as on the macro-scale. On the other hand, if the REV
also contains void spaces, in which free flow may occur, one may need a more sophis-
ticated model. To this end, there are two main approaches. The flow can either be de-
scribed by a system consisting of Darcy’s law for the porous material and the Stokes equa-
tion for the voids, coupled with the Beavers-Joseph-Saffman conditions on the bound-
aries between the porous and void volumes, see [1–4]. Alternatively, one can use the
Stokes-Brinkman equations, which give a seamless transition between the Stokes and
Darcy equations, see [5, 15, 16].

Herein, we assume that the Stokes-Brinkman model is best suited to describe the
fine-scale flow. Irrespective of this choice, solving the flow problem numerically is a
challenging task. High-resolution models obtained from CT scans typically contain mil-
lions of voxels: the particular model we consider consists of more than eight million
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cells. Solving the Darcy-Stokes and the Stokes-Brinkman equations requires higher-order
methods [2, 12, 16, 19], which in 3D leads to discrete systems with 100 million to a billion
degrees of freedom. It is well-known that for high-resolution 3D discretizations, the cost
of solving linear systems of equations using direct solvers is prohibitive because of the su-
perlinear scaling of the work and storage requirements with the system size. Instead, well
parallelizable iterative solvers, e.g., conjugate gradients, or MINRES are often used. In
this case, the number of iterations required to converge to a satisfactory solution depends
on the condition number of the system matrix. Dealing with different length scales and
large (ten orders of magnitude) contrasts in permeability leads to highly ill-conditioned
linear systems of equations, see e.g., [2]. Advanced preconditioning techniques exist that
improve the convergence of the iterative methods and in theory make the number of iter-
ations independent from the material contrasts, see e.g., [10] for a description of a paral-
lel Algebraic Multigrid implementation. However, these techniques are computationally
demanding and their effectiveness is problem dependent. In the following, we take an
alternative approach and identify simplifications that render the fine-scale flow prob-
lem computationally tractable. We consider a set of idealized 2D models and determine
the parameter ranges for which the full Stokes-Brinkman equations are necessary, and
for which the effective permeability can be computed by either Darcy or Stokes solvers
alone. The insights obtained from the synthetic models are then used to compute the
effective permeability of the presented rock sample model in 2D and 3D.

2 Model of a rock sample

As an example of a typical rock model, we will in the following use a specific model
that was obtained from a CT scan of a 13×13×21 cm carbonate rock sample [20]. The
resolution of the CT scan was roughly 0.5×0.5×1.5 mm, giving a model that consists of
240×240×144 regular voxels. The porosity of the rock sample has been obtained on the
assumptions that the host rock is pure calcite with a constant grain density, that the air
density is zero, and that the relationship between the CT image values and the density
is linear. Void spaces (vugs) have been identified as regions with low or zero density.
The permeability of the matrix has been computed based on an upscaling formula by
Jennings and Lucia [11]. Minimum permeability in the matrix is 10−4 mD, maximum
permeability is 103 mD.

The model is visualized in Fig. 1, which shows the permeability. The red zones are
void spaces (vugs), where we expect free flow. From the visualization, and in particular
from the 2D slice, one may get the impression that the vugs are not connecting one side
of the model to the other, while in fact they do. Fig. 2 shows a volume rendering of the
three-dimensional structure of the void spaces inside the rock sample (in gray) with the
borders between void space and porous material plotted in a yellowish color. To simplify
the visualization, we have filtered out all isolated void spaces that are completely sur-
rounded by the porous matrix, so that the figure only shows the vugs that are connected
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Figure 1: 3D permeability model of a rock sample with physical dimensions 13×13×21 cm. The permeability
is given on a regular grid with 240×240×144 cells. The left plot shows the 3D permeability with a 2D cut
through the domain. Here, red color denotes the void spaces (vugs). The right plot shows the 2D cut in more
detail, with the permeability plotted on a logarithmic scale.

