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Abstract. This paper presents the stability of two-dimensional functionally graded
(2D-FG) cylindrical shells subjected to combined external pressure and axial compres-
sion loads, based on classical shell theory. The material properties of functionally
graded cylindrical shell are graded in two directional (radial and axial) and deter-
mined by the rule of mixture. The Euler’s equation is employed to derive the stability
equations, which are solved by GDQ method to obtain the critical mechanical buck-
ling loads of the 2D-FG cylindrical shells. The effects of shell geometry, the mechanical
properties distribution in radial and axial direction on the critical buckling load are
studied and compared with a cylindrical shell made of 1D-FGM. The numerical re-
sults reveal that the 2D-FGM has a significant effect on the critical buckling load.

AMS subject classifications: 74K25, 74G60
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1 Introduction

Functionally graded structures are those in which the volume fractions of two or more
materials are varied smoothly and continuously as a function of positions along with
certain direction(s) of the structure to achieve a required function. These materials were
used for the first time by a group of scientists in Sendai, Japan, in 1984 [1,2]. The gradual
change of material properties can be proportional to different applications and working
environments.

Mechanical Buckling of a circular cylindrical shell, as a major structure, is being stud-
ied for a long time. The buckling behavior of structural members made of homogeneous
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materials subjected to mechanical loads are studied by Brush and Almorth [3]. Voden-
itcharova and Ansourian [4] presented the buckling analysis of circular cylindrical shells
subjected to a uniform lateral pressure. Based on the first order shear deformation theory
(FSDT), Khazaeinejad et al. [5] studied on the buckling of functionally cylindrical shells
under external pressure and axial compression.

The most familiar FGM is compositionally graded from one surface to another with
a prescribed function. But conventional FGM may not be so effective in some struc-
tures since all outer or inner surfaces will have the same composition distributions while
in developed machine elements, temperature and load distribution may change in two
or more directions [6]. For this reason, we introduced 2D-FGM properties which are
dependent bi-directionally. Recently some works have been done on 2D-FGM. Dhali-
wal and Singh [7] solved the equations of equilibrium for a non-homogeneous elastic
solid under shearing forces. Sobhani Aragh and Hedayati [8] studied the static response
and free vibration of two-dimensional functionally graded metal/ceramic open cylindri-
cal shells under various boundary conditions. Pindera and Aboudi studied a coupled
higher-order theory for cylindrical structural components with bi-directionally graded
microstructures [9]. Also Asgari et al. [10] considered the solution of dynamic analysis of
a thick hollow cylinder with finite length made of two-dimensional functionally graded
material (2D-FGM) and subjected to the impact of internal pressure.

Numerous methods have been developed and used for studying the buckling of cir-
cular cylindrical shells. However, in this study, using the GDQ method, the stability
equations and critical buckling loads are obtained. The GDQ method is a global approx-
imate method. In GDQ method the derivative of a function with respect to a coordinate
direction can be expressed as a weighted linear sum of all the functional values at all
mesh points along that direction and a continuous function can be approximated by high
order polynomials in the overall domain [11].

According to the authors’ information, there haven’t been any investigations on the
buckling of 2D-FG cylindrical shells. In this study, the stability of 2D-FG circular cylindri-
cal shells subjected to combined mechanical loads and based on the classical shell theory
is presented considering Young’s Modulus changes the material in two directional (radial
and axial). To express the combination of applied axial compression and external pres-
sure, a load interaction parameter is defined. The critical buckling loads are obtained
for variation of the material constitutions, load interaction parameters, aspect ratios and
thickness ratios. Comparing studies are presented to validate the present analysis results.
Also, the results reveal that the 2D-FGM has significant effect on the critical buckling
load.

2 Material and methods

Consider a cylindrical shell made of two directional functionally graded material (2D-
FGM) of mean radius R, thickness h, and length L as shown in Figs. 1 and 2. The 2D-FG
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Figure 1: Geometry and coordinate system of a 2D-FG cylindrical shell under combined loads.

Figure 2: A schematic view of the problem studied.

cylindrical shell is subjected to a uniform external pressure P and an axial compressive
load F. Poisson’s ratio is assumed to be constant. The displacement components in the x,
θ and z direction are denoted by u, v and w, respectively.

We use the Voigt model as the rule of mixture approximation [12] with the vol-
ume fraction in the radial and axial directions with predetermined continuous func-
tions. Therefore the volume fraction distribution function of 2D-FG shell can be explained
as [10]
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(2.1)

Here subscripts c1, c2, m1 and m2 indicates first ceramic, second ceramic, first metal and
second metal, respectively and volume fraction indexes, nx and nz (0<nx, nz<∞) denotes
the material variation profile through the 2D-FG shell axes and thickness, respectively.

