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Abstract. An anisotropic solution adaptive method based on unstructured quadrilat-
eral meshes for inviscid compressible flows is proposed. The data structure, the di-
rectional refinement and coarsening, including the method for initializing the refined
new cells, for the anisotropic adaptive method are described. It provides efficient high
resolution of flow features, which are aligned with the original quadrilateral mesh
structures. Five different cases are provided to show that it could be used to resolve
the anisotropic flow features and be applied to model the complex geometry as well as
to keep a relative high order of accuracy on an efficient anisotropic mesh.
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1 Introduction

Fluid phenomena contain many different length scales and flow features, such as flow
separation, shock waves, interfaces between different fluids and viscous boundary lay-
ers. To resolve all these scales and features, the mesh adaption is a natural and econom-
ical way for accurate and efficient solutions. As a result, a large number of adaptive
algorithms have been proposed in the literature.

Among them, the Cartesian adaptive method [1–14] is a quite popular method in
which the nested hierarchical data structure is often employed. The main feature of this
kind of methods is that the global index of a cell could be calculated by the level and the
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local index. This reduces the memory requirement. Most of them are isotropic Carte-
sian method which uses the tree data structures such as the quad-tree and the oct-tree.
These isotropic Cartesian grid methods could not be efficient for the flow problems where
highly anisotropic meshes aligned with the flow direction are most appropriate. Hence,
several anisotropic Cartesian adaptive grid methods [11–14] are developed. Wang et
al. [11, 12] proposed an anisotropic grid generation by adopting a 2N tree data structure,
which is a natural extension of the quad-tree or oct-tree. Ham et al. [13] proposed another
anisotropic adaptive method. Like the isotropic Cartesian grid methods, the global index
of a cell for this anisotropic Cartesian method [13] could be obtained by the level in each
direction and the local index.

One of the main drawbacks of all these adaptive Cartesian grid methods is their
difficulty when they are applied to complex geometry with non-Cartesian boundaries.
To tackle this problem, some researchers [9] adopted the cut-cell or hybrid grid tech-
nique. These will increase the complexity and reduce the main advantage of the Carte-
sian method.

Another type of anisotropic adaptive method to treat the complex geometry is the
unstructured mesh based adaptive methods [15–18]. Most of them are the triangular
or tetrahedral cell based adaptive method. The adaptive grid based on triangular mesh
(or tetra-hedras in 3D) is often results in highly skewed cells for anisotropic flow features
such as boundary layers, which makes it difficult to maintain high accuracy. Besides, suc-
cessive refinements in one direction of the triangle based adaptive method create triangle
cell with some very small angles between faces. This resulted in large mesh skewness
which can cause severe degradation in both solution accuracy and convergence.

In order to address the issues of mesh efficiency and solution convergence for adap-
tive solutions, Qin and Liu [19] proposed a feature-aligned mesh adaptation method,
which combined the flexibility of unstructured meshes for complicated geometries and
structured feature aligned mesh blocks to achieve efficient and accurate mesh adaptation.
The refinement only needs to be carried out normal to the flow features, leaving rela-
tively large mesh spacing along the features, such as shock waves and boundary layers.
The overall solution efficiency is substantially improved by (1) the flow feature aligned
anisotropic adaptive mesh and (2) the better behavior of the solver’s convergence on such
meshes. However, the extraction of the flow features and the insertion of the structured
blocks for complicated flow problems are key issues to be fully addressed and automated.

As a step towards a fully automated and robust feature aligned mesh adaptation,
this paper proposes an unstructured quadrilateral-cell based anisotropic mesh adaptive
method to resolve the anisotropic flow features, given a background initial body con-
forming mesh. As compared to the Cartesian anisotropic adaptive method [11–14], the
fully unstructured quadrilateral-cell based anisotropic adaptive meshes are body fitted
rather than the cut-cell method or the hybrid method [9]. Similar to the isotropic un-
structured quadrilateral based adaption proposed by Sun and Takayama [17] and Zheng
et al. [18], the neighboring cells of each edge and the sub-edges of each edge are stored.
However, the neighboring cells for the mother edge may not include the cell that the edge
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belongs to. This requires some different special treatments to be presented in the paper.
Besides, it also adopts the idea of two different levels for each direction of the Cartesian
adaptive method [13, 14] rather than one unique level number of most anisotropic adap-
tive methods. To directionally refine or coarse the target cell properly, the directional
refinement criteria is also proposed.

