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Abstract. Droplets on hydrophobic surfaces are ubiquitous in microfluidic applica-
tions and there exists a number of commonly used multicomponent and multiphase
lattice Boltzmann schemes to study such systems. In this paper we focus on a popular
implementation of a multicomponent model as introduced by Shan and Chen. Here,
interactions between different components are implemented as repulsive forces whose
strength is determined by model parameters. In this paper we present simulations of
a droplet on a hydrophobic surface. We investigate the dependence of the contact an-
gle on the simulation parameters and quantitatively compare different approaches to
determine it. Results show that the method is capable of modelling the whole range of
contact angles. We find that the a priori determination of the contact angle is depend-
ing on the simulation parameters with an uncertainty of 10% to 20%.

PACS: 47.55.D-, 47.11.-j
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1 Introduction

During the last few decades the miniaturization of technical devices down to submicro-
metric sizes has made considerable progress. In particular, during the 1980s, so-called
microelectro-mechanical systems (MEMS) became available for chemical, biological and
technical applications leading to the rise of the discipline called ”microfluidics” in the
1990s [1]. In microfluidic devices the surface to volume ratio of a fluid can be large and
thus a good understanding of the behavior of the fluid close to the surface is mandatory.
However, the behavior of a fluid close to a solid interface is very complex and involves
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Figure 1: Definition of the contact angle as given by Young’s equation.

the interplay of many physical and chemical properties. These include the wettability of
the solid, the shear rate or flow velocity, the bulk pressure, the surface charge, the surface
roughness, as well as impurities and dissolved gas.

A common concept to quantify the wettability of a surface is the so called contact
angle. The contact angle is the angle at which the interface between a liquid and a gas or
vapor meets a solid surface. If the contact angle is larger than 90◦, the surface is called
non-wettable (hydrophobic if the liquid is water) and if the angle is smaller than 90◦, it
is said to be wettable (hydrophilic). Superhydrophobic surfaces are surfaces with contact
angles larger than 150◦. Here, almost no contact between droplet and surfaces can be
observed and the effect is often referred to as ”Lotus effect”. Regardless of the amount of
wetting, the shape of the drop can be approximated by a truncated sphere.

For a droplet on an idealised smooth surface, the contact angle θ can be computed
using the surface tensions between liquid and gas γLG, liquid and surface γLS and surface
and gas γSG as given by Young’s equation [2] (see Fig. 1),

cosθ =
γSG−γSL

γLG
. (1.1)

The model of Young was extended by Wenzel [3] as well as Cassie and Baxter [4] in order
to take the influence of surface roughness into account. While Wenzel describes a state
where the surface is completely covered by the liquid, Cassie and Baxter describe a state
where gas bubbles are enclosed between the liquid and the rough surface. Both states
have been observed experimentally and in simulations [5, 6]. The transition between the
Wenzel and the Cassie-Baxter state leads to the phenomenon of contact angle hysteresis
as observed for droplets on a tilted surface where one has to distinguish between the ad-
vancing and the receding contact angle [7–9]. In particular the state proposed by Cassie
and Baxter is of technological interest since it can be used to significantly increase the
contact angle in order to generate superhydrophobic surfaces with θ>150◦ [10–12]. Such
surfaces can be utilized to increase the flow velocity and thus the mass flux in microchan-
nels [13, 14].

While both molecular dynamics and lattice Boltzmann methods (LBM) have been em-
ployed to simulate systems with wetting properties, only LBM allow to reach experimen-
tally relevant time- and length scales. Therefore, the method has become very popular
to simulate typical problems occurring in microfluidics. A particular advantage of the
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lattice Boltzmann approach is the availability of established multiphase or multicompo-
nent methods [15–19] and a straight forward implementation of complex boundary con-
ditions. This allows the simulation of multiphase or multicomponent fluid flow along
interacting surfaces [14, 20–22]. While the free energy based multiphase model intro-
duced by Swift et al. [17] allows to set the contact angle directly, this possibility does
not exist for the model introduced by Shan and Chen. Here, the surface tension and
thus the contact angle only appear indirectly by tuning the interaction between different
fluid species and the surface [15, 16]. Therefore, a proper determination of the contact
angle is of fundamental importance for reliable comparisons between simulation results
and those obtained from theory and experiment. For the single component multiphase
Shan-Chen model, Benzi et al. proposed an analytical ansatz to compute the contact an-
gle [23]. However, in this paper we focus on the multicomponent model [15] and restrict
ourselves to single phase components only. For such a model, Huang et al. [24] recently
proposed an estimate determining the contact angle. However, a full analytical solution
of the problem is still missing. Therefore, we compare and discuss different methods to
quantify θ in dependence on the parameters of the simulation model, namely the geo-
metrical measurement, the approach of Huang et al., as well as utilizing measurements
of the surface tension to solve Young’s equation.

