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Abstract. Based on an error estimate in terms of element edge vectors on arbitrary
unstructured simplex meshes, we propose a new edge-based anisotropic mesh refine-
ment algorithm. As the mesh adaptation indicator, the error estimate involves only the
gradient of error rather than higher order derivatives. The preferred refinement edge
is chosen to reduce the maximal term in the error estimate. The algorithm is imple-
mented in both two- and three-dimensional cases, and applied to the singular function
interpolation and the elliptic interface problem. The numerical results demonstrate
that the convergence order obtained by using the proposed anisotropic mesh refine-
ment algorithm can be higher than that given by the isotropic one.
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1 Introduction

For singular or nearly singular problems, the structures of singularity often exhibit ”low-
dimensional” feature that the solutions vary significantly in some directions but mildly
in other directions. To numerically approximate such solutions efficiently, no doubt
we prefer anisotropic meshes, which are of different length scales in different direc-
tions and fit the anisotropic feature in the solutions. Numerous examples, including
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pervasive layer structures and interface discontinuities, have shown the efficiency of
anisotropic elements in reducing computational cost and improving approximation ac-
curacy [1, 5, 6, 17, 22, 27, 28, 30]. This paper is concerned with the elliptic interface prob-
lem with homogeneous and non-homogeneous jump conditions, which attracts much
interests since it is omnipresent in many scientific and engineering problems, including
multi-phase flows, nano-electronic devices, electromagnetic wave propagation in hetero-
geneous waves, implicit solvent models in structural biology, and biological membrane.
To resolve the layer anisotropy, we develop an anisotropic refinement algorithm which
can be effective not only for the interface problem but also for problems with global
anisotropy.

Compared with isotropic elements, the description of anisotropic meshes needs more
information. Take two-dimensional triangular element as example, its anisotropy can be
measured in two main aspects [8]. One is orientation, which is roughly the direction of
its longest side. The other is the aspect ratio, which measures how thin the triangle is.
The first quantity is supposed to be more crucial to the success of anisotropic element.
Goodman et al. [15] once gave an example showing that a wrong direction may lead to
non-convergence. In the past decades, some important improvement has been made in
numerical analysis of linear interpolation on anisotropic triangular meshes [3, 7, 19, 23].
The main conclusion can be roughly stated as: given the area of a triangular element τ,
the error (in Lp-norm) for the linear interpolation of a function u at the vertices of τ is
nearly the minimum when τ is aligned with the eigenvector (associated with the smaller
eigenvalue) of the Hessian ∇2u, and the aspect ratio (or stretch ratio) of τ is about the
square root of the ratio of the greater eigenvalue of ∇2u to the smaller one. For quadratic
interpolation, the anisotropic orientation depends on ∇3u [8] and higher order interpo-
lation may have similar properties. Based on this analysis, some anisotropic mesh opti-
mization methodologies have been developed [4, 9, 16], which try to minimize the error
by relocating nodes. From a practical point of view, since the solution of the problem is
unknown, a crucial point in these methods is how to approximate high order derivatives
such as ∇2u or ∇3u efficiently and accurately. When the solution is not regular enough,
the accuracy in recovering the high order derivatives can be misleading.

As an effort to overcome the difficulty of requiring high order derivatives, the method
we propose depends on only the first order derivatives of u(uh). For each element with
indicator above the given tolerance, one edge is chosen as the preferred refinement edge.
The affine map from the reference element to the actual element plays an essential role
in anisotropic error analysis. In [11, 12], Formaggia et al. proved that the sum of error
gradient projection onto two principal axes of the affine map is an upper bound of the
element error. We project the error gradient onto the element edges instead to find the
preferred refinement edge. Since the Jacobian matrix of the affine map can be expressed
by edge vectors when we use the unit reference triangle, the sum of error gradient pro-
jection onto the three edges is again an upper bound of the element error. To reduce this
upper bound error estimate, the most efficient mesh adaptation is to refine the edge with
the maximal contribution to the estimate. The algorithm is first validated for the inter-
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polation of given functions. The H1 error between the function and its interpolation is
used as the adaptive indicator. The example for two-dimensional smooth function shows
the advantage of anisotropic refinement in saving the total number of degree of freedom.
The examples for the gradient discontinuous functions demonstrate the capability of the
anisotropic algorithm in improving the convergence order. Then as an application, we
solve a second-order elliptic immersed-interface problem with homogeneous and non-
homogeneous jump conditions. In this case, the simple recovery-type Zienkiewicz-Zhu
error estimator [31] is adopted as the adaptation indicator. The error convergence is sim-
ilar to that for the interpolation of the weakly discontinuous functions.

The layout of this paper is as follows: in Section 2, we introduce the model prob-
lem and its finite element discretization for elliptic interface problem, including homoge-
neous and non-homogeneous cases. In Section 3, we describe the algorithm of adaptive
anisotropic mesh refinement. In Section 4, we give the edge-based error analysis and the
strategy to choose the preferred refinement edge. In Section 5, numerical experiments are
presented to demonstrate the performance of our method for function interpolation and
elliptic interface problems. Concluding remarks in Section 6 close this paper.

2 Model problem and finite element discretization

Consider the following elliptic interface problem (see, e.g., [14]):






−∇·β−∇u= f in Ω−,
−∇·β+∇u= f in Ω+,
[[u]]Γ =w,
[[

β
∂u

∂~n

]]

Γ
=Q,

u|∂Ω = g,

(2.1)

where Ω is a bounded domain with its boundary ∂Ω, Ω− and Ω+ are sub-domains of Ω

such that Ω−⋂Ω+ =∅ and Ω−⋃Ω+ =Ω, and

β(x)=

{
β−, x∈Ω−,
β+, x∈Ω+.

For simplicity, we assume that Ω−⋂∂Ω = ∅. We denote Γ = Ω−⋂Ω+ to be the interface
separating Ω− and Ω+, and n to be the unit vector normal of Γ pointing from Ω− to Ω+

(see, e.g., Fig. 1). As usual, [[·]]Γ denotes the jump across Γ, i.e., for any function ξ,

[[ξ]]Γ(x)= lim
y→x, y∈Ω+

ξ(y)− lim
y→x, y∈Ω−

ξ(y), x∈Γ.