Figure 2: Volume rendering of the 3D channels connecting the top and bottom of the model. The void volumes
are shown in gray, and the void borders are marked with a yellowish color.

to the top and bottom of the sample.

To compute the effective permeability of the sample one could directly solve the
Stokes-Brinkman equations and include the entire porous matrix and the free-flow re-
gions in the computations. However, as explained before, the resulting linear system of
equations is too large to solve using direct solvers, and too ill-conditioned to solve using
iterative methods.

From a computational point of view, it would be advantageous if the model did not
contain through-going void spaces. Then, we could use a two-step upscaling procedure
to compute effective permeabilities for the sample. That is, we could partition the model
into a set of non-overlapping and smaller REVs, and solve local flow problems to com-
pute effective permeabilities of each of them. The obtained permeabilities could then be
used on the intermediate scale to approximate the flow through the original model us-
ing significantly fewer degrees of freedom. However, the results obtained in this manner
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have been unsatisfactory: after upscaling to a regular intermediate grid, the void spaces
have been averaged out over the intermediate REVs, and the connection between the
sides of the model through the void space has been lost.

A simple, but not necessarily correct, alternative to flow-based upscaling is to directly
compute an upscaled permeability by averaging of the fine-scale permeability. For our
particular problem, the validity of this approach rests on the major assumption that the
flow in the vugs can be described by the Darcy equation and that we can assign an appro-
priate permeability to the vugs. Because of the complicated geometry of the vug network
of the 3D model, it is far from trivial to compute a proper permeability value for the vugs
without experimental data and/or extensive tuning of parameters. The 1/3-power av-
eraging method [17] was applied to the 3D model in [20], showing that the local power
averaging fails to preserve the fine-scale connectivity of the vugs, hence underestimating
the effective permeability.

As we will see later, the connection through void space is the most important fac-
tor for determining the effective permeability of this particular sample, and will be the
key to developing an effective strategy for solving flow problems inside the REV. How-
ever, before we give more details in this direction, we will in the next section present the
Stokes-Brinkman equations and discuss numerical strategies for solving them.

3 The Stokes-Brinkman equations

The Stokes-Brinkman equations for single-phase, incompressible fluid flow in a mixed
free-flow and porous medium proposed by Brinkman [5] are

∇p=−µK−1
~v+∇·µ∗(∇~v+∇~vT), (3.1a)

∇·~v=0. (3.1b)

Here, p is the fluid pressure,~v is fluid velocity, K is the permeability tensor, µ is the fluid
viscosity, and µ∗ is the so-called effective viscosity of the fluid. By choosing the parameters
appropriately, one can study the two end-member cases: for infinite permeability we
obtain Stokes flow, for µ∗=0 we have the Darcy flow.

In the literature, the Stokes term in (3.1) is frequently written in the Laplace form
(µ∗∇2~v). It is also often assumed that µ = µ∗. However, it is generally agreed that the
value of µ∗ depends on the properties of the porous medium. It has been shown that the
effective viscosity can be either smaller, or greater than the fluid viscosity µ. The effect is
commonly attributed to tortuosity and porosity. For an in-depth discussion and a list of
references the reader is referred to [14].

3.1 Numerical solution in 2D

To solve (3.1), we use a mixed finite-element formulation with distinct degrees of freedom
defined for velocity and pressure variables. The elements are the seven-node Crouzeix-
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Raviart triangle with quadratic velocity shape functions enhanced by a cubic bubble func-
tion, and a nine-node quad with quadratic velocity field. The pressure field is discontinu-
ous, with linear shape functions. These elements have a number of advantages over other
elements used for the Stokes and Stokes-Brinkman equations, e.g., the Taylor-Hood ele-
ment used in [9,16]. The incompressibility constraint from (3.1) is implemented using the
penalty method, i.e., the right-hand side of the divergence equation is set to p/λ. Then,
incompressibility is assured by choosing a relatively small penalty parameter λ and us-
ing the Powell and Hestenes iterations. Since the pressure is discontinuous, it is possible
to eliminate the pressure degrees of freedom on a per-element basis (static condensation).
The resulting global system of equations has fewer degrees of freedom, and is symmet-
ric and positive-definite, as opposed to the original system (3.1). It is factorized once
using Cholesky factorization, and the factor is reused during the Powell and Hestenes
iterations. Typically, the incompressible solution is obtained after less than ten iterations.