The paper is organized as follows. The data structure, the directional refinement
and coarsening, including how to initialize the solution on the new refined cells, for the
anisotropic adaptive method, are proposed in the second section. The numerical method
for compressible flows based on this anisotropic adaptive mesh is given in the third sec-
tion. Five validation cases are provided in the fourth section, in order to demonstrate the
behavior of the proposed method for a variety of transient compressible flows involving
typical anisotropic flow features.

2 Anisotropic adaptive method on quadrilateral mesh

In this section, the anisotropic adaptive grid generator based on the unstructured quadri-
lateral cell mesh technique is addressed. In the following, the data structure, error detec-
tor, the directional refinement and directional coarsening are described.

2.1 Data structure

As indicated in the previous section, the present adaption algorithm is based on the
quadrilateral cells instead of other types of cells such as the triangle cells or more gen-
eral polygon cells. However, the mesh is not necessarily structured as the unstructured
quadrilateral meshes offer geometrical flexibility yet to maintain the accuracy normally
associated with quadrilateral cells. Therefore, an unstructured data management is re-
quired. As described by Zheng et al. [18], each cell contains an array of pointers to its
nodes and edges and each edge stores an array of pointers to its nodes and sub-edges.

For the non-directional adaption [17], there is only one level number that is indepen-
dent of the direction (Fig. 1(a)). Since the level number between the target cell and the
neighboring cells cannot be larger than one [17], the cells in block (Fig. 1(a)) cannot be fur-
ther refined if the neighboring cells is not refined in advance. Unlike the non-directional
adaptation [17], there are two different level numbers for the two directions of a cell in the
(anisotropic) directional adaption (Fig. 1(b)). Thus, the cell in block can be further refined
in vertical direction (Fig. 1(b)). This shows the necessarity of the (anisotropic) directional
adaption. Here, these two directions are denoted as 0 and 1 respectively. The level num-
bers in each direction are stored in two indices separately, namely, l0 and l1. Besides,
as compared to the isotropic or anisotropic Cartesian adaption methods [13, 14] which
usually employ tree data structure, the neighboring indices of the cells for anisotropic
unstructured mesh adaptive solver could not be evaluated in a general formula. Instead,
these indices are obtained by accessing its four edges which store the indices or pointers
to the two neighboring cells. In order to avoid the recursive calculation, the indices of
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Figure 1: The example that the non-directional (a) and directional (b) adaption (the number in the square
bracket is the level number).
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Figure 2: Stencils in the direction 0 (a) and 1 (b) for the refinement and coarsening criteria.

each cell in the present method are further separately stored in different lists according
to their levels (Fig. 3(a)). Thus, the solution can be obtained in a level by level manner so
that the cells of high level are calculated after the cells of low level. This makes the algo-
rithm very efficient. Moreover, for those methods [17] where the information of leaf cells
and non-leaf cells are stored in two different lists, the cells need to frequently move from
one list to the other during the process of refinement and coarsening. In contrast, the cur-
rent method does not need to do so. This shows that the present method also improves
the efficiency especially when the mesh on the finest resolution level is large. In order
to reduce the memory, only one directional edge is stored since the two opposite edges
of the cell have the same direction. Hence, the two neighboring cells can share the same
directional edge. Note that, unlike the isotropic adaption in [18], the neighboring cells for
each edge may not be the cell itself for anisotropic adaption. As stated above,the indices
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Figure 3: Arrangements of cells and edges.

of the two sub-edges and the indices of the two nodes for each edge are also stored. Thus,
adding or deleting a node is made more efficient as the process does not need to access
the neighboring cells.