The Young’s modulus of such shell can be determined as follows

E(x,z)=Em1Vm1+Em2Vm2+Ec1Vc1+Ec2Vc2. (2.2)
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Figure 3: Volume fraction distribution of c1. Figure 4: Volume fraction distribution of m2.

Here, Em1, Em2, Ec1 and Ec2 are the corresponding properties of the first and the sec-
ond metals and the ceramics, respectively. The material composition variation on each
boundary surface is given as:

at x=0, z=−
h

2
: Vc1=0, Vc2=0, Vm1=1, Vm2=0, (2.3a)

at x=0, z=+
h

2
: Vc1=1, Vc2=0, Vm1=0, Vm2=0, (2.3b)

at x= L, z=−
h

2
: Vc1=0, Vc2=0, Vm1=0, Vm2=1, (2.3c)

at x= L, z=+
h

2
: Vc1=0, Vc2=1, Vm1=0, Vm2=0. (2.3d)

According the Eq. (2.1), we may have four states on interaction region:

1) if nx,nz>1 : Vm1>Vm2=Vc1>Vc2, (2.4a)

2) if 0<nx,nz<1 : Vc2>Vc1=Vm2>Vm1, (2.4b)

3) if 0<nx <1,nz>1 : Vm2>Vm1>Vc2>Vc1, (2.4c)

4) if 0<nz <1,nx >1 : Vc1>Vm1>Vc2>Vm2. (2.4d)

For example, the volume fraction distributions of two basis materials for the typical val-
ues of nz=2 and nx =3 are shown in Figs. 3 and 4. In this case h=0.5m and L=1m.

The basic constituents of the 2D-FG cylindrical shell are shown in Table 1.

Table 1: Basic Constituents of 2D-FG cylindrical shell.

Constituents Material E(Gpa)

m1 Ti6Al4V 115

m2 Al 70
c1 SiC 440

c2 Al2O3 380
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Figure 5: Distribution of modulus of elasticity through the cylinder.

The distribution of one typical property, modulus of elasticity, through the cylinder
are shown in Fig. 5.

The nonlinear strain-displacement relations are [3]

εxx =u0,x+
1

2
w2

0,x, εθθ =
v0,θ+w

R
+

1

2R2
w2

0,θ, γxθ =
u0,θ

R
+v0,x+

w0,xw0,θ

R
, (2.5)

where εxx and εθθ are the normal strains and γxθ is the shear strain. The classical shell
theory used in the present study is based on the following displacement fields [13]

u(x,θ,z)=u0(x,θ)−z
∂w

∂x
, v(x,θ,z)=v0(x,θ)−

z

R

∂w

∂θ
, w(x,θ,z)=w0(x,θ), (2.6)

where u0(x,θ), v0(x,θ) and w0(x,θ) are the middle surface displacement (z = 0) of the
shell, and − ∂w

∂x and − 1
R

∂w
∂θ describe the rotations about θ- and x-axes, respectively. Sub-

stituting Eq. (2.6) in the relations (2.5) gives the kinematic relations as
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Using Hook’s law the stress-strain relations are given as follow

σxx =
E(x,z)

1−υ2
(εxx+υεθθ), σθθ =

E(x,z)

1−υ2
(εθθ+υεxx), τxθ =

E(x,z)

2(1+υ)
γxθ. (2.8)

The constitutive relations of 2D-FG cylindrical shells are expressed as:
{
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}
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where K1, K2 and K3 are defined as
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In which we have

E1=Em1−Em2−Ec1+Ec2, E2=Em2−Em1, E3=Ec1−Em1. (2.11)

The stress resultants are defined in the following form

(Nx,Mx)=
∫ + h

2

− h
2

σxx(1,z)dz, (Nθ ,Mθ)=
∫ + h

2

− h
2

σθθ(1,z)dz,

(Nxθ,Mxθ)=
∫ + h

2

− h
2

τxθ(1,z)dz.

(2.12)

By using the variation approach and Euler equations, the equilibrium equations of 2D-
FG cylindrical shells Under Combined External Pressure and Axial Compression based
on the classical shell theory are derived as follows [3]

RNx,x+Nxθ,θ =0, RNxθ,x+Nθ,θ =0,

RMx,xx+2Mxθ,xθ+
1

R
Mθ,θθ−Nθ+RNxw,xx+2Nxθw,xθ+

1

R
Nθw,θθ =−PR.