The solver is implemented in the modified† MILAMIN package [6], which is an ef-
ficient Matlab finite-element solver capable of setting up, solving, and post-processing
two-dimensional problems with one million unknowns in one minute on a standard
desktop PC. The code works for both unstructured adaptive, and structured meshes,
for triangular and quad elements. The ability to deal with such resolutions in a matter of
seconds is crucial to resolve the complex geometries found in geological systems. More-
over, MILAMIN has been designed to efficiently deal with large material property ratios,
which is a must when modeling heterogeneous rocks and fluids. The code has been opti-
mized to the point, where the only bottleneck is the linear solver. For the solution of the
linear system of equations we use CHOLMOD [7]. For a more thorough description of
the numerical method and the implementation, the reader is referred to [6].

3.2 Numerical solution in 3D

For three-dimensional models, direct solvers are too expensive [6]. The scaling of both
memory and computational requirements is non-linear with respect to the size of the lin-
ear system of equations. A common approach is to use preconditioned iterative methods.
Their advantage is the linear workspace scaling, and good parallel performance.

Hence, the solution strategy for three-dimensional systems is different than in the 2D
case. We do not use the penalty method, but rather include the pressure degrees of free-
dom in the system matrix. The resulting system of equations is symmetric and indefinite
(zeros on the main diagonal). To solve it we use the MINRES solver [8], preconditioned
with a block preconditioner. The implementation is scalable on over five thousand CPU
cores, and reaches performance of 5 TeraFLOPS [13].

†Modifying MILAMIN to deal with the Stokes-Brinkman equations requires adding the Darcy term, which
is equivalent to updating the element stiffness matrix by the element mass matrix scaled by the permeability
and fluid viscosity.
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4 Parameter study

In this section, we analyze the importance of using the Stokes-Brinkman equations, as op-
posed to either Darcy or Stokes equations, to compute an accurate effective permeability
of the rock sample presented in Section 2. The numerically upscaled effective permeabil-
ity can then be used in coarse-scale flow computations, as described by e.g., [3, 16]. We
will not analyze the quality of the upscaling itself (i.e., how well coarse-grid calculations
approximate the fine-grid results), but rather compare different methods of computing
the effective permeability. Our analysis relies entirely on the assumption that all we need
to capture on the coarse scale is the effective permeability. If one also needs to resolve the
effects of subscale variations (e.g., on the velocity field), a better approach would be to
use a multiscale method [9, 19].

L

lp=1

x=0 x=L

p=0

µm  µm  km
*

µf  µf  kf
*

Figure 3: Simple sketch of the idealized model and the parameters: L denotes the domain height and width, ℓ

is the crack height. Pressure is set to 1 at x =0 and to 0 at x = L. For simplicity, fluid viscosity and effective
viscosity in the crack and the matrix are the same.

To analyze the importance of Darcy versus Stokes terms in the Stokes-Brinkman model,
we will use a set of idealized 2D models (Fig. 3), that will be discretized using an un-
structured adaptive triangular mesh generated with Triangle [18]. Three scenarios are
analyzed: a homogeneous model (no crack), a crack surrounded by the matrix (i.e., not
touching the left and right boundaries), and a through-going (percolating) crack that
touches both boundaries. The insights obtained from these synthetic experiments will
then be used in Section 5 to obtain the effective permeability of the rock sample presented
in Section 2.