Similar to Zheng et al. [18], in order to develop an face-based solution adaptive solver,
the edges are further organized into two separated lists which are used to store the leaf
edges and mother edges respectively (Fig. 3(b)). Therefore, the numerical flux calculation
can be applied easily to the leaf edges. The numerical fluxes of the mother edges are
not calculated. Besides, these numerical fluxes of the leaf edges are not stored and only
used to update the residues of the left and right cells. As compared to the cell-based
methods [17] which store the fluxes of the edges, the present method stores the residues
at the cells, reducing the memory requirement.

2.2 Error detector for refinement and coarsening

To automatically perform the grid adaption, a refinement criterion is needed. In the lit-
erature, there are a number of criteria for anisotropic adaption [7, 9, 13, 14]. For example,
Keats and Lien [14] devised the following error detector,

∆x∗=

[

2τ
(

φy+α
)

(φx+α)2

]1/3

, ∆y∗ =

[

2τ(φx+α)
(

φy+α
)2

]1/3

. (2.1)
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However, it is only suitable to Cartesian mesh. In this work, similar to the isotropic
criteria [17, 18], the error indicator of a cell is the maximum of the second-order Taylor
truncation error over the first-order Taylor truncation error of density in the stencil (Fig. 3)
of the desired direction. The difference from it is that the present criteria are direction
related for the anisotropic adaptation. Here, we use L and R to denote the two stencils in
the direction 0. Similarly, B and T refer to the two stencils in the direction 1. For example,
the error detector for a cell is,

ε0 =max

(
∣

∣(∇ln
ρ)C−(∇ln

ρ)L

∣

∣

αρC/dl+
∣
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(2.2)

in the direction 0, and

ε1 =max
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)

(2.3)

in the direction 1. Here, dl is the distance of the two stencil cell centroids.
By calculating these error detectors of a cell, the refinement of a cell could be deter-

mined by comparing the detector in each direction with the pre-defined refining thresh-
old εre f ine. In this work, the refinement is done in the following way,

(1) refine the cell in the direction 0 when ε0<εre f ine and ε1>εre f ine are satisfied;

(2) refine the cell in the direction 1 when ε0>εre f ine and ε1<εre f ine are satisfied;

(3) refine the cell in both directions when ε0<εre f ine and ε1<εre f ine are satisfied.

The directional coarsening of a cell is carried out in a similar way. The refinement
and coarsening thresholds are user defined and a compromise between the accuracy and
memory and efficiency. In this paper, they are set as two constants, 0.06 and 0.0598 re-
spectively.

2.3 Directional refinement and coarsening

In the directional refinement, each cell is divided into two new quadrilateral sub-cells
(Fig. 3). There are two constraints for this process. One is that the cell has no children
(sub-cells) and the other is the one level difference rule in the stencil cells for the direc-
tional refinement in a direction. That is, the maximum difference of the levels between the
current cell and the stencil cells in that direction must be less than two. This is different
from the isotropic adaptive Cartesian methods where the adaptive process is indepen-
dent of the direction. For example, as shown in Fig. 1, the level difference in the direction
1 for the target cell (denoted as block in the figure) is 0. However, the level difference in
the other direction is 1. Thus, it could only be refined in the direction 1 but not in the
direction 0.