We assume that Γ is sufficiently smooth, β(x)≥β0>0, f∈L2(Ω), w, Q and g are all smooth
and bounded given functions.
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Ω−

Ω+

n

Γ

Ω
Figure 1: Domain of the interface problem.

If the jump conditions are homogeneous, i.e., w = 0 and Q = 0, the weak solution
u∈H1(Ω) and satisfies

∫

Ω
β∇u·∇vdx=

∫

Ω
f vdx, ∀v∈H1

0 (Ω), (2.2)

where u|∂Ω = g.
In general, the weak solution u /∈ H1(Ω) for the non-homogeneous problem. In this

case, we follow [14] and extend the non-homogeneous jump w : Γ → R to a piecewise
smooth function ŵ : Ω→R such that

[[ŵ]]Γ =w.

Then problem (2.1) is equivalent to finding u = q+ŵ, where q∈H1(Ω), such that q|∂Ω =
g−ŵ, and

∫

Ω
β∇q·∇vdx=

∫

Ω
f vdx−

∫

Γ
Qvds−

∫

Ω
β∇ŵ ·∇vdx, ∀v∈H1

0(Ω). (2.3)

Let Th be a triangulation on Ω, then we have the standard piecewise polynomial fi-
nite element space Vh ⊂C(Ω) on this partition. The finite element discretization of the
homogeneous jump problem (2.2) is to find uh ∈Vh,g, such that

(β∇uh,∇vh)Ω =( f ,vh)Ω, ∀vh ∈Vh,0, (2.4)

where

Vh,ψ =
{

vh ∈Vh : vh|∂Ω =ψ
}

,

and (·,·)Ω denotes the L2 inner product on Ω.
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The corresponding finite element discretization of the non-homogeneous jump prob-
lem (2.3) is to find qh ∈Vh,g−ŵ, such that

(β∇qh,∇vh)Ω =( f ,vh)Ω−
∫

Γ
Qvhds−(β∇ŵ,∇vh)Ω, ∀vh ∈Vh,0. (2.5)

For above schemes, there are only very loose constraints (see Assumption 4.1 in Sec-
tion 4) on the partition except that the elements are required to be triangles without hang-
ing nodes. The highly anisotropic triangles are accepted in the partition for efficiency
of the numerical approximation. We start from a quasi-uniform background mesh and
adaptively generate the anisotropic mesh based on the indicators and algorithms pro-
vided in Sections 3 and 4.

3 Algorithm of adaptive anisotropic mesh refinement

We first present the adaptive anisotropic refinement algorithm assuming the preferred
refinement edges are given. Let the domain Ω be an n-dimensional (n=2 or 3) polygonal
domain, and a partition Th on Ω with triangle elements or tetrahedron elements be quasi-
uniform, as the background mesh of our adaptive algorithm. As the common framework,
there is a finite element space Vh on this partition and a finite element solution uh in
the space Vh, as the approximation of a function u, which can be the solution of a PDE.
Based on the information of uh, a number can often be calculated on every element e∈Th,
denoted as Ce(uh), which shows the distribution of error. This Ce(uh) can be used as the
indicator of mesh adaptation and commonly calculated by an a posteriori error estimate.

The standard chart flow of the local mesh refinement algorithm can now be described
as an iterative procedure as follows:

Algorithm 3.1:

1. set k=0, and T (0)
h =Th;

2. solve for uh on T (k)
h , and compute the refinement indicator Ce(uh);

3. judge if the quality of the numerical solution is good enough based on Ce(uh): if yes, stop;

4. generate a new mesh based on uh and T (k)
h ;

5. let k :=k+1 and set the new mesh as T (k)
h , then go to Step 2;

We focus on Step 4 of this procedure. There are two main differences between the
anisotropic and isotropic mesh refinement algorithms. The first is that it is necessary to
choose the preferred refinement edge in the anisotropic case, which is presented in the
next section. The second is how to update the local mesh structure, which is discussed
below.
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Suppose for elements in Th with its indicators above the given tolerance, marks are
already set on the preferred refinement edges. We demonstrate how the mesh structure
is updated. For two-dimensional case, the following Algorithm 3.2 bisects all marked
edges while the mesh remains to be free from hanging nodes.

Algorithm 3.2:

1. denote S :={e∈Th|at least one edge of e is marked} to be initial set of elements for refinement;

2. stop if S=∅;

3. fetch one element e from S and let S→S\{e};
4. set the current edge to e’s preferred refinement edge, if any, or to a randomly chosen marked

edge of e;

5. bisect e to two elements e1 and e2 along the current edge;

6. add element ei, i=1,2, to the set S if it has marked edges;

7. goto Step 2;

In this algorithm, the element number of the waiting set S is not monotonically de-
creasing, while the number of marked edges is monotonically decreasing, by one every
step. Since every element in S should have at least one marked edge, the algorithm will
stop in a finite number of steps.

Precisely, the above refinement algorithm produces three cases, as illustrated in Fig. 2:

1. Elements with only one marked edge are bisected as in Fig. 2(a);

2. Elements with two marked edges are divided into three elements after two opera-
tions as shown in Fig. 2(b). The edge to refine first is the preferred refinement edge,
if any, or randomly chosen from the two marked edges. In both cases, exactly one
of the two elements created by the first refinement operation has one marked edge,
which will be handled by case 1 above;

3. Elements with three edges marked are divided into four elements after three op-
erations, as shown in Fig. 2(c). The edge to refine first is the preferred refinement
edge, if any, or a randomly chosen one. The first refinement operation creates two
elements with one marked edge, which will be handled by case 1 above.

We also implement the mesh refinement algorithm for three-dimensional (3D) mesh
with tetrahedral elements. Similar to the 2D case, our discussion is based on element.
For each tetrahedral element with indicator above the given tolerance, suppose one of its
six edges is labeled as the preferred refinement edge and the new freedom is located on
the midpoint. First we demonstrate the basic bisection operation for an element with one
marked edge in Fig. 3.

Different from the 2D mesh update, the mesh update in 3D is much more involved
due to the complex geometric configuration and the above edge-based bisection. For a
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(a) (b) (c)

Figure 2: The three cases of refinement for one element in two-dimensional space.