(2.13)

The Euler’s principle is employed to derive the stability equations [3]. By using Taylor
series we can expand V(the total potential energy of the shell) about the equilibrium state
as follows

∆V=δV+
1

2
δ2V+

1

6
δ3V+··· , (2.14)

δV (the first variation) is related to the equilibrium state. The second variation (δ2V) is
the state of stability of the original configuration of the shell in the neighborhood of the
equilibrium state. The condition δ2V = 0 is utilized to obtain the stability equations for
buckling problems [3]. Supposing that u0, v0 and w0 are the displacements of the equi-
librium states, the displacement components of a neighboring stable state differ by u1, v1
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and w1 with respect to the equilibrium state. Therefore the displacement components of
a neighboring state are

u=u0+u1, v=v0+v1, w=w0+w1. (2.15)

Similarly, the stress resultants of a neighboring state are probably associated with the
equilibrium state as

(Nx,Mx)=(Nx0,Mx0)+(Nx1,Mx1), (2.16a)

(Nθ ,Mθ)=(Nθ0,Mθ0)+(Nθ1,Mθ1), (2.16b)

(Nxθ,Mxθ)=(Nxθ0,Mxθ0)+(Nxθ1,Mxθ1). (2.16c)

The superscript 1 refers to the state of stability and the superscript 0 refers to the state of
equilibrium. In addition, the nonlinear terms with superscript 1 are ignored because they
are too small compared with the linear terms. Upon substituting Eq. (2.15) and (2.16) in
Eq. (2.13); the stability equations for 2D-FG cylindrical shells under combined mechanical
loading can be obtained by the means of Euler equations [3] as follow

RNx1,x+Nxθ1,θ =0, RNxθ1,x+Nθ1,θ =0,

RMx1,xx+2Mxθ1,xθ+
1

R
Mθ1,θθ−Nθ1+RNx0w1,xx+2Nxθ0w1,xθ+

1

R
Nθ0w1,θθ =0.

(2.17)

We can rewrite the stability equations in the form of displacements as follow:

∂
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2
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2
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)

)

+K2(x,z)h2(−R2w1,xxx−w1,xθθ)=0, (2.18a)

∂
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(1−υ

2
(R2u1,θ+R3v1,x)

)

+
∂
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+K1(x,z)h
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2
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1−υ

2
R3v1,xx+R(v1,θθ+w1,θ)

)

+K2(x,z)h2(−R2w1,xxθ−w1,θθθ)=0, (2.18b)

∂2

∂x2
K2(x,z)h2(R4u1,x+υR3(v1,θ+w1))+

∂2

∂x2
K3(x,z)h3(−R4w1,xx−υR2w1,θθ)

+
∂

∂x
K2(x,z)h2(2R4u1,xx+2υR3w1,x+(1−υ)R2u1,θθ+(1+υ)R3v1,xθ)

+
∂

∂x
K3(x,z)h3(−2R4w,xxx−2R2w1,xθθ)

+K2(x,z)h2(R4u1,xxx+2υR3w1,xx+R2u1,xθθ+R3v1,xxθ+R(v1,θθθ+2w1,θθ))

+K3(x,z)h3(−R4w1,xxxx−2R2w1,xxθθ−w1,θθθθ)−K1(x,z)h(R2(w1+v1,θ)+υR3u1,x)

+R4Nx0w1,xx+2R3Nxθ0w1,xθ+R2Nθ0w1,θθ =0. (2.18c)
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3 Theory/calculation

In this section, by using the GDQ method, the critical buckling of 2D-FG cylindrical shells
under combined mechanical loads are obtained. Under the assumed loading, the pre-
buckling deformation of the shell is axisymmetric. Also the Nxθ0 = 0 (because there is
not any torsional loading). Furthermore the other prebuckling mechanical forces are ob-
tained from Hook’s law and also the linear membrane equilibrium equations

Nx0=−
F

2πR
, Nθ0=−PR. (3.1)

With respect to the above remarks, we can rewrite Eq. (2.17) as follow

RNx1,x+Nxθ1,θ =0, RNxθ1,x+Nθ1,θ =0,

R2Mx1,xx+2RMxθ1,xθ+Mθ1,θθ−RNθ1−ηPR3w1,xx+PRw1,θθ =0.
(3.2)

The nondimensional load parameter η is defined to express the combination of the ap-
plied axial compression and external pressure [5]

η=
F

2πR2P
. (3.3)

The 2D-FG cylindrical shell is assumed to have simply supports on both ends. Therefore
the boundary conditions are defined as

at x=0,L : w1=v1=Mx1=Nx1=0. (3.4)

Generally, it’s rather difficult to get an analytical solution of Eq. (2.18) due to the nature of
bi-directional non-homogeneity. In the present study differential quadrature method is
employed to obtain the critical buckling loads of 2D-FG cylindrical shells. This is a fast-
computing approach for partial differential equations with variable coefficients which
provides accurate results [11].