If these two constraints in a direction are satisfied, the refinement of this cell in that
direction could be performed. One needs to pay attention to set the new level number
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Figure 4: Example of refinement and coarsening procedure in the direction 0 (a) and 1 (b).

in each direction. If a cell with the level [l0,l1]c is refined in the direction 0, the level
number of the two sub-cells are set as (l0)c→sub =(l0)c+1,(l1)c→sub =(l1)c. Similarly, the
level numbers of the two sub-cells are set as (l0)c→sub = (l0)c,(l1)c→sub = (l1)c+1 if the
refinement is performed in the direction 1. Unlike the anisotropic Cartesian method in
Keats and Lien [14] where the refined cell is modified to be the one of the new cells,
the refined cell is still preserved without any change. Thus, there is no brick problem
as shown in their paper. Besides, the addition of edges and nodes needs to be carefully
checked to ensure that no redundant nodes and edges are created (Fig. 4). If one edge has
no sub-edges, a new node is created. Otherwise, the existing center node of edge is used.
Similarly, the two sub-edges of the desired pair of directional edges are created if the edge
has no sub-edges. In addition, the neighboring cells of each edge should be re-assigned.
Note that, unlike the isotropic adaption in Zheng et al. [18], the neighboring cells for each
edge may not include the cell which the edge belongs to for the anisotropic adaption. For
example, as shown in Fig. 4 (a), the left neighbor cell of the right edge of the target cell is
pointed to the right child cell of the cell after the refinement in the direction 0.

As a reverse process of the refinement, the coarsening process removes the unneces-
sary cells from the mesh. Similarly, there are two constraints for this. The first one is that
the cell must have children cells (sub-cells). The second is that the maximum one level
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difference between the current cell and the stencil cells is allowed. If all these constraints
are satisfied, the cell is removed by calling the coarsening procedure. In this coarsening
process, one also needs to change the neighboring cell information of the cell. This is
simply implemented by reassigning the two pointers (indices) of the neighboring cells of
the four edges of the cell.

3 Numerical method

Having the anisotropic adaptive mesh, the numerical method to solving the govern-
ing equations needs to be coupled with this adaptive mesh. In this paper, the inviscid
compressible flows are the main interest. Thus, the time-dependent Euler equations are
solved,

∂tU+∇·F=0, (3.1)

where U is the state vector, and F is flux vector,

U =





ρ
ρ~u
E



, F=





ρ~u
ρ~u⊗~u+P[I]

(E+P)~u



. (3.2)

Here, ρ is the density, ~u is the velocity, P is pressure, [I] is the identity tensor, E is the total
energy,

E=ρe+
1

2
ρ

⇀

u
2
. (3.3)

3.1 Discretization on anisotropic adaptive mesh

After the refinement and coarsening of the cells, the numerical discretization of Eq. (3.1)
is performed on the quadrilateral-cell based anisotropic adaptive mesh. Since the cells
are separately stored in different lists according to their levels (Fig. 5 (a)), the solution
can be obtained in a level by level manner so that the cells of high level are calculated
after the cells of the low level. The set of equation (3.1) is only discretized at each leaf cell
c by the multiple stage Runge-Kutta schemes,

U
(0)
c =Un

c , (3.4)

U
(m)
c =αm−1U

(0)
c +βm−1U

(m−1)
c +γm−1

∆t

Vi
Res

(

U
(m−1)
c

)

, m=1,··· ,k, (3.5)

Un+1
c =U

(k)
c , (3.6)

where

Resc =∑
f

Φ f

(

U−,U+,~n
)

·∆l f . (3.7)
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Figure 5: Evolution in a cell (a) and calculation of flux of edges (b).

Here, αm−1, βm−1 and γm−1 are the coefficients, ∆l f denotes the length of the edge f and
Φ f (U−,U+,~n) is the numerical flux for an edge f .

For the non-leaf cells, the states are calculated by a simple summation of the states of
their sub-cells,

U
(0)
c =∑

i

Uc→subi
. (3.8)

Since the edges are separately stored into two lists for the leaf edges and non-leaf
edges respectively (Fig. 3(b)), the residual could be calculated in an face-based manner.
Thus, in the real calculation, Eq. (3.7) is replaced by updating the residue of all leaf edges
only. That is, the residue (Res f 1→L) at the left cell centroid of a leaf edge f 1 (the left cell is
denoted as f 1→ L or cell B in Fig. 5) is updated in the following way,

Res f 1→L =Res f 1→L+Φ f 1

(

U−,U+,~n f 1

)

·∆l f 1, (3.9)

and the residual (Res f 1→R) at the right cell centroid ( f 1→R or cell C in Fig. 5) of this leaf
edge f 1 is updated by

Res f 1→R =Res f 1→R−Φ f 1

(

U−,U+,~n f 1

)

·∆l f 1, (3.10)

where ∆l f 1 denotes the length of the edge f 1.