Figure 3: The bisection operation for tetrahedron with one labeled edge.

tetrahedral element, it can share a node, an edge or a surface with its neighbor. Mesh
confusion may happen on the common surface of two neighboring elements. A unique
sequence number is needed for each labeled edge to guarantee that the bisection is or-
dered operated and mesh confusion is avoided. Even though, the algorithm can be im-
plemented following the basic procedure of Algorithm 3.2 with some slight modification.

Algorithm 3.2*:

1. denote S :={e∈Th|at least one edge of e is marked} to be initial set of elements for refinement;

2. give each marked edge a unique sequence number;

3. stop if S=∅;

4. fetch one element e from S and let S→S\{e};
5. set the current edge to e’s marked edge with the smallest sequence number;

6. bisect e to two elements e1 and e2 along the current edge;

7. add element ei, i=1,2, to the set S if it has marked edges;

8. goto Step 3;

Similarly, the above algorithm will end in finite steps.
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4 Indicators for adaptive anisotropic mesh refinement

In this section, we present the strategy to choose the preferred refinement edge based on
an error estimate in terms of the element edge vectors. The error estimate can be given
for both the function interpolation and the model elliptic equation.

P1

P2 P3

~l3 ~l2

~l1

�

Figure 4: Notations on a triangle τ.

We consider the error estimate of the linear interpolation at first. Let u be a quadratic
polynomial, and uI be a piecewise linear Lagrangian interpolation of u. For a given

element τ, denote Pi=(xi,yi) and~li, 1≤i≤3, to be its three vertices and edges as illustrated
in Fig. 4, and ci, 1≤ i≤3, to be the linear nodal basis functions (barycenter coordinates).
Then uI on the element τ can be expressed as

uI|τ = ∑
i=1,2,3

u(xi,yi)ci.

Goodman provided an edge-based L∞ error estimate for quadratic function u firstly in
[15] as

1

8
max

i=1,2,3

~lT
i H~li ≤max

x∈τ
|u−uI |≤

1

6
max

i=1,2,3

~lT
i H~li,

where H is the Hessian matrix of u. Naturally, controlling the error E(~li)=~lT
i H~li leads to

an edge-based anisotropic refinement algorithm if H is known.

Let us denote ~E=(E1,E2,E3)T with Ei =E(~li), 1≤ i≤3. Cao established the L2 interpo-
lation error in [7] as ∫

τ
|u−uI |2dxdy=

1

4
~ETB0~E,

and Bank et al. computed the H1 interpolation error in [4] as
∫

τ
|∇u−∇uI |2dxdy=

1

4
~ETB1

~E,

where matrices B0 and B1 are usually positive definite and diagonal dominant and de-
pendent on τ. Thus the L2 and H1 interpolation error can be approximated as

∫

τ
|u−uI |2dxdy≈C(E2

1 +E2
2 +E2

3)
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and ∫

τ
|∇u−∇uI |2dxdy≈C1(E2

1+E2
2 +E2

3),

where constants C and C1 are dependent on the triangle. Suppose an element is selected
by some means to be refined, we can regard C and C1 as constants on this element. The
most efficient way to reduce the error of this element is to refine the edge with biggest
Ei. So if the function u is locally quadratic that H can be approximated with enough
accuracy, an edge-based anisotropic refinement algorithm is very likely to succeed by the
above method. Bank et al. [4] used this idea in their mesh smoothing method by solution
of a minimization problem.

1

ŷ

x̂ λ1

λ2

~r2

~r1

M

Figure 5: The transformation when the reference triangle is equilateral. The unit circle is mapped into an ellipse
with directions~r1 and~r2, the amplitude of stretching being λ1 and λ2.

Let us try to deduce the error estimate in terms of the element edge vectors without
using the information of the Hessian matrix. With the first-order derivatives, Formaggia
et al. [11, 12] analyzed the linear L2 interpolation error, based on the eigenvalues and
eigenvectors of the affine map from the reference triangle to the actual triangle. For a
triangle τ, let Tτ : τ̂→τ be the affine transformation which maps the reference triangle τ̂
into τ. Let Mτ be the Jacobian matrix of the map

~x=Tτ(~̂x)= Mτ~̂x+~tτ ,

where ~x, ~̂x are coordinate vectors of actual points and reference points. Since Mτ is in-
vertible, it admits a singular value decomposition (SVD): Mτ = RT

τ ΛτPτ. We set

Λτ =

(
λ1,τ 0

0 λ2,τ

)
, Rτ =

(
~rT

1,τ

~rT
2,τ

)
, λ1,τ ≥λ2,τ,

and the geometric interpretation of this decomposition is in Fig. 5. Let Ih be the linear
interpolation operator of Clément type (see, e.g., [26]): H1(Ω)→Vh. We assume that the
partition Th satisfies

Assumption 4.1. The diameter of the reference patch ∆τ̂ = T−1
τ ∆τ is independent of the

mesh geometry, where ∆τ =
⋃

T∈Th,T̄∩τ̄ 6=∅ T.
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It was then pointed out in [11,12] that there exists a constant C depending only on the
reference element τ̂ (we use this notation for C from now on) such that, for all τ∈Th and
an arbitrary function v∈H1(Ω),






‖v− Ihv‖L2(τ)≤Cωτ(v),

‖v− Ihv‖
L2(~li)

≤C

√
li

λ1,τλ2,τ
ωτ(v), i=1,2,3,

where li = |~li| (the length of~li) and

ω2
τ(v)=λ2

1,τ(~rT
1,τGτ(v)~r1,τ)+λ2

2,τ(~r
T
2,τGτ(v)~r2,τ), (4.1a)

Gτ(v)=
∫

∆τ




∂v

∂x

∂v

∂x

∂v

∂x

∂v

∂y
∂v

∂x

∂v

∂y

∂v

∂y

∂v

∂y


dxdy=

∫

∆τ

∇v·(∇v)Tdxdy. (4.1b)

Based on the above interpolation error estimate, Picasso [21] obtained an a priori error
estimate for the finite element approximation of the elliptic equation

{
−∇·(A∇u)= f , in Ω,
u|∂Ω =0,

(4.2)

where f ∈L2(Ω). Let uh be the linear finite element solution and e=u−uh, it was proved
in [21]

∫

Ω
A∇e·∇e≤C ∑

τ∈Th

(
‖ f +div(A∇uh)‖L2(τ)

+
1

2

3

∑
i=1

√
li

λ1,τλ2,τ
‖[[A∇uh ·~n]]‖

L2(~li)

)
×ωτ(e), (4.3)

where~n is the unit out normal on edge~li.