For all three cases, the fluid flow is driven by a horizontal pressure difference ∆p.
With the Darcy equations, this corresponds to setting p = ∆p at x = 0 and p = 0 at x = L.
In the Stokes and Stokes-Brinkman equations, the fluid pressure cannot be constrained
directly. Instead, we obtain an ambient pressure gradient by loading the system with a
normal force and constraining the tangential velocity component to zero.

The boundary conditions at y = 0 and y = 1 must be considered carefully. For Darcy
flow, the natural choice is to use either periodic or free-slip boundary conditions (vy =0,
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vx is free). For Stokes flow, additional constraints are required for the velocities in the x-
direction in order to avoid translation. Therefore, to be able to study the transition zone
between the Darcy and Stokes regimes, we will in all the cases (Darcy and Stokes) use
no-slip boundary conditions (vx=0, vy=0). For Stokes flow, this setup corresponds to 2D
Poiseuille flow in a channel, for which the effective permeability is given by:

kS =
L2

12
. (4.1)

To simplify the discussion, we will rescale the flow equations. The extent of the do-
main is equal in both spatial directions, and hence we choose the domain width L as the
characteristic length scale. To reduce the number of variables, the effective viscosity µ∗

and the fluid viscosity µ are set equal and scaled by µ. Choosing ∆p as the characteristic
pressure unit yields the following dimensionless parameters:

ℓ̂=
ℓ

L
, K̂=

K

L2
, µ̂∗=

µ∗

µ
, ~̂v=

~vµ

L∆p
.

To simplify the notation, we will henceforth assume that all the parameters are dimen-
sionless and drop the hat symbol, writing ℓ rather than ℓ̂, etc. When using dimensional
parameters, this will be stated clearly.

For all three cases considered, we compute the specific discharge through the bound-
ary at x= L as

q=
1

L

∫ L

0
vx dy.

Then, the effective permeability of the domain can be obtained from Darcy’s law over the
REV

keff =−
qµL

∆p
. (4.2)

Numerical accuracy

As noted above, we are forced to use no-slip boundaries to be able to investigate the
entire range of flows. In the case of Darcy flow, this is inconsistent and introduces a nu-
merical error in the velocity field close to the model boundaries. The error depends on the
mesh resolution. Similar problems will be observed for a high-permeability channel sur-
rounded by a low-permeability matrix in any Darcy solver that uses a discretization with
a continuous velocity field (e.g., Taylor-Hood and Crouzeix-Raviart elements). Velocities
in the low-permeable areas will be close to zero, effectively introducing the problem de-
scribed above. To obtain a correct solution, the Darcy equations should be discretized
using elements with a continuous normal velocity component and a discontinuous tan-
gential velocity component, e.g., the lowest-order Raviart-Thomas elements. However,
these elements are not suitable for the Stokes end-member case. For the Stokes-Brinkman
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equations, an interesting formulation was recently presented by Willems [19], who ex-
tended a discontinuous Galerin method for the Stokes equations to the Stokes-Brinkman
case by using lowest order Brezzi-Douglas-Marini mixed finite-element spaces.

In the three cases studied in this section, the mesh-dependent error is localized at
the boundary. We therefore conducted a mesh-convergence study to determine the mesh
resolution that is sufficient to guarantee that the error between the computed and the
expected effective permeability in the Darcy case is less than 0.2%. Thus, the obtained
results are accurate for both Darcy and Stokes regimes.

4.1 Homogeneous domain

A homogeneous and isotropic domain is first analyzed. This model is an analogue of a
channel filled with an incompressible fluid. When the channel only contains the fluid, the
flow is described by the Stokes equations. When a rigid, non-moving matrix is present,
the flow meets a certain resistance from the structure. In case we know the exact shape
of the obstacles, this can be modeled by solving the Stokes equations and directly re-
solving the skeleton. In the Stokes-Brinkman approach, this effect is accounted for by
the presence of the (upscaled, or averaged) Darcy term. The parameter describing the
strength of this effect is the matrix permeability k. For large permeabilities, the flow will
be Stokes-like. For small permeabilities, only the Darcy term will be important.