2 Simulation method

A set of equations can be used to represent a standard lattice Boltzmann system involving
multiple species [25]

nα
k (x+ck,t+1)−nα

k (x,t)=Ωα
k , (2.1)

with k = 0,1,··· ,b. The single-particle velocity distribution function nα
k (x,t) indicates the

density of species α, having velocity ck, at site x on a D-dimensional lattice of coordination
number b, at timestep t. The collision operator

Ωα
k =−

1

τα

(
nα

k (x,t)−n
α,req
k (x,t)

)
, (2.2)

represents the change in the single-particle distribution function due to the collisions. A
popular form is the single relaxation time τα, linear ”BGK” form [26] for the collision op-
erator. It can be shown for low Mach numbers that the LB equations correspond to a so-
lution of the Navier-Stokes equation for isothermal, quasi-incompressible fluid flow. The
lattice Boltzmann method is an excellent candidate to exploit the possibilities of parallel
computers, as the computations at a lattice site require only information about quantities
at nearest neighbour lattice sites [27, 28]. The local equilibrium distribution n

α,eq
k plays

a fundamental role in the dynamics of the system as shown by Eq. (2.1). In this study,
we use a purely kinetic approach, for which n

α,eq
k (x,t) is derived by imposing certain

restrictions on the microscopic processes, such as explicit mass and global momentum
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conservation [29]

n
α,eq
k = ζkρα

[

1+
cku

c2
s

+
(cku)2

2c4
s

−
u2

2c2
s

+
(cku)3

6c6
s

−
u2(cku)

2c4
s

]

, (2.3)

where ρα(x,t) ≡ ∑k ηα
k (x,t) is the fluid density and u = u(x,t) is the macroscopic bulk

velocity of the fluid, given by ρα(x,t)uα
≡ ∑k nα

k(x,t)ck . ζk are the coefficients resulting
from the velocity space discretization and cs is the speed of sound, both of which are
determined by the choice of the lattice. We use a D3Q19 implementation, i.e., a three
dimensional lattice with 19 discrete velocities. Immiscibility of species α is introduced in
the model following Shan and Chen [15, 16], where only nearest neighbour interactions
among the species are considered. These interactions are described by a self-consistently
generated mean field body force

Fα(x,t)≡−ψα(x,t)∑
f̄f

gαᾱ∑
x′

ψᾱ(x′,t)(x′−x), (2.4)

where ψα(x,t) is the so-called effective mass, which can have a general form for modeling
various types of fluids (we use ψα =(1−e−ρα

) [15]), and gαᾱ is a force coupling constant
whose magnitude controls the strength of the interaction between components α, ᾱ and
is set positive to mimic repulsion. The symbol x′=x+ck denotes the position of a nearest
neighbour. The dynamical effect of the force is realized in the BGK collision operator by
adding the increment

δuα =
ταFα

ρα
(2.5)

to the velocity u in the equilibrium distribution (Eq. (2.3)). This naturally opens the way
to introduce similar interactions between each fluid species and the channel walls, where
the strength of the interaction is determined by the fluid densities, free coupling con-
stants, and a wall interaction parameter.