Denote E′(~l),~l TGτ(e)~l. The two terms E′(λi,τ~ri,τ)=λ2
i,τ~r

T
i,τGτ(e)~ri,τ (1≤i≤2) in ω2

τ(e)
can actually be written as

λ2
i,τ~r

T
i,τGτ(e)~ri,τ =

∫

∆τ

∣∣∣∣
(

∂e

∂x
,
∂e

∂y

)
·λi,τ~ri,τ

∣∣∣∣
2

dxdy.

Recall the geometry property of~ri,τ and λi,τ , E′(λi,τ~ri,τ) is then the projection of the error
gradient on the principal axis~ri,τ with length to be λi,τ. Since the three edge vectors can
be represented by linear compositions of the principal axes, it is suggested to examine
the projection of the error gradient on the edges of the triangle. Specifically, we set the
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reference element to be the unit triangle τ̂={(x̂,ŷ),0≤ ŷ≤1− x̂, x̂∈ [0,1]}, with its vertices
as p̂1 =(0,0), p̂2 =(1,0) and p̂3 =(0,1). The affine map Tτ : τ̂→τ satisfies:

~x=Tτ(~̂x)= Mτ~̂x+~tτ ,

and the Jacobian matrix is

Mτ×
(

1−0, 0−0
0−0, 1−0

)
=
(

~l3 −~l2

)
,

i.e., Mτ =(~l3,−~l2). We have

Lemma 4.1. Let v∈H1(τ), and v̂ be the corresponding function defined on the reference element
τ̂. Then

λ2,τ

λ1,τ
‖∇v‖2

L2(τ)≤‖∇̂v̂‖2
L2(τ̂)≤|Mτ |−1

3

∑
i=1

‖~li
T ·∇v‖2

L2(τ), (4.4)

where |Mτ | denotes the determinant of Mτ.

Proof. Noting that
∇̂v̂= MT

τ∇v,

we have

‖∇̂v̂‖2
L2(τ̂) = |Mτ|−1

∫

τ
(~lT

3 ∇v)2+(~lT
2 ∇v)2 ≤|Mτ|−1

3

∑
i=1

‖~li
T∇v‖2

L2(τ).

The upper bound for ‖∇v‖L2(τ) in terms of ‖∇̂v̂‖L2(τ̂) is given by Lemma 2.2 of Formaggia
et al. [11].

The L2 error of the interpolation of Clément type for v∈H1(Ω) is estimated as

Proposition 4.1. Let v∈H1(Ω). Then

‖v− Ihv‖2
L2(τ)≤C

3

∑
i=1

~li
T

Gτ(v)~li, (4.5)

where Gτ(v) is given in (4.1).

Proof. Considering v∈H1(τ), let v̂ be the corresponding function defined on the reference
element τ̂. Using the normal relation between τ̂ and τ, we have

‖v− Ihv‖2
L2(τ) = |Mτ |‖v̂− Îhv̂‖2

L2(τ̂),

Applying the well known Bramble-Hilbert lemma (see, e.g., [10]), it can be concluded
that

‖v̂− Îhv̂‖L2(τ̂)≤C|v̂|H1(∆τ̂).
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Thus,

‖v− Ihv‖2
L2(τ)≤C|Mτ||v̂|2H1(∆τ̂) =C|Mτ| ∑

T̂∈∆τ̂

|v̂|2
H1(T̂)

.

Now the semi-norms |v̂|H1(T̂) can be replaced by inequality (4.4) in Lemma 4.1. It follows
that

‖v− Ihv‖2
L2(τ)≤C ∑

T∈∆τ

∑
i=1,2,3

‖~li
T ·∇v‖2

L2(T) =C
3

∑
i=1

~li
T

Gτ(v)~li,

which completes the proof.

Proposition 4.2. Let v∈H1(Ω). Then

|v− Ihv|2H1(τ)≤C
1

λ2
2,τ

3

∑
i=1

~li
T

Gτ(e)~li, (4.6)

where e=v− Ihv.

Proof. It follows from inequality (4.4) that

|v− Ihv|2H1(τ)≤
λ1,τ

λ2,τ
|v̂− Îhv̂|2H1(τ̂) =

λ1,τ

λ2,τ
‖∇̂ê‖2

L2(τ̂)

≤ λ1,τ

λ2,τ
|Mτ |−1

3

∑
i=1

‖~li
T∇e‖2

L2(τ)

≤ λ1,τ

λ2,τ
|Mτ |−1

3

∑
i=1

~li
T

Gτ(e)~li.

Using the fact |Mτ |=λ1,τλ2,τ completes the proof.

Proposition 4.3. Let v∈H1(Ω). Then

‖v− Ihv‖2
L2(~lj)

≤C
lj

|Mτ|
3

∑
i=1

~li
T

Gτ(v)~li, j=1,2,3. (4.7)

Proof. By (4.4) we have that

‖v− Ihv‖2
L2(~lj)

=
lj

l̂j

‖v̂− Îhv̂‖2

L2(~̂lj)

≤ lj‖v̂− Îhv̂‖2
L2(∂τ̂)≤Clj ∑

T̂∈∆τ̂

|v̂|2
H1(T̂)

≤Clj|Mτ|−1
3

∑
i=1

~li
T

Gτ(v)~li.

This completes that proof.
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We denote

ω′
τ(e)=

( 3

∑
i=1

E′(~li)
)1/2

=
( 3

∑
i=1

~li
T

Gτ(e)~li

)1/2
.

Follow [21] and Propositions 4.1 and 4.3, the error estimate (4.3) for the finite element
approximation of the elliptic equation can be revised as

∫

Ω
A∇e·∇e≤C ∑

τ∈Th

(
‖ f +div(A∇uh)‖L2(τ)

+
1

2

3

∑
i=1

√
li

|Mτ |
‖[[A∇uh ·~n]]‖

L2(~li)

)
×ω′

τ(e), (4.8)

with e=u−uh.