According to Generalized Differential Quadrature Method (GDQM), the nth-order
derivative of the solution function f (x) at grid point ”i” can be written as [11]

f
(n)
x (xi)=

N

∑
j=1

C
(n)
ij f (xj), i=1,2,··· ,N, n=1,2,··· ,N−1, (3.5a)

C
(1)
ij =

M(1)(xi)

(xi−xj)M(1)(xj)
, j=1,2,··· ,N, i 6= j, (3.5b)

M(1)(xi)=
N

∏
j=1
j 6=1

(xi−xj), (3.5c)



R. Mohammadzadeh, M. M. Najafizadeh and M. Nejati / Adv. Appl. Math. Mech., 5 (2013), pp. 391-406 399

C
(n)
ij =n

(

C
(n−1)
ii C

(1)
ij −

C
(n−1)
ij

xi−xj

)

, i, j=1,2,··· ,N, i 6= j, n=2,3,··· ,N−1, (3.5d)

C
(n)
ii =−

N

∑
j=1
i 6=j

C
(n)
ij , i=1,2,··· ,N, n=1,2,··· ,N−1. (3.5e)

In this equation C
(n)
ij are the weighting coefficients of n-th order derivative and N is the

total number of grid points. It has been shown that the Chebyshev-Gauss-Lobatto grid
point distribution have great convergence and stability. Therefore the present study ap-
plies Chebyshev-Gauss-Lobatto grid points positions in one dimensional form are given
by [11]

xi =
l

2

{

1−cos
( i−1

N−1

)

π
}

, i=1,2,··· ,N. (3.6)

To solve the stability equations, the displacement fields u, v and w are defined as products
of unknown functions along the axial direction and known trigonometric functions along
with the circumferential directions as follow [14]

u1(x,θ)=U1(x)cosnθ, v1(x,θ)=V1(x)sinnθ, w1(x,θ)=W1(x)cosnθ. (3.7)

Here n is the wave number in the θ-direction and U1(x), V1(x) and W1(x) are the un-
known axial functions.

This approach uses the basis of the quadrature method in deriving the derivatives
of a function. It follows that the partial derivative of a function with respect to a space
variable can be approximated by a weighted linear combination of functional values at
some intermediate points in that variable [11].

Substituting Eq. (3.7) in Eq. (2.18) and using GDQ method, the buckling equations are
derived

∂

∂x
K1(x,z)h

(

R2
n

∑
k=1

C
(1)
ik U1k+υR(nV1i+W1i)

)

+
∂

∂x
K2(x,z)h2

(

−R2
n

∑
k=1

C
(2)
ik W1k+υn2W1i

)

+K1(x,z)h

(

R2
n

∑
k=1

C
(2)
ik U1k−

1−υ

2
n2U1i+R

(1+υ

2
n

n

∑
k=1

C
(1)
ik V1k+υ

n

∑
k=1

C
(1)
ik W1k

)

)

+K2(x,z)h2

(

−R2
n

∑
k=1

C
(3)
ik W1k+n2

n

∑
k=1

C
(1)
ik W1k

)

=0, (3.8a)

∂

∂x
K1(x,z)h

(

1−υ

2

(

R2nU1i+R3
n

∑
k=1

C
(1)
ik V1k

)

)

+
∂

∂x
K2(x,z)h2

(

(1−υ)R2n
n

∑
k=1

C
(1)
ik W1k

)

+K1(x,z)h

(

−
1+υ

2
R2n

n

∑
k=1

C
(1)
ik U1k+

1−υ

2
R3

n

∑
k=1

C
(2)
ik V1k−R(n2V1i+nW1i)

)

+K2(x,z)h2

(

R2n
n

∑
k=1

C
(2)
ik W1k−n3W1i

)

=0, (3.8b)
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∂2

∂x2
K2(x,z)h2

(

R4
n

∑
k=1

C
(1)
ik U1k+υR3(nV1i+W1i)