For the interaction of the fluid components with the channel walls we apply mid-
grid bounce back boundary conditions [30] and assign interaction properties to the wall
which are similar to those of an additional fluid species, i.e., we specify constant values
for the force coupling constant gᾱα = gwall,ff and the density ηᾱ = ηwall for the rest vector
(ck = 0, k = 0) at wall boundary nodes of the lattice. This results in a purely local force
as given in Eq. (2.4) between the flow and the boundaries. Even though one could argue
that a single parameter to tune the fluid-wall interaction would be sufficient, we keep
our approach as close as possible to the original idea of Shan and Chen in order to benefit
from the experience obtained from other works using the original model. Furthermore,
the additional parameter allows more flexibility to tune the interactions in a system more
complex than considered here. The fluid-wall interaction can be linked to a contact an-
gle between fluid droplets and solid walls as it is often used to quantitatively describe
hydrophobic interactions [31].
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In the model used, the interface between domains of different fluid species has a finite
width. In order to define a position of an interface we introduce the order parameter
φ=ρα

−ρᾱ, which is zero at the interface.
We perform simulations of a droplet at an interacting surface in order to investigate

the influence of the droplet size, the pseudo wall density (wettability) ηwall, and the cou-
pling constant gαᾱ on the resulting contact angle. The system is initialised with a spherical
cap of component A and density ρA =0.7 at a smooth surface. The drop is surrounded by
a fluid of component B and density ρB =0.7.

This choice of densities is made without loss of generality. In the scope of this work
only one coupling parameter gᾱα is used. Introduction of a density contrast at initiali-
sation therefore mainly results in a shift in droplet size and mean density. The equilib-
rium density contrast, however, is fixed by the Laplace law. To quantitatively describe a
droplet of fluid in a gaseous medium, typically a contrast in dynamic viscosities of the
order of 103 needs to be modelled. This is well beyond the limit of numerical stability of
the model employed. Despite this fact, as shown below, the phenomenological nature of
the Shan-Chen force allows the qualitative modelling of the whole contact angle range.

At the surface mid-grid bounce back boundary conditions as well as a repulsive force
with pseudo wall density ηwall are applied.

3 Geometrical determination of the contact angle

Assuming a droplet has the shape of a spherical segment, the contact angle

θ =π−arctan
[ b/2

r−h

]

(3.1)

can be obtained by measuring the base b, the height h and the radius r of the droplet (see
Fig. 2). The geometrical measurement is used as a reference to compare to the approaches
of contact angle determination further below. Base and height can be determined by

b

h

rh − r

b/2

θ

Figure 2: Geometrical measurement of the contact angle. The contact angle can be determined by measuring
the diameter of the base b and the height h. The radius of the droplet is given by r=(4h2 +b2)/8h.
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measuring the position where the order parameter has a value of zero. The radius is
then given by r=(4h2 +b2)/8h. Due to the fluid-wall interaction there exists an interface
layer in the vicinity of the wall. Determining the base by measurement of sign change
of the order parameter immediately above the wall is therefore introducing an error. To
avoid this, the droplet radius is calculated from the base and height relative to a reference
point sufficiently far from the interface layer. For the simulation results discussed here a
height-offset of 5 lattice units proved to be sufficient. The correct base length above the
wall can then be calculated from the so-determined radius and the actual height.

4 Dependence of the contact angle on model parameters

The size of the simulated system has a strong influence on the precision of the results.
For example, due to discretization effects, a droplet cannot be approximated by a sphere
if the lattice resolution is too low. Further, calculations that take the curvature of the
drop into account, also require a well resolved surface of the droplet. We checked the
dependence of the contact angle on the system size for 323, 643, 1283, and 2563 lattices
and initial droplet volumes of 173, 353, 703, and 1413. An example system setup is shown
in Fig. 3. The left side of Fig. 4 depicts the measured contact angle in a system of two im-
miscible components of equal density ρ=0.7 and kinematic viscosity ν=(2τ−1)/6=1/6,
for gαᾱ = 0.16, and ηwall = 0.1,0.2,0.3. It can be seen that the contact angle increases with
increasing absolute value of ηwall and that even for the largest system size the contact an-
gle is not fully converged. The convergence depends on the wettability parameter ηwall:
the stronger the repulsion between fluid and surface, the larger the system has to be.
However, considering the doubling of initial droplet volume from ≈ 703 l.u.3 to ≈ 1413

l.u.3 the relative change in the contact angle measured is as low as approximately 0.21%

z

x

y

Figure 3: Visualisation of simulation data. The black box indicates the simulated volume. Only the liquid
component of the droplet and the wall component are rendered. Apart from the solid boundary at the bottom
periodic boundaries were employed. Here the system size is 2563 lattice sites, corresponding to an initial droplet
volume of 1413 lattice sites. The wetting parameters are ηwall =0.3 and gαᾱ =0.16.
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Figure 4: Left: dependence of θ on the droplet size for different fluid-surface interactions. gαᾱ is kept fixed at