We verify that ω′(e) can be bounded from above by ω(e). Precisely for each edge~li,

~li = aiλ1~r1+biλ2~r2, |ai|≤2, |bi|≤2,

we have that

E′(~li)≤2max(a2
i ,b2

i )
(

E′(λ1~r1)+E′(λ2~r2)
)

≤8
(

E′(λ1~r1)+E′(λ2~r2)
)

.

Consequently,

ω′(e)≤2
√

6 ω(e).

Set the preferred refinement edge: now we are in the position to set the preferred re-
finement edge for the elements to be refined in the mesh. The elements with the error
indicator above the tolerance are marked as the first step. The error indicator can be the
residual type a posteriori error estimates (see, e.g., [21]) or the recovery type a posteriori

error estimates (see, e.g., [29]). Then we weight each edge ~li of a marked element with

wi =~li
T

Gτ(e)~li, i=1,2,3 and mark the edge with the greatest weight by using Proposition
4.2 for interpolation problem and estimate (4.8) for elliptic interface problem, respec-

tively. The matrix G(e) in E′(~li) plays the same role as the Hessian matrix H in E(~li) in
certain way.

Remark 4.1. In the numerical examples of the interpolation problem (see the next sec-
tion), we can use the exact error e as our refinement indicators. While solving PDEs, we
still need a posteriori error estimates, such as residual-based a posteriori error estimates or
recovery type a posteriori error estimates (see, e.g., [31]), and G(e) can only be computed
by approximation. The gradient recovery of uh (see [29] and [31] for more details) can be
applied to replace the gradient of the solution u in G(e).
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Remark 4.2. From the proofs, it can be seen the propositions given in this section are
valid due to the fact that the linear Clément interpolation satisfies

Îhv= Îhv̂, ‖v̂− Îhv̂‖L2(τ̂)≤C|v̂|H1(∆τ̂)
.

It is easy to verify that the propositions can be extended to any interpolation having
the above properties, including the Clément type interpolation of higher order (see, e.g.,
[26]).

Remark 4.3. On rectangular meshes, Apel et al. [2] developed an anisotropic refine-
ment method based upon error gradients by comparison of the two quantities

∥∥ ∂e
∂x

∥∥ and∥∥ ∂e
∂y

∥∥, and obtained anisotropic meshes with hanging nodes. This method works well for

straight sharp layers on structured meshes. Our method can be regarded as an extension
of Apel’s method on unstructured meshes.

P4

P1
P3

P2

~l1 ~l2~l3

~l4
~l5 ~l6

Figure 6: Notations on a tetrahedron τ.

Next, let us consider problems in 3D space. For tetrahedral elements, we have sim-
ilar L2 interpolation error estimate as in Proposition 4.1. Precisely, we set the reference
element to be the unit tetrahedron τ̂ with vertices as p̂1 =(0,0,0), p̂2 =(1,0,0), p̂3 =(0,1,0)
and p̂4=(0,0,1). Then for an actual tetrahedral element τ as in Fig. 6, the affine map from
the reference tetrahedron to it is

~x=Tτ(~̂x)= Mτ~̂x+~tτ ,

and the Jacobian matrix Mτ satisfies

Mτ×




1−0, 0−0, 0−0
0−0, 1−0, 0−0
0−0, 0−0, 1−0



=
(

−~l5 ~l4 ~l1

)
,

i.e., Mτ =(−~l5,~l4,~l1).
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Proposition 4.4. Suppose that Ω is a three-dimensional polygon domain, v∈H1(Ω) and Ihv is
the linear Clément interpolation of v on a partition with tetrahedral elements. Then

‖v− Ihv‖2
L2(τ)≤C

6

∑
i=1

~li
T

Gτ(v)~li, (4.9)

where Gτ(v) is defined as follows

Gτ(v)=
∫

∆τ

∇v·(∇v)Tdxdydz, ∆τ =
⋃

T∈Th,T̄∩τ̄ 6=∅

T.

Proof. The proof is similar to that in two-dimensional case. Let v̂ be the corresponding
function defined on the reference element τ̂. Using the normal relation between τ̂ and τ,
we have

‖v− Ihv‖2
L2(τ) = |Mτ |‖v̂− Îhv̂‖2

L2(τ̂).

Again by the Bramble-Hilbert lemma (see, e.g., [10]), we obtain

‖v̂− Îhv̂‖L2(τ̂)≤C|v̂|H1(∆τ̂).

Thus,

‖v− Ihv‖2
L2(τ)

≤C|Mτ||v̂|2H1(∆τ̂) =C|Mτ| ∑
T̂∈∆τ̂

‖∇̂v̂‖2
L2(T̂)

.

Notice
∇̂v̂= MT

τ∇v

still holds in 3D case. Consequently,

‖v− Ihv‖2
L2(τ)

≤C ∑
T∈∆τ

(
‖~l5

T∇v‖2
L2(T)+‖~l4

T∇v‖2
L2(T)+‖~l1

T∇v‖2
L2(T)

)

≤C ∑
T∈∆τ

6

∑
i=1

‖~li
T ·∇v‖2

L2(T) =C
6

∑
i=1

~li
T

Gτ(v)~li.

This completes the proof.

By this estimate, our algorithm may be extended to the 3D space. We can then choose

one of the six edges with the greatest weight ~li
T

G~li as the preferred refinement edge.
Example 5.3 (5.6) in the next section is presented to show the numerical behavior of the
3D anisotropic interpolation (interface problem).
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Table 1: The optimal convergence order of standard interpolation operators on isotropic meshes for smooth
functions and weakly discontinuous functions.

smooth weakly discontinuous

H1 error L2 error H1 error L2 error
2D linear 1/2 1 1/2 3/2

2D quadratic 1 3/2 1/2 3/2

3D linear 1/3 2/3 1/4 3/4
3D quadratic 2/3 1 1/4 3/4

Table 2: The expected convergence order of standard interpolation operators using anisotropic algorithm for
weakly discontinuous functions. The cell with an interval (α0,α1) means the order α should satisfy α0≤α≤α1.