)

+
∂2

∂x2
K3(x,z)h3

(

−R4
n

∑
k=1

C
(2)
ik W1k+υR2n2W1i

)

+
∂

∂x
K2(x,z)h2

(

2R4
n

∑
k=1

C
(2)
ik U1k+υR3

(

n
n

∑
k=1

C
(1)
ik V1k+2

n

∑
k=1

C
(1)
ik W1k

)

+
(

−(1−υ)R2n2U1i+R3n
n

∑
k=1

C
(1)
ik V1k

)

)

+
∂

∂x
K3(x,z)h3

(

−2R4
n

∑
k=1

C
(3)
ik W1k+2R2n2

n

∑
k=1

C
(1)
ik W1k

)

+K2(x,z)h2

(

R4
n

∑
k=1

C
(3)
ik U1k+2υR3

n

∑
k=1

C
(2)
ik W1k−R2n2

n

∑
k=1

C
(1)
ik U1k+R3n

n

∑
k=1

C
(2)
ik V1k

+R(−n3V1i−2n2W1i)

)

+K3(x,z)h3
(

−R4
n

∑
k=1

C
(4)
ik W1k+2R2n2

n

∑
k=1

C
(2)
ik W1k−n4W1i

)

−K1(x,z)h
(

R2(W1i+nV1i)+υR3
n

∑
k=1

C
(1)
ik U1k

)

−PR3
(

R2η
n

∑
k=1

C
(2)
ik W1k−n2W1i

)

=0. (3.8c)

In order to carry out the analysis, the domain and the boundary degrees of freedom are
separated, and in vector forms they are denoted as (d) and (b), respectively. Based on this
definition, the matrix form of the stability equations and the related boundary conditions
take the following form:

[

[Abb] [Abd]
[Adb] [Add]

]{

{Xb}
{Xd}

}

=0. (3.9)

Here {Xb} and {Xd} are as follow:

{Xb}={{Xxb},{Xθb},{Xzb}}
T, {Xd}={{Xxd},{Xθd},{Xzd}}

T. (3.10)

In relations (3.9) and (3.10), subscripts (b) and (d) correspond to the displacement vec-
tors at the boundaries and domain of the shell, respectively. Eliminating the boundary
degrees of freedom, this equation becomes:

[A]{Xd}={0} , (3.11)

where

[A]= [Add]−[Adb][Abb]
−1 [Abd]. (3.12)

By setting the determinant of [A] equal to zero to obtain the non-zero solution and op-
timizing the resulting in terms of half-wave numbers, the critical buckling loads can be
obtained.

4 Results and discussions

In this section, with the usage of the classical shell theory [3] and the GDQ method, nu-
merical results have been obtained for different types of combined loadings. For the
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Table 2: Comparison of the buckling loads (Pcr×104Mpa, E=200GPa, υ=0.3 and R/h=300).

L/R Shen Sofiyev Khazaeinejad Present study
0.5 2761.397 2769.014 2767.438 2769.014
1 1272.597 1273.504 1273.129 1273.504
2 611.7448 611.7994 611.7016 611.7994
3 402.6016 412.6221 412.5655 412.6221
5 239.0987 239.4282 239.4109 239.4282

Table 3: Comparison of the buckling loads (Mpa) υ=0.3, η=0, R=0.5m).

L/R L/R=0.01 L/R=0.02 L/R=0.05
Rahmani Present Rahmani Present Rahmani Present

1 3.0004 3.0004 17.8708 17.8707 202.7329 202.7127
2 1.3879 1.3879 8.0777 8.0778 84.6642 84.6641
4 0.6934 0.6933 4.0482 4.0483 39.6455 39.6455
8 0.3308 0.3308 2.0975 2.0976 18.8575 18.8576

Table 4: The convergence of the critical buckling load of 2D-FG cylindrical shell.

L/R N=5 N=7 N=9 N=11 N=13 N=15
1 2.9163 3.0625 3.0006 3.0004 3.0004 3.0004
2 1.3707 1.3890 1.3872 1.3880 1.3880 1.3880
4 0.6839 0.6937 0.6934 0.6934 0.6934 0.6934
8 0.3275 0.3309 0.3308 0.3308 0.3308 0.3308

given values of the power law indexes nx and nz, the radius to the thickness ratio R/h,
the length to the radius ratio L/R, the values of the circumferential wave numbers may
be chosen by the trial giving the smallest value of buckling load. These values are ob-
tained by an optimization program. Poisson’s ratio is assumed to be constant 0.3. The
boundary conditions along with the edges at x=0 and x= L are considered to be simply
supported. To verify the formulations, the critical buckling load of a simply supported
isotropic cylindrical shell under uniform external pressure (η = 0) are compared with
those reported by Shen [15], Sofiyev [16] and Khazaeinejad [5] in Table 2. An excellent
agreement can be seen between these results therefore, confirming the accuracy of present
work.