Note that the numerical flux Φ f is calculated once for each non-leaf edge which has
no sub-edges before the updating of the residual (Eqs. (3.7), (3.9), and (3.10)). There
is no need to calculate the numerical flux for a non-leaf edge. For example, the right

neighboring cell of non-leaf edge
−→
gh is the same as the right neighboring cell of leaf edges

f 1 and f 2, that is, f 1→R= f 2→R=
−→
gh →R=C. Thus, the residual at the right leaf cell

centroid of this non-leaf edge
−→
gh is automatically updated by the operations (Eqs. (3.9)
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and (3.10)) of its two sub-edges f 1 and f 2. This reduces the calculation of the numerical
flux for the non-leaf edges as well as keeps the conservation of the numerical flux.

It is clear that the calculation of the numerical flux of an edge only requires the left
state U− and right state U+ of the edge. To increase the solution accuracy in space,
the piecewise linear reconstruction is employed to calculate these two states. In order to
obtain a monotonic and stable solution, the reconstruction is based on primitive variables

W =(ρ, ~u, p)T and slope limiters are enforced in the reconstruction,

W−=WL +
1

2
ψβ

(

2~∇WL ·d~r−∆W,∆W
)

, (3.11)

W+ =WR−
1

2
ψβ

(

∆W,2~∇WR ·d~r−∆W
)

, (3.12)

∆W =WR−WL, (3.13)

where d~r is the distance vector between the two neighboring cell centroids of the edge,
ψβ(a,b) is a superbee-like limiter,

ψβ(a,b)=
sign(a)+sign(b)

2
max[min(β|a|,|b|),min(|a|,β|b|)], (3.14)

where β is a parameter which is in the range of [1,2]. It could be easily observed that it
will be reduced to minmod limiter if β is set as one.

3.2 Flux calculation

In this work, the Harten, Lax and van Leer approximate Riemann solver (with the con-
tact wave restored) (HLLC) scheme [20, 21] is adopted. Hence, the numerical flux in
Eqs. (3.7), (3.9), (3.10) is calculated by,

Φ f

(

U−,U+,~n f

)

=
1

2

[

φ−+φ+−sign(km)
(

U+−U−
)]

, (3.15)

with

φj = F
(

U j
)

·~n f +k#
j

(

U j∗−U j
)

, j=−,+, (3.16)

where the intermediate velocity U j∗ is calculated by,

U∗j =
kj−u

j
n

kj−sm







ρj

ρj
[

~uj−
(

u
j
n−sm

)

~n
]

Ej






+







0
0

(

P∗jsm−Pju
j
n

)

/
(

kj−u
j
n

)






, j=−,+,

(3.17)
with

P∗j =ρj
(

u
j
n−kj

)(

u
j
n−km

)

+Pj, j=−,+. (3.18)
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Here, u
j
n is the normal velocity (u

j
n = ~uj ·~n ), k#

j and km are the intermediate signal

speeds which are calculated by,

k#
− =min(k−,0), k#

+ =max(k+,0) (3.19)

and

km =
ρ+u+

n (k+−u+
n )−ρ−u−

n (k−−u−
n )+P−−P+

ρ+
(

k+−u+
n

)

−ρ−
(

k−−u−
n

) , (3.20)

with
kj =min

(

u
j
n−sj,q̃− s̃

)

, j=−,+. (3.21)

Here, sj is the sound speed. q̃ and s̃ are the Roe average normal velocity and the sound
speed.