H1 error L2 error
2D linear 1/2 1

2D quadratic (1/2,1) 3/2

3D linear (1/4,1/3) 2/3
3D quadratic (1/4,2/3) (3/4,1)

5 Numerical experiments

Our numerical algorithm is implemented by using C++ programming language based on
the adaptive finite element package AFEPack [18]. We examine the numerical efficiency
of the algorithm for the interpolation of functions, and then apply the method to the
second-order elliptic interface problem.

For comparison, we also implement the isotropic refinement algorithm using the
longest edge bisection strategy [24, 25], which bisect the longest edge first. Both algo-
rithms use the same error indicator for adaptive finite element mesh refinement, except
that edge indicator provided in this paper is adopted to choose the preferred refined edge
for adaptive anisotropic mesh refinement.

For all examples below, the domain Ω are set as the unit square [0,1]2 in 2D space or
the unit cube [0,1]3 in 3D space if not specified.

Before presenting the numerical results, we list the optimal convergence order for the
interpolation error in terms of the number of degree of freedoms (#DOF) in Table 1. The
convergence order is defined as the constant α in

e≈N−α,

where e is the error and N is the #DOF. The weakly discontinuous functions considered
here are the functions with O(1) discontinuities in its gradients on a (D−1)-dimensional
manifold, where D=2,3 is the dimension of the domain.

The expected convergence order for weakly discontinuous function interpolation us-
ing anisotropic algorithm is presented in Table 2. For the cases the optimal order for
smooth functions is less than or equal to that for the weakly discontinuous functions,
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the anisotropic convergence order will degenerate to the optimal order for smooth func-
tions. For the cases the optimal order for smooth functions is greater than that for the
weakly discontinuous functions, the anisotropic algorithm can make the convergence
order higher than the optimal convergence order of the isotropic algorithm, and it can
achieve the optimal convergence order for smooth functions.

Below we will demonstrate that for smooth functions with sharp layers, the anisotropic
algorithm can reduce the #DOF, though the convergence order may not be improved.

5.1 Interpolation of functions

We consider the interpolation of functions with layer structures or gradient discontinu-
ities to examine the efficiency of our anisotropic mesh refinement algorithm.

Example 5.1. Let the function f (x,y) to be

f (x,y)= tanh((x−y)/ǫ)tanh((1−y−x)/ǫ), ǫ=0.005.

This function has two straight sharp layers along y = x and x+y = 1 and the two sharp
layers intersect at (0.5,0.5) and form a crossing. The background mesh is a uniform tri-
angulation with element size as 0.1

√
2, plotted in the left picture in Fig. 7. We use both

piecewise linear and piecewise quadratic polynomials to approximate this function and
using H1 error as indicator. Each step, we refine 30 percent elements of the old mesh,
whose indicators are larger.
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Figure 7: Example 5.1: the anisotropic refinement process for the function f (x,y). From left to right, the
background mesh, the mesh obtained after 8 rounds of refinement, and the mesh after 16 rounds of refinement.

Fig. 7 displays the background mesh and the meshes obtained after 8 and 16 rounds
of anisotropic refinement. The refined elements of the domain are aligned along two
sharp layers. The refinement procedures in two local regions of the domain are plotted
in Figs. 8 and 9 to show the detailed mesh structures. In Fig. 8, the mesh is refined
gradually along the sharp layer and highly anisotropic elements are generated with the
correct refinement direction. In Fig. 9, the mesh structure at the crossing is isotropic,
indicating that the structure of f there is actually isotropic. Such behaviors demonstrate
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Figure 8: Example 5.1: the detailed mesh structure in the square [0.6,0.8]×[0.6,0.8] obtained after 8, 12 and
16 rounds of anisotropic refinement for the function f (x,y) (from left to right).
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Figure 9: Example 5.1: the detailed mesh structure at the crossing of the two sharp layers in the square
[0.45,0.55]×[0.45,0.55] obtained after 8, 12 and 16 rounds of anisotropic refinement for the function f (x,y)
(from left to right).
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Figure 10: Example 5.1: the total mesh (left) and two detailed mesh structures in [0.6,0.8]×[0.6,0.8] (middle)
and [0.45,0.55]×[0.45,0.5] (right) obtained after 12 rounds of isotropic refinement for the function f (x,y).

that our algorithm can resolve the mixed structures in the function with both anisotropic
and isotropic singularities.

Using the longest edge bisection strategy, we obtain the locally isotropic meshes in
Fig. 10. The refined elements exhibit wider transient bands comparing with the anisotropic
mesh shown in Fig. 7; thus the anisotropic refinement can achieve the same accuracy with
less DOFs.

The log-log plots of the H1 and L2 error versus the #DOF for comparison of linear
and quadratic interpolation are given in Fig. 11, which illustrate that the anisotropic re-
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Figure 11: Example 5.1: the H1 (left) and L2 (right) error against the #DOF with comparison of quadratic
and linear interpolation of f .
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Figure 12: Example 5.2: the initial mesh with 105 nodes (left), the anisotropic mesh with 4141 nodes (middle)
and the isotropic mesh with 4056 nodes (right) for linear interpolation.

finement greatly improves the approximation efficiency compared to the isotropic case.
In these two pictures, all the curves tend to straight lines, indicating that the error is
reciprocal to the #DOF and is equally distributed on all DOFs asymptotically. Both the
anisotropic and isotropic L2 linear/quadratic interpolation error curves in the right pic-
ture of Fig. 11 tend to have the same asymptotical slope −1 and −3/2. So do the H1

linear/quadratic curves in the left picture with the asymptotical slope to be −1/2 and
−1. Both H1 error and L2 error achieve the optimal convergence order.

Example 5.2. We consider a function

d1(x,y)=

{
α(r2+r3), r<0.5,
α(−r2+r3+0.5), r≥0.5,

r=
√

x2+y2, α=100,

with a jump of the gradient on r = 0.5. We use H1 error as indicator. In each round of
refinement, 30 percent elements with larger indicator are refined.

Fig. 12 is the background mesh and the meshes obtained after 13 rounds of anisotropic
and isotropic refinement, using piecewise linear finite element. The refined elements of
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Figure 13: Example 5.2: the detailed mesh structure in the square [0.16,0.32]×[0.36,0.52] for anisotropic (left)
and isotropic (right) refinement.
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Figure 14: Example 5.2: the H1 (left) and L2 (right) error against the #DOF with comparison of linear and
quadratic interpolation of d1.

the domain are located along the curve. Fig. 13 shows the detailed mesh structure in
[0.16,0.32]×[0.36,0.52].