0.16. Right: contact angle versus wetting parameter ηwall for a droplet with initial volume 1413 and gαᾱ =0.16.
The error bars denote values obtained from assuming the interface position being given by half the maximum
absolute value of the order parameter φ. Lines drawn are a guide to the eye.

for ηwall = 0.1, 0.56% for ηwall = 0.2 and 1.2% for ηwall = 0.3. Therefore, we find a com-
promise between optimal use of computing time and precision of the measurement and
restrict ourselves to lattices of size 1283, and 2563. Fig. 4 (right) shows the dependence of
the contact angle on the wetting parameter ηwall for gαᾱ = 0.16. The plot shows a linear
dependence of the contact angle up to about 160◦ and ηwall = 0.35. In the vicinity of the
complete dewetting limit, the dependence becomes non-linear.

4.1 Surface tension measurements at planar interfaces

As given by Eq. (1.1), the contact angle can be calculated if the surface tensions between
liquid and gas, liquid and surface, and gas and surface are known. Only the curvature
of the interface between liquid and gas depends on the size of the droplet. By assum-
ing an infinitely large droplet on a surface, the interface between liquid and gas can be
approximated as planar and the surface tension can be calculated using its mechanical
definition

γ=
∫ ∞

−∞
(PN−PT)dx, (4.1)

wherein the component of the pressure tensor normal to the interface is PN = Pzz and the
component transversal to the interface is PT =Pxx =Pyy. The pressure tensor is computed
as

Pij(x,t)≡∑
α

∑
k

(
cki−ui(x,t)

)(
ckj−uj(x,t)

)
nα

k(x,t)

+
1

4 ∑
α,ᾱ

gαᾱ∑
x′

[
ψα(x)ψᾱ(x′)+ψᾱ(x,t)ψα(x′,t)

]
(x−x′)2. (4.2)

Here, the first term is equivalent to the dynamic pressure. The second term describes the
distribution of the mean field body force given by Eq. (2.4).
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Figure 5: Deviation of contact angles obtained from measurements at planar interfaces from values obtained
from geometrical measurements at a droplet on a surface.

For interfaces between liquid or gas and the surface, γ is being computed equiva-
lently. As introduced in [32] a 8×8×128 sized system with periodic boundaries is filled
with two 64 lattice units long lamellae of different fluid components. The densities for
both components are chosen as 0.7, gαᾱ is varied between 0.0 and 0.2 in steps of 0.02.
For calculating the surface tension between a fluid component and the wall, half of the
system is filled with a wall component with variable wetting parameter ηwall between 0.0
and 0.6 in steps of 0.02. gαᾱ is varied as for the fluid-fluid case.

The surface tension obtained is being used to calculate the contact angle as given by
Eq. (1.1). Fig. 5 shows the deviation of the obtained values from the ones obtained by
a geometrical determination of θ. For the geometrical measurements, a droplet with a
volume of 703 l.u.3 on a flat surface is used. It can be seen that the deviation is always
positive and that the dependence of θ on the model parameters is stronger than for the
geometric measurements. In fact, already gαᾱ = 0.10 and values for ηwall of 0.2 cause
the contact angle to reach 180◦, while for gαᾱ = 0.18 this value is not being reached for
ηwall =0.3. For ηwall =0.4 all simulations have produced contact angles of 180◦.