3.3 Initialization of solution for a newly refined cell

During the refinement, new cells are generated and deleted continually as the solution
evolves. It is very critical to give an accurate value of dependent variables at the newly-
generated cells, especially for the time-dependent compressible flow problems. Similar
to the reconstruction step, the slope limiters are used to obtain a smooth initial value. For
example, the initial state of a new cell of the mother cell c is evaluated as,

Uc→subi
=Uc+ψ~∇Uc ·d~rc,c→subi

,

where d~rc,c→subi
is the distance vector between the new cell centroid and the mother cell

centroid and ψ is a limiter. It is clear that this initialization also satisfies the conservation
law in the mother cell.

4 Results and discussion

To demonstrate the features of the present anisotropic solver, five cases are tested in this
section. They are the shock tube problem, the circular shock tube problem, the shock
diffraction over back-step, the shock wave reflection over wedges, and the two dimen-
sional Riemann problem.

4.1 Sod’s shock tube problem

In this section, the Sod’s shock-tube problem is used to demonstrate the anisotropic prop-
erty. It is a standard case that two gases are separated by a diaphragm at the center
position in a tube with the initial values (Luo et al. [22])

ρ1 =1kg/m3, u1 =0.125m/s, v1 =0m/s, p1 =1Pa, for x<0.5, (4.1)

ρ2 =0.125kg/m3 , u2 =0m/s, v2 =0m/s, p2 =0.1Pa, else. (4.2)
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Figure 6: Initial mesh for shock tube problem.
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Figure 7: mesh at t=0.1s (a) and mesh at t=0.2s (b).

For this problem, it is known that the exact solution consists of a right-going shock
wave, a left-going rarefaction and a contact discontinuity in between. The initial mesh is
adaptively generated by a uniform background mesh of 40×40 (level 0) with the max-
imum level of 4 (Fig. 6). The mesh at time 0.1s and 0.2s are shown in Fig. 7. From the
observation of the mesh distributions (Fig. 7(b)), the shock wave and contact disconti-
nuity appear to be very well captured. This shows that the present solver can capture
the unsteady anisotropic flow feature, although this is actually a one-dimensional prob-
lem. From Fig. 7, it is clear that both the area of the shock and contact discontinuity is
refined only normal to the waves (flow features in this problem) and the other smooth
area is coarsened. As can be seen from Fig. 7, as the time evolves, the meshes change with
the solution so that the mesh around the discontinuity is refined and the other smooth
area is recovered to the background mesh. This relatively simple case shows that the
present anisotropic solution-adaptive algorithm can reflect the important features of the
unsteady flow. Furthermore, the density, u velocity and pressure cross-center profiles
along the center line of y are plotted in Figs. 8-9. Good agreement of the results as com-
pared to the exact solutions, showing the accuracy of the adaptive method.



80 H. W. Zheng et al. / Commun. Comput. Phys., 9 (2011), pp. 68-88

x

ρ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact
Present

(a)

x

u

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact
Present

(b)

Figure 8: Density (a) and u-velocity (b) cross-section profile along center line of y.
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Figure 9: Pressure cross-section profile along center line of y.

4.2 Circular shock tube problem

To further demonstrate the advantage of the present anisotropic solver, the two-
dimensional circular shock-tube problem is tested. Initially, the two ideal gases with
the same initial conditions (Eqs. (4.1)-(4.2)) as those in the previous shock tube case are
separated by a diaphragm in an annulus domain where the inner and outer radius is 0.01
and 1.01 respectively (Fig. 10).

Similar to the one dimensional shock tube problem, the circular shock tube problem
has its exact solution which consists of a circular shock wave travelling away from the
center, a circular contact surface travelling in the same direction and a circular rarefaction
travelling towards the inner circle. It can be easily observed from Fig. 10(b) that the two
outer circles are the positions where the shock wave and the contact surface are located
and the inner area is the positions for the rarefaction waves. It is clear that they are
refined only in the radial direction but not in the azimuthal direction. The density, u-
velocity and pressure cross-sectional profiles along x-direction as a function of distance
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Figure 10: Mesh at t=0.1s (a) and mesh at t=0.2s (b).
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Figure 11: Density (a) and u-velocity (b) cross-section profile along center line of y.

from the inner boundary at 0.25 second are plotted in Figs. 11-12. They are compared with
the exact solutions by the random choice method (RCM) method [21]. Good agreement
of the results is clearly demonstrated in Figs. 11-12. It shows that the current adaptive
criteria could be applied to the problem where the anisotropic flow feature is not aligned
to the coordinate axis.