The log-log plot of the error versus #DOF is in Fig. 14. The asymptotic slope of the
isotropic H1 error curves(including linear and quadratic curves) is −1/2, which agrees
with the optimal convergence order of the isotropic interpolation error for weakly discon-
tinuous functions in 2D. The anisotropic H1 curve using piecewise linear finite element
first converges faster than the corresponding isotropic one, and when the dominant part
of the error locates in the smooth domain(far from r = 0.5) where the optimal H1 error
asymptotic slope is −1/2, the curve tends to have the final asymptotic slope as −1/2.
The asymptotic slope of the H1 error curve using the quadratic anisotropic algorithm is
about −0.85, higher than the isotropic one. For L2 error, with the increasing of the #DOF,
both the isotropic and anisotropic curves obtain the same asymptotic slope, i.e., −1 for
linear interpolation and −3/2 for quadratic interpolation.
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Figure 15: Example 5.3: the background tetrahedral mesh (left), the mesh structure on the coordinate planes
from diagonal view for anisotropic (middle) and isotropic (right) linear interpolation.
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Figure 16: Example 5.3: the mesh structure in [0.1,0.25]×[0.4,0.55] on the yoz plane, for linear anisotropic
(left) refinement and isotropic (right) refinement.

Example 5.3. We consider a 3D weakly discontinuous function

d2(x,y,z)=

{
10(−r+1)+ex+y+z, r<0.5,
10r+ex+y+z, r≥0.5,

r=
√

x2+y2+z2,

with the jump of the gradient on the sphere r=0.5, to examine the numerical behavior of
our algorithm in 3D space. The 3D background mesh is a quasi-uniform one generated
by the 3D mesh generator Gmsh [13], as shown in the left picture in Fig. 15. The typical
element size in the background mesh is about 0.5. We use H1 error as indicator. Each
step, we refine the elements with indicator above

√
1.5|d2− Ihd2|H1 .

The middle picture in Fig. 15 is the anisotropic mesh with 213253 elements and the
right is the isotropic one with 368442 elements. The refined elements of the domain are
located along the sphere. In Fig. 16, we present part of the mesh on the coordinate plane
yoz to show the quality of the generated mesh. It is observed that the 3D anisotropic
refinement algorithm produces highly anisotropic elements stretching along the right
direction.

The log-log plot of the error versus the #DOF is in Fig. 17. The asymptotic slopes of
the H1 error curve using isotropic refinement for both linear and quadratic interpolation
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Figure 17: Example 5.3: the H1 (left) and L2 (right) error against the #DOF with comparison of linear and
quadratic interpolation of d2.

are −1/4. The slopes agree with the optimal convergence order of the isotropic interpo-
lation of 3D weakly discontinuous functions. The linear/quadratic anisotropic H1 error
curve, which has an asymptotic slope as about −1/3 and −0.42, has a higher conver-
gence order than the corresponding isotropic one. For L2 error, the linear isotropic and
anisotropic curves tend to have the same asymptotic slope of −2/3, while the quadratic
anisotropic/isotropic error curve has the asymptotic slope of −0.8 and −3/4.

5.2 Elliptic interface problems

In this subsection, we solve the model equation of interface problems introduced in Sec-
tion 2. The examples are from [14]. We use the Zienkiewicz-Zhu (ZZ) [31] error estimator
as the refinement indicator, which is based on the local reconstruction of the solution gra-
dient. The ZZ error estimator works well for both anisotropic and isotropic elements in
our numerical experiments. For a piecewise linear finite element approximation uh on an
element τ, the ZZ estimator of energy norm is

ηZZ
τ =‖∇uh−Πh∇uh‖L2(τ),

where Πh∇v is a local L2(Ω) projection of ∇v onto Vh:

Πh

(
∂v

∂x

)
(P)=

1

∑K∈Th,P∈K |K| ∑
T∈Th,P∈K

|K|
(

∂v

∂x

)∣∣∣
K

,

Πh

(
∂v

∂y

)
(P)=

1

∑K∈Th,P∈K |K| ∑
T∈Th,P∈K

|K|
(

∂v

∂y

)∣∣∣
K

.

For the quadratic finite element approximation, similar patch recovery operation is used.
The difference is to recover a piecewise quadratic gradient instead of a piecewise lin-
ear one. The gradient Πh∇uh obtained by patch recovery is then used to substitute the
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gradient of the solution ∇u in ∇e = ∇u−∇uh, thus the term Gτ(e) in the estimate is
approximated.

The numerical convergence order of the elliptic interface problem could be different
from the function interpolation, due to the linear regression phenomenon. For the L2

error using the piecewise quadratic approximation, the numerical convergence order of
the L2 error degenerates to 2 on uniform meshes as pointed out in [14]. In the following
examples, we observe the similar behavior on isotropic locally refined mesh, too. The
asymptotic slope of the L2 error/#DOF curve in the log-log scale is −1, instead of −3/2
as in the function interpolation. By using the anisotropic refinement algorithm, the de-
generation of the convergence order can be remedied.

The background mesh generated by Easymesh [20] is quasi-uniform with typical ele-
ment size 0.1, as shown in the middle picture in Fig. 18.
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Figure 18: Example 5.4: the domain and interface (left), the background mesh with 505 nodes (middle) and
the anisotropic mesh (right) with 6130 nodes.

Example 5.4 (Homogeneous jump problem). Consider the problem (2.1) with the jumps
w =0 and Q =0. We set Ω =[−1,1]×[−1,1] and the interface Γ being the circle centered
at point (0,0) with radius R = 0.5, and β− = 1, β+ = 100 as the left picture in Fig. 18.
The source term f (x,y) and the Dirichlet boundary condition g are calculated from the
solution u(x,y):

u(x,y)=






r3

β− if r≤R,

r3

β+
+
( 1

β− − 1

β+

)
R3 othewise,

where r=
√

x2+y2.
During the process of refinement, we use double of the average ZZ indicator on el-

ement as tolerance. The right picture in Fig. 18 is the anisotropic mesh obtained after 8
rounds of refinement, using piecewise quadratic approximation. The preferred refine-
ment edges are correctly chosen using the ZZ error estimator. We plot a small part of the
mesh structure in Fig. 19 for comparison of anisotropic and isotropic refinement.
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Figure 19: Example 5.4: the anisotropic (left) and isotropic (right) mesh structures in [−0.2,0]×[−0.55,−0.4]
using the ZZ error estimator.
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Figure 20: Example 5.4: the H1 (left) and L2 (right) error against the #DOF with comparison of linear and
quadratic approximation.