The significant differences between the geometrical determination of the contact an-
gle and the measurements of the surface tension have a number of reasons: first, fluids
diffuse into areas where the other component is the majority. Thus, in the droplet sys-
tem, the volume covered by the droplet also includes up to 5% of the surrounding fluid
component which has an influence on the measured surface tension. Further, since the
pressure is tensorial at the interface only, merely seven discrete data points along one axis
are used to calculate the surface tension. Enhancing the resolution of the interface would,
however, increase the computational cost significantly. Nonetheless, the measurement
might be improved by introducing better statistics interpolating over the whole droplet
interface. The fluid components are slightly compressible leading to slightly different
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Figure 6: Deviation (in percent) of the contact angle measured using Young’s equation and surface tensions
obtained from radial interfaces of a droplet system from geometrical measurements. The initial volume of the
droplet is 703 l.u.3.

maximum and minimum values of the steady state densities of the droplet system and
the planar setup for the surface tension determination. Further, the curvature of the in-
terface is not being taken into account. In particular for small droplets, this effect has a
significant influence. Therefore, we compare our results to measurements obtained using
an equation for the surface tension that takes the droplet geometry into account:

γ=
∫ ∞

0

( r

Rs

)2
(PN−PT)dr. (4.3)

Here Rs is the radius of the interface. We integrate from the center of the droplet (r =0).
The integral is evaluated until 5 l.u. before the border of the system in order to minimize
any influences due to periodic boundary conditions.

The resulting contact angles are always smaller than the ones obtained from the ge-
ometrical determination (see Fig. 6). In particular for moderate values of ηwall we find
strong deviations due to a higher curvature in the curve solving the Young-Laplace equa-
tion with the measured surface tensions. There is no linear dependence of the contact
angle on the surface wettability as observed in the geometrical measurements.

In a recent publication, Huang et al. postulate an estimate for the contact angle within
the multiphase multicomponent Shan-Chen model [24]. This estimate is valid for a fixed
ratio of the component densities and their coupling constants. The approach of Huang et
al. is based on the assumption that the surface tension at the wall is mainly determined
by the local interaction. The force acting on component α, where the boundary condition
is given by an interacting surface, can be written as

Fα = Fc,α
︸︷︷︸

cohesion(fluid/fluid)

+ Fads,α
︸ ︷︷ ︸

adhesion(solid/fluid)

.
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Figure 7: Deviation (in percent) of the contact angle measured using the approach of Huang at al. from

geometrical measurements. The initial volume of the droplet is 703 l.u.3.

For the components we have

Fc,α(x,t)=−gαᾱρα(x,t)∑
k

ρᾱ(x+ck∆t,t)ck ,

Fads,α(x,t)=−Gads,αρα(x,t)∑
k

s(x+ck∆t,t)ck ,

with s=1, if there is a surface in the direction of motion and s=0 if not. In proportion to
these forces, the surface tensions can be calculated in dependence on the density gradient
as arithmetic average of minimum and maximum density

γαᾱ = gαᾱ

[ρα−ρᾱ

2

]

,

γα =Gads,α = gαᾱ ·ηwall.

From this we obtain the Young-Laplace law

cosθ =
Gads,α−Gads,ᾱ

gαᾱ[
ρα−ρᾱ

2 ]
. (4.4)

In our case we use the same coupling for fluid-fluid and fluid-solid interactions. There-
fore, this equation only depends on the density gradients. However, the dependence on
the coupling parameter gαᾱ enters implicitly. Also for this method we compare the re-
sults to the geometrical measurement of the contact angle. As before, Fig. 7 shows the
deviation of the contact angle (in percent) from the values observed from the reference
measurement for an initial droplet size of ≈703 l.u.3. The deviation is proportional to the
absolute value of the coupling and decreases for low gαᾱ already at a wettability of 0.2.
This allows to assume a dependence on the interface thickness.
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The deviations of Huang’s approach compared to the geometrical measurements are
up to 15 percent. Since the validity was only postulated for a limited set of parameters,
i.e., gαᾱ ·ρ

α = const, there might be a range where deviations are lower. Further, due to
the implicit dependence on the coupling, we expect that it should be possible to achieve
a better agreement of theory and simulation if one tunes the parameters consistently.
However, this is beyond the scope of the current contribution.

5 Discussion and conclusions

We studied the dependence of the contact angle of a droplet on a hydrophobic surface
by means of the Shan-Chen multicomponent LB model and our fluid-surface interaction
model.