Using the Stokes-Brinkman equations we compute the effective permeability keff in
both end-member cases of Darcy flow and Stokes flow, as well as in the transition zone
between the end-member cases to analyze the influence of the matrix permeability on the
regime of the flow.

Fig. 4 shows the computed effective permeability keff normalized by the matrix per-
meability km, as a function of the matrix permeability. In the Darcy regime, we expect
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Figure 4: Stokes-Brinkman equations solved in a homogeneous, isotropic domain. The plot shows the computed
effective permeability keff normalized by the matrix permeability km. For small matrix permeabilities (km≤10−4)
the problem is essentially of Darcy type. For large permeabilities the Stokes term is dominant.
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keff =km, hence the plot saturates at one. In the Stokes regime keff/km =L2/(12km), which
approaches zero for large matrix permeabilities. In the transitional regime, the contri-
bution of both the Darcy and the Stokes terms are on the same order. Importantly, for
km ≤ 10−4 the Stokes effects no longer play any role, and the problem is essentially of
Darcy type. Consider a geological system with a channel of diameter L containing fill-in
material with permeability k. Then, the Stokes effects in the channel can be ignored if
k/L2≤10−4.

4.2 Confined fracture

In the next case, we consider a fracture entirely surrounded by the matrix. The fracture
is modeled as a free-flow large aspect ratio rectangle, i.e., the fracture permeability is set
to k f =∞, which means that the Darcy term in the Stokes-Brinkman equations is zero. In
the matrix, the Stokes-Brinkman equations are solved.
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Figure 5: Computed effective permeability normalized by the matrix permeability for a square domain with a
confined fracture of length 0.8 and width ℓ=0.01. In the matrix, Stokes-Brinkman equations are solved. Stokes
equations alone are solved in the fracture. Results compared to the homogeneous case.

Fig. 5 shows the computed effective permeability normalized by the matrix perme-
ability, as a function of the matrix permeability. Comparing with the homogeneous case
(Fig. 4), we see that for large enough matrix permeabilities (km ≥ 10−5), the results are
approximately the same and the fracture has little influence on the result.

From (4.1), we know that the effective permeability of the free-flow fracture of width
ℓ=0.01 (assuming channel flow, i.e., no-slip boundary conditions at the sides of the frac-
ture) is k f = ℓ2/12 ≈ 10−5. Thus, we expect that at km ≈ 10−5, both the Darcy matrix
permeability and the fracture permeability are of the same order. Indeed, in this range
keff/km ≈ 1. For km ≪ 10−5, the fracture has a significantly higher permeability than the
surrounding matrix, and the effective permeability of the entire domain is larger than the
matrix permeability, i.e., keff/km >1.
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Figure 6: The plot shows computed effective permeability normalized by the matrix permeability for a square
domain with confined fracture of length 0.8 and width ℓ= 0.01. Darcy results (both fracture and matrix are

pure Darcy domains) are compared to Stokes-Brinkman results. For the Darcy model, k f = ℓ2/12.

If the matrix is in the Darcy regime (km <10−5), one can accurately reproduce the ef-
fective permeability computations for a confined free-flow fracture using a Darcy solver,
and the Stokes-Brinkman solution is not necessary. Assuming k f is described by (4.1) and

ℓ=0.01, we set k f = ℓ2/12≈10−5. Fig. 6 shows a comparison of the effective permeabil-
ity computed for various km ≤ k f using a Darcy solver and corresponding computations
based on the Stokes-Brinkman equations with a free-flow (Stokes) fracture. The results
are in very good agreement.