4.3 Shock diffraction over a back-step

In this section, the shock diffraction over a back-step is considered. This problem was
studied extensively by experiment and numerical test in [17, 23]. Here, we choose the
same geometry and conditions as those in [17]. Initially a right-moving Mach 1.3 shock
is positioned at x=0.5 from the left boundary. The initial values after the position 0.5 are
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Figure 12: Pressure cross-section profile along center line of y.

set as,
ρ1 =1.3kg/m3, u1 =0m/s, v1 =0m/s, p1 =1.0·105Pa. (4.3)

It is conducted on the background mesh which consists of a uniform mesh with three
blocks (32×32 in each block (level 0)) and the maximum level as 3. As the incident shock
wave propagates to the right, a reflected expansion wave propagates backward and a
diffracted shock travels down the step. It is known [17, 23] that the flow consists of ex-
pansion waves, a slipstream and the shock wave. From Fig. 13(a), it can be observed that
the main shock wave near the top boundary is resolved by the present anisotropic solver
as expected and only the vertical direction is refined. Besides, the foot of the diffracted
shock wave is perpendicular to the lower wall. Thus, the mesh around the foot of the
diffracted shock wave is refined only in the horizontal direction. As the time evolves, the
spiral vortex (in Fig. 13) is formed by the rolling up of the slipstream [17]. The mesh for
the vortex in our anisotropic solver clearly reflects the vortex structure which could not
be clearly observed in the isotropic solver [17] as shown in Fig. 14. Note that Fig. 14 may
not be the result at the same time as that of the present result since the physical time is
not indicated in [17]. These show a better performance in capturing the anisotropic flow
feature of the present anisotropic solver over the isotropic solver. In addition, the total
number of cells used in the isotropic result [17] is 11382 while the anisotropic adaptive al-
gorithm requires a total number of cells of 9686. Note that the performance of the present
anisotropic adaptation depends on the alignment of the initial background mesh to the
potential flow features in the problem. The more the flow features are aligned with the
background mesh, the more efficient the anisotropic flow solution. Partial alignment can
also improve the efficiency as compared with isotropic refinement.

4.4 Shock wave reflection over wedges

To show the ability of the present method on dealing with more complex problem, the
shock wave reflection over a wedge is conducted. It is another benchmark which has
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Figure 13: The anisotropic mesh (a) and density contour (b) for the shock diffraction problem at time 0.002s.
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Figure 14: The isotropic mesh (a) and the density contour (b) taken from Sun and Takayama (1999).

been studied extensively in [24]. The wedge corner with the wedge angle is put at 0.25 in
a unit square domain. Initially a right-moving Mach 2 shock positioned at x =0.1 in the
trapezoid domain is specified. The values for the primitive variables before the shock are
set as,

ρ1 =1.4kg/m3, u1 =0m/s, v1 =0m/s, p1 =1Pa, for x<0.1.

The wall boundary conditions are employed at the top and the two wedge surfaces,
while the inlet and trans-missive boundary conditions are employed at the left and right
boundary respectively. It is performed on both the structured and unstructured back-
ground mesh with a maximum level of 2 (both refinement and coarsening) (Fig. 15). It is
clear that most of boundary cells in the unstructured background mesh are orthogonal to
the boundary.