First, geometrical measurements of the contact angle were used to measure parame-
ter dependencies. Parameters taken into consideration here were system size, coupling
parameter gαᾱ and wetting parameter ηwall. The influence of the system size on the simu-
lations is caused by finite size effects only and vanishes when simulating larger systems.
Discretization errors for curved surfaces diminish then, as well as effects of strictly local
force incorporation, leading for instance to finite interfacial thickness.

The pseudo density ηwall of the wall component was introduced into the model as
parameter of the wetting behaviour [20]. Reasonably far from the extremal cases of com-
plete (de-)wetting (θ = 0◦ and θ = 180◦, respectively), a linear dependency of θ on ηwall

was observed. This behaviour can be understood following the concept of Eq. (4.4). The
coupling parameter gαᾱ of the intercomponent interaction is the same for all components
(fluid-fluid as well as fluid-wall) and therefore cancels from the Young-Laplace law, leav-
ing the contact angle proportional to the ratio of densities only. Nonetheless, since the
coupling parameter gαᾱ is determining the density gradient at the interfacial area, there
is still an indirect influence on the contact angle. Here, two effects can be differentiated.
Given lower coupling, the interfacial area becomes more diffuse, introducing a higher
uncertainty to the determination of the position of the interface. For high values of gαᾱ

and thus strong repulsive forces, the pseudo potential of the wall can cause the droplet
to hover, thereby leaving the definition range of the contact angle.

A method to calculate the expected contact angle as a function of parameters would
be expedient. A first ansatz to deduct the contact angle of a single phase multicomponent
system from a simple model is given by the determination of the surface tension between
each two of the three components present in the droplet system. The main advantage
of this approach lies in the small system size needed and the possibility to tabulate the
obtained values for future use. Because of the periodic boundaries the precision of the
calculation is relying only on the dimension normal to the interface [32]. The surface
tension is then determined by its mechanical definition, Eq. (4.1). Comparison between
the contact angles calculated by inserting these surface tension values into the Young-
Laplace law and the ones measured geometrically in droplet systems yields however
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large discrepancies. While the range of definition is met for coupling parameters close
to numerical instability, in general the contact angle values gained from the model sys-
tem are much higher than those observed in the droplet system, reaching the complete
dewetting limit comparably faster.

To quantify the effect of the simplifications made in the model system, mainly by
neglecting the presence of the minority component in the interfacial area as well as the
curvature of the interface, the principal of measurement was utilised directly in droplet
systems as well. The range of definition of θ was met for the whole coupling parameter
range. However, in the range of linear ηwall-dependence found by geometrical measure-
ment the contact angle calculated from the Young-Laplace equation was in general lower,
diverging by up to 18%.

A problem still persisting with surface tension measurements in the droplet system
are discretization effects at the curved interface. Additionally, the interfacial range where
there is actual tensorial pressure, is depending on the coupling chosen, 5 to 11 lattice
units wide. This introduces a large uncertainty to the integration even along the interface
orthogonal to lattice directions. Whether a tuning of the contact angle behaviour by in-
troducing separate coupling for each two components is possible is yet to be determined.

Finally, to evaluate another approach of a priori contact angle determination, an ap-
proximation introduced by Huang et al. for a multiphase multicomponent Shan Chen
model was adapted to our single phase multicomponent approach. Here results compa-
rable to the surface tension measurements in the droplet system were gained. While the
range of definition is met, the contact angle values are up to 15% lower than the geomet-
rically measured. However, since the approximation was postulated for a fixed relation
of density and coupling, eventually a change in the parameter set can decrease this devi-
ation. Because of the high calculation cost of parameter search this has been omitted.

To conclude, utilising a pseudo wall density as wetting parameter in a single phase
multicomponent Shan Chen LBM it is possible to simulate the complete range of contact
angles as determined by geometrical measurement. A priori determination of the contact
angle based on simulation parameters is possible with an uncertainty between 10% and
20% depending on the schemes taken into consideration as well as the parameter range.

Acknowledgments

This work was supported by the DFG priority program ”nano- and microfluidics” and
the Collaborative Research Centre (SFB) 716. The computations were performed at the
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