It is possible to correctly reproduce the entire curve because of the assumptions made
about the fracture permeability (4.1). In real-world scenarios, e.g., for the model pre-
sented in Section 2-one could argue that it is difficult to estimate k f . Real fractures/channels
have more complex shapes, and it may be difficult to obtain an adequate estimate of the
fracture permeability. Thus, a Stokes-Brinkman computation could seem to be necessary.
However, we note that this argument is only valid for small permeability ratios between
the fracture and the matrix. For km ≤10−4k f , which is the case in real scenarios (e.g., cm
scale channels in a 1 mD matrix, [16]), the results saturate and the effective permeability
is essentially governed by the matrix permeability. Regardless of the k f value we use (as

long as km ≤10−4k f ), the effective permeability is approximately the same.

We conclude that when a large-scale fracture is confined in a low permeability matrix,
it is adequate to perform Darcy computations and set the fracture permeability anywhere
around 4-5 orders of magnitude above the matrix permeability. This is illustrated in Ta-
ble 1. Two examples are shown for km chosen so that the matrix is in the Darcy regime.
We compute the effective permeability using the Darcy solver and set k f = 105km. The
results are compared to the Stokes-Brinkman solver with a free-flow fracture (k f = ∞).
The results for the Darcy and Stokes-Brinkman solvers are almost identical. Also, fur-
ther decrease of the matrix permeability does not change the effect of the fracture on the
effective permeability: keff/km is constant.
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Table 1: Comparison of Stokes-Brinkman and Darcy results. Fracture of length 0.8 and ℓ=0.01 confined in a
low-permeable matrix. In the Darcy case, it is enough to set k f to 4-5 orders of magnitude above the matrix
permeability to obtain the same results, as in the case of a free-flow fracture.

Darcy Stokes-Brinkman Darcy Stokes-Brinkman

k f 10−5
∞ 10−10

∞

km 10−10 10−10 10−15 10−15

keff
km

1.80244 1.80245 1.80248 1.80273

4.3 Through-going fracture

Another important scenario is that of a long-range channel/fracture. This case is modeled
as a through-going rectangle connecting the left and right boundaries. In the case of a
low-permeability matrix, the effective permeability of the entire domain is expected to be
governed by the permeability of the free-flow (Stokes) domain.
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Figure 7: Square domain with a fracture of diameter ℓ=0.01. The plot shows the computed effective perme-
ability. Results for through-going and confined fracture are compared. k f =∞ (free-flow Stokes domain).

Fig. 7 shows a comparison of keff normalized by kS, (4.1), for the two cases of a
through-going and a confined high-permeability fracture. For the through-going frac-
ture with km ≪ k f , the effective permeability of the domain is constant and independent
of km; that is, the velocities in the entire low-permeable matrix domain are negligible
compared to the velocities in the fracture. In this case, the effective permeability given
by (4.1) is modified by the volume fraction of the fracture:

keff =
ℓ2

12

ℓ

L
. (4.3)

In the studied scenario, this means that

keff

kS
=

0.013/12L

L2/12
=10−6,
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which is in agreement with the results from Fig. 7.

It is clear from Fig. 7 that for a through-going fracture with k f ≈10−5 and km ≤10−9,
the porous matrix does not contribute much, and the effective permeability of the entire
domain can be obtained by a Stokes flow simulation.

5 Effective permeabilities of a carbonate rock

In the previous section, we have shown that when a large difference in scales is observed
in the setup, the use of Stokes-Brinkman equations is not necessary. All scenarios can
then be then conveniently analyzed by the solvers dealing with the end-member cases.
From the two-dimensional tests, we conclude that the required ratio of the permeabilities
is km/k f ≈10−4. The channel permeability can be accurately estimated from its diameter
using (4.1).

Here, we compute the effective permeability of the real-world rock model presented
in Section 2. In the following considerations, all the physical parameters are dimensional.

5.1 2D cut

First, we analyze the effective permeability of a 2D cut through the 3D data, as shown
in Fig. 1. The vugs are not connecting the left and right sides of the model, which is
analogous to the situation described in Section 4.2. We compute keff using both Stokes-
Brinkman and a Darcy approach. In the Stokes-Brinkman case, we set k f =∞ (pure Stokes
flow, no Darcy term). In the Darcy case, we set an arbitrary fracture permeability k f =100
mD, which is ten times the largest permeability found in the studied 2D section.