The log-log plot of error versus the #DOF is in Fig. 20. Due to the discontinuity in
gradient, the quadratic isotropic H1 error curve can only have the asymptotic slope as
−1/2. But the asymptotic slope of the quadratic anisotropic H1 error curve is −0.75,
much higher than the isotropic case. Similarly, the corresponding anisotropic L2 error
curve asymptotically achieve the same optimal slope as −3/2, while the isotropic L2 error
curve only has the linear regression asymptotical slope of −1. It is interesting that though
the ZZ error estimator is rigorously proved only on almost-uniform meshes, the use of
ZZ error estimator as refinement indicator in this example does not adversely affect the
quality of the generated meshes with increasing anisotropy.

Example 5.5 (Non-homogeneous jump problem). Next, we consider the model problem
(2.1) with Ω=[−1,1]×[−1,1], and the interface being the zero level set of the function

φ(x,y)=
√

x2+y2−r,

where r=0.1sin(5θ−π/5)+0.5, tanθ=y/x and 0≤θ<2π. The coefficient function β and
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Figure 21: Example 5.5: the interface and domain (left), the background mesh with 505 nodes (middle), and
anisotropic mesh (right) with 6130 nodes, using piecewise linear approximation.

right-hand side function f are

β(x,y)=

{
x2+y2+1, in Ω−,
0.1, in Ω+,

f (x,y)=

{
−4(2x2+2y2+1), in Ω−,
2sinxcosy, in Ω+.

The solution u is

u(x,y)=

{
x2+y2, in Ω−,

10(sinxcosy+log
√

x2+y2), in Ω+.

For simplicity, we choose ŵ as

ŵ(x,y)=

{
0, in Ω−,
10sinxcosy+10logr−r2, in Ω+.

During the process of refinement, the average ZZ indicator on element is chosen to
be tolerance. In Fig. 21, we plot the interface in the domain (left), the background mesh
(middle) and the anisotropic mesh (right), using piecewise linear approximation. Fig. 22
is the comparison of the detailed mesh structure using anisotropic and isotropic refine-
ment algorithms.

In the log-log plot of the error versus the #DOF in Fig. 23, the error behavior is sim-
ilar as in Example 5.4. Both the isotropic H1 error curves using piecewise linear and
quadratic finite element tend to have the asymptotic slope of −1/2. The linear anisotropic
H1 error curve first converges faster and then tends to parallel with the isotropic one.
The quadratic anisotropic H1 error curve can have a higher asymptotic slope as −0.75.
Again, for L2 error convergence, the anisotropic linear/quadratic curves can asymptoti-
cally achieve the optimal slope as −1 and −3/2.

Example 5.6 (Homogeneous jump problem in 3D). At last, we present a simple 3D in-
terface problem with homogeneous jump. Let Ω =[0,1]×[0,1]×[0,1] and the interface Γ
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Figure 22: Example 5.5: the anisotropic (left) and isotropic (right) mesh structures in [−0.6,0]×[−0.1,0.7].
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Figure 23: Example 5.5: the H1 (left) and L2 (right) error against the #DOF with comparison of linear and
quadratic approximation using the ZZ error estimator.

being the sphere centered at point (0.5,0.5,0.5) with radius 0.25, and β− =1/100, β+ =1.
The source term f (x,y) and the Dirichlet boundary condition g are calculated from the
exact solution

u(x,y,z)=

{
100r3, r<0.25,
r3+(100−1)/64, r>=0.25,

r=
√

(x−0.5)2+(y−0.5)2+(z−0.5)2.

The 3D background mesh with element size 0.5 is the same as the one in the left picture
in Fig. 15. We use ZZ estimate as indicator and the refinement tolerance is double of the
average ZZ error.

Fig. 24 is the local 3D mesh structure in horizontal and vertical slices, the left picture is
the anisotropic mesh with 274451 elements and the right is the isotropic one with 304278
elements. The refined elements of the domain are located along the sphere. In Fig. 25,



D. Wang, R. Li and N.-N. Yan / Commun. Comput. Phys., 8 (2010), pp. 511-540 537

0.2

0.4

0.6

0.8 0.2
0.4

0.6
0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

YX

Z

0.2

0.4

0.6

0.8 0.2
0.4

0.6
0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

YX

Z

Figure 24: Example 5.6: the mesh structure on two slices for anisotropic (left) and isotropic (right) linear
interpolation.
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Figure 25: Example 5.6: the local mesh structure on z = 0.5 in the domain [0.2,0.8]×[0.2,0.8], for anisotropic
(left) and isotropic (right) linear interpolation.

we present local mesh on plane z=0.5, and clearly the anisotropic mesh fits the solution
better.

The log-log plot of the error versus the #DOF is in Fig. 26. The asymptotic slopes
of the H1 error curve for both linear and quadratic isotropic refinement are −1/4. The
linear/quadratic anisotropic H1 error curve, which has an asymptotic slope as about −0.3
and −0.4, has a higher convergence order than the corresponding isotropic one. For L2

error, the linear and quadratic isotropic curves tend to have the same asymptotic slope
of −1/2, while the linear/quadratic anisotropic curve has the asymptotic slope of −2/3
and −0.85.
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Figure 26: Example 5.6: the H1 (left) and L2 (right) error against the #DOF with comparison of linear and
quadratic approximation using the ZZ error estimator.

6 Concluding remarks

In this paper, a new edge-based anisotropic mesh refinement methodology on unstruc-
tured meshes for elliptic interface problems has been developed. The preferred refine-
ment edge is obtained by comparing the projection of the error gradient onto the edges.
The algorithm can be valid with information of only first order derivatives. Numerical
experiments for the interpolation of functions with different types of anisotropic singu-
larities and the solution of interface problems have illustrated the effectiveness of our
method.
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