At the beginning, the incident shock wave hits the wedge surface and a reflected
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Figure 15: Final anisotropic mesh for the reflection over wedge problem on (a) structured and (b) unstructured
background mesh.
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Figure 16: Present density contours on (a) structured and (b) unstructured background mesh.

shock wave is formed. As time evolves, the solution will consist of an incident shock,
a reflected shock, a Mach stem, and a slipstream which is closed to the wedge surface.
From the observation of the mesh distributions (Fig. 15), all these waves are captured by
the present adaptive solver. It is clear that the region around the right-moving incident
shock is refined only in the vertical direction in these two meshes which are based on
the structure- and unstructured-based background meshes respectively. Besides, some
parts of reflected shock wave are refined in the direction aligned with grid. However,
there are some differences in the results on the two meshes. From Fig. 16, it is clear that
the flow pattern on unstructured-based background meshes matches the pattern of the
experiment (Fig. 17) especially in the regions that are close to the wedge. This is due
to the fact that the mesh close to the wedge is refined in the direction aligned with the
local flow features as can be seen from Fig. 15(b). These show that the present anisotropic
solver can generate the anisotropic mesh to reflect the anisotropic flow features. Besides,
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Figure 17: Experiment result.

(a) (b)

Figure 18: The isotropic adaptive mesh and density contour taken from Sun and Takayama (1999).

the isotropic mesh and results (Fig. 18) which are taken from Sun and Takayama [17] are
included for comparison. As seen in Fig. 18(a), their mesh around the incident shock
wave is not aligned with the shock wave.

4.5 Two-dimensional Riemann problem

In this section, a two-dimensional Riemann problem is investigated [25]. Initially, four
gases are separated by four lines in the four quadrants in the domain. The initial data in
the four quadrants are

ρ1 =ρ0, u1 =u0, v1 =u0, p1 = p0,

ρ2 =ρ′0, u2 =v0, v2 =u0, p2 = p′0,

ρ3 =ρ0, u3 =v0, v3 =v0, p3 = p0,

ρ4 =ρ′0, u4 =u0, v4 =v0, p4 = p′0,

with
ρ0 =1.1kg/m3, u0 =0m/s, v0 =0.8939m/s, p0 =1.1Pa,
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Figure 19: The anisotropic mesh (a) and density contour (b) for the two dimensional Riemann problem at
t=0.25s.
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Figure 20: The adaptive mesh (a) and the density contour (b) taken from Tang and Song (2008).

and

ρ′0 =0.5065kg/m3, p′0 =0.35Pa.

It is easily observed that there are four shockwaves with the discontinuities in the
density, velocity and pressure at these interfaces between each pair of quadrants. Thus,
after breaking the membranes, the shock front between quadrant 1 and quadrant 2 will
move from right to left because of the left-going shock wave. Similarly, the shock front
between quadrant 2 and quadrant 3 will move upward.

This could be verified by the calculation with the initial mesh that is adaptively gen-
erated by a 40×40 background mesh (level 0) with the maximum level as 4. The mesh
and density contour at time 0.25 second are shown in Fig. 19(a-b). From the observation
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of the mesh distributions (Fig. 19), it is clear that the region around the shock front is well
refined. This shows that the shock waves are captured well. Besides, we can also observe
the cone structure in Fig. 19 which agrees with the results (Fig. 20) in Tang et al. [25]. This
confirms our previous expected solution based on the four shocks. From Figs. 19 and 20,
it is also clear that the cell numbers used in the present anisotropic solver is much less
than those in [25].

5 Conclusion

An anisotropic solution adaptive solver for two-dimensional compressible flows is pre-
sented in this paper. It is based on quadrilateral-cell based background mesh (structured
or unstructured). The data structure management makes it feasible to apply the face-
based algorithm to solve the Euler equations. Five examples have been carried out to
examine the performance of the present solver for compressible flows. Numerical re-
sults show that the present solver can adaptively and accurately capture the transient
anisotropic flow features such as shock waves, contact discontinuities and vortices etc.
Substantial computational saving can be achieved in comparison with isotropic mesh re-
finement/coarsening, which depends on the alignment of the background mesh with the
flow features in the problem.
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