Computations took approximately 15 seconds on a desktop computer using the MIL-
AMIN software. This includes building the matrix, factorizing the system, and visualiz-
ing the results.

Fig. 8 shows the computed fluid pressure and the magnitude of the velocity for both
the Stokes-Brinkman and the Darcy simulations. The pressure fields are very similar for
both cases:

‖pD−pSB‖

‖pSB‖
≈0.5%.

On the other hand, differences in the velocity fields can be seen by eye. This is not surpris-
ing, since the physics solved for in the vugs is very different. However, although locally
the velocity fields may differ considerably for both methods, overall the flow patterns are
similar.

Table 2 presents keff obtained using both methods. It is clear that, although the veloci-
ties may be different in both cases, this does not affect the computed effective permeabil-
ity. The difference between keff in both cases is 0.7%. Thus, the Darcy solver can be used
to compute the upscaled permeability values.
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Figure 8: Velocity magnitude and pressure fields computed using the Stokes-Brinkman equations (left column)
and the Darcy equations (right column) with pressure boundary conditions on left/right boundaries and free-
slip on top/bottom boundaries. In the Stokes-Brinkman model, k f = ∞ (pure Stokes). In the Darcy case,

k f =10max(km).

Table 2: Effective permeability computed using Stokes-Brinkman equations (vugs are pure Stokes domains) and
using Darcy equations. In the Darcy case, k f =10max(km).

Darcy Stokes-Brinkman
k f 100 mD ∞

keff 7.44×10−2 mD 7.49×10−2 mD

Figure 9: Stokes flow inside the fractures and vugs, without considering the porous matrix. Blue color of the
streamlines denotes low velocity, red color marks high velocity. The model has 800,000 cells and eight million
nodes.
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5.2 3D model

The permeability field in Fig. 1 is a 2D cut through the three-dimensional dataset. While
the vugs/channels in all the 2D cuts are confined in the matrix, in three dimensions they
do connect to the opposite sides of the domain, which illustrates the importance of 3D
simulations. Fig. 2 shows the channel structure in 3D.

The relevant idealized model is therefore the through-going fracture discussed in Sec-
tion 4.3. The relatively impermeable matrix is not expected to significantly affect the ef-
fective permeability of this rock sample. Therefore, to compute keff we have removed the
porous matrix from the model. The fact that we are able to do so is crucial from the point
of view of the iterative solver. Large permeability ratios in the matrix, and the Stokes
regime on a different spatial scale lead to a bad condition number that renders the orig-
inal system very difficult to solve. On the other hand, by considering only the Stokes
domain, we are dealing with channel flow of a homogeneous fluid-a task that is much
simpler for an iterative method.

In the simulations, we apply ambient pressure gradient in the vertical direction. For
the nodes lying on the channel boundary (marked in yellowish color in Fig. 2), we set no-
slip boundary condition. The mesh consists of around 800 000 cells (eight million nodes).
It took 3 hours to solve the system on 360 Opteron cores of the Cray XT4 cluster.

Fig. 9 shows the flow channels and fluid velocity through the vugs. For the purpose
of visualization, we have placed half a million passive markers at z = 0. The markers
have been advected using the computed velocity field and a timestep chosen so that they
are not transported further than to the neighbor cells. The markers are colored red in
the high-velocity regions, and blue in the low-velocity regions. Some void spaces do not
contain any markers-this indicates the stagnant zones. Clearly, studying the actual flow
pattern is important if one wants to analyze e.g., the residual saturation. The effective
permeability obtained from this calculation is 7.9×105 mD, i.e., much higher than the
permeability of the surrounding porous matrix. This result further indicates that taking
into account the Darcy matrix is not necessary in this case. As mentioned in Section 2, the
highest permeability in the porous matrix is roughly 103 mD, while the average is much
lower.

An estimate of how realistic the obtained effective permeability is, can be obtained
as follows. As stated in Section 2, the spatial resolution of the CT scan is 0.5×0.5×1.5
mm. Given that we are dealing with a percolating crack, we expect that the effective
permeability of the studied sample is at least that of a circular pipe with the diameter of
a single grid cell. The 3D equivalent of Eq. (4.1) describing the effective permeability of a
cylindrical pipe, based on the Hagen-Poiseuille equation, is

kpipe =
D2

32
, (5.1)

where D denotes the diameter or the pipe. Hence, the effective permeability of a non-
permeable 13×13×21 cm block with a through-going pipe of diameter 0.5mm, obtained
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by averaging kpipe over the entire block surface, is 90 mD. On the other hand, a pipe of
diameter 5 mm (ten times larger) yields an effective permeability of 9.0×105 mD, which
is on the same order as the computed result.

6 Concluding remarks

In this paper, we have studied the effective permeability of a medium composed of long-
range fractures and channels surrounded by a porous matrix with lower permeability.
Our goal was to identify the parameters, for which the Stokes-Brinkman equations are
applicable, and when the effective permeability can be computed by either Darcy or
Stokes flow solvers alone. Being able to do so is advantageous from a numerical perspec-
tive, since the resulting systems of equations are better conditioned. We have considered
three synthetic cases.

For a homogeneous two-dimensional channel of diameter L filled with an incom-
pressible fluid and containing non-movable matrix with permeability k, we have shown
that the Stokes flow is dominant for k/L2 ≥ 10. For k/L2 ≤ 10−4, an accurate effec-
tive permeability can be obtained by a Darcy flow solver. For 10−4 ≤ k/L2 ≤ 10, the
Stokes-Brinkman equations should be used to account for the transition between the end-
member flow regimes.

The effective permeability of a domain with a large, non-percolating, free-flow crack
confined within a low permeability matrix can be computed using a Darcy flow solver.
The actual permeability of the fracture is not relevant and can be set to an arbitrary value
such that k f ≥ 104km. Further increase in the fracture permeability does not change the
computed effective permeability.

The effective permeability of a domain with a large, through-going, free-flow fracture
surrounded by a low permeability matrix can be computed using a Stokes flow solver.
When k f ≥104km, the velocities in the Darcy matrix are negligible and do not significantly
contribute to the effective permeability.

For the systems studied, we have shown that to compute the effective permeability,
the Stokes-Brinkman equations are applicable only when the ratio between the crack and
matrix permeability does not exceed 4 orders of magnitude. Otherwise, Darcy or Stokes
solvers can be used. These findings have been verified for 2D models obtained from a CT
scan of a rock sample.

A quick determination of the importance of the Stokes-Brinkman equations can be
performed by estimating the effective vug permeability of natural rocks with (5.1). The
Stokes-Brinkman equations need to be considered if the vug permeability is within four
orders of magnitude from the matrix permeability. For natural systems, this is the case
for very narrow (typically sub millimeter) vugs. If the permeability contrast between
the vugs and the matrix is significantly larger than four orders of magnitude it can be
assumed that the Stokes-Brinkman equations need not be used. If the vugs do not per-
colate, the effective permeability can be computed using a Darcy solver by prescribing a
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high permeability to the vugs (at least four orders of magnitude larger than that of the
matrix). This has been verified for real-world rock samples in 2D. If the vugs are perco-
lating, analysis of idealized 2D scenarios suggests that the effective permeability can be
computed using only Stokes equations.

Our findings allow for effective permeability computations directly on CT rock sam-
ple data, which would otherwise be not feasible. We demonstrate this with the case of
a carbonate rock sample. Based on our analysis, we identified Stokes flow as the ap-
propriate model and successfully computed the effective permeability on a 3D model
containing 8 million cells. Other approaches that try to reduce the computational cost,
such as 2D models or two-step upscaling, fail to give an accurate permeability estimate
because they cannot account for the effect of percolating cracks.
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