The shell thickness is set to be 0.001m. As a second example consider Table 3. The
Table exhibits the comparison of the critical buckling load under lateral pressure for FG
cylindrical shell and based on the classical shell theory, between the present solution
and those which are reported by Rahmani [17]. The shell is made of alumina and Steel
with the modulus of elasticity 380Gpa and 200Gpa, respectively. From Table 3, it is seen
that there is a very good agreement between these results confirming the accuracy of the
present work.

From Table 4, it can be noticed that there is a rather significant differences between
N=5 (mesh grid) and N=7 when the answers arrive to the relative convergence. From
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Table 5: Variation of critical buckling loads (Mpa) against thickness ratio and power law index for L/R=5.

nx nz η R/h=5 R/h=10 R/h=50 R/h=100
1 0 -1 1791.093 292.710 4.761 0.798

0 1613.990 263.799 4.552 0.779
0.5 1537.905 251.384 4.454 0.769
1 1468.635 240.083 4.361 0.760

1 0.5 -1 1211.011 202.662 3.308 0.545
0 1091.115 182.661 3.162 0.532

0.5 1039.598 174.074 3.094 0.525
1 992.690 166.258 3.029 0.519

1 1 -1 965.338 162.871 2.664 0.436
0 864.905 146.784 2.547 0.425

0.5 828.562 139.877 2.492 0.420
1 791.098 133.591 2.439 0.415

1 5 -1 664.538 107.461 1.745 0.295
0 598.139 96.827 1.668 0.288

0.5 569.512 92.262 1.632 0.284
1 543.346 88.108 1.598 0.281

Table 6: Variation of critical buckling loads (Mpa) against thickness ratio and power law index for L/R=10.

nx nz η R/h=5 R/h=10 R/h=50 R/h=100
1 0 -1 1135.721 167.535 2.511 0.403

0 1023.585 163.372 2.449 0.399
0.5 975.428 161.364 2.419 0.396
1 931.599 159.403 2.390 0.394

1 0.5 -1 812.793 112.433 1.768 0.273
0 732.524 109.626 1.725 0.271

0.5 698.054 108.272 1.704 0.269
1 666.680 106.948 1.683 0.268

1 1 -1 662.645 89.261 1.432 0.218
0 597.212 87.018 1.397 0.216

0.5 569.113 85.935 1.380 0.215
1 543.539 84.875 1.363 0.213

1 5 -1 409.186 62.188 0.914 0.149
0 368.745 60.581 0.891 0.148

0.5 351.381 59.801 0.880 0.147
1 335.758 59.035 0.870 0.146

N=9 onwards there aren’t any significant differences so for any N≥11 the answers for
critical buckling arrive to the best convergence.

The 2D-FGM shell is made from Ti6Al4V/Al/SiC/Al2O3 which their Young’s mod-
ulus is given in Table 1. The variations of the critical buckling load of 2D-FG cylindrical
shells versus the power law indexes nx and nz, the thickness ratios R/h, and the aspect
ratios L/R under different types of combined loadings are listed in Tables 5-8. It is ob-
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Table 7: Variation of critical buckling loads (Mpa) against thickness ratio and power law index for L/R=20.

nx nz η R/h=5 R/h=10 R/h=50 R/h=100
1 0 -1 371.845 64.768 1.300 0.192

0 362.658 63.170 1.292 0.190
0.5 358.232 62.400 1.288 0.190
1 353.913 61.648 1.284 0.189

1 0.5 -1 252.243 45.095 0.875 0.131
0 246.006 43.982 0.869 0.130

0.5 243.001 43.445 0.867 0.130
1 240.069 42.922 0.864 0.129

1 1 -1 201.255 36.362 0.696 0.105
0 196.275 35.464 0.691 0.104

0.5 193.875 35.031 0.689 0.104
1 191.533 34.609 0.687 0.104

1 5 -1 137.843 23.713 0.483 0.071
0 134.415 23.127 0.480 0.070

0.5 132.763 22.844 0.478 0.070
1 131.150 22.569 0.477 0.070

Table 8: Variation of critical buckling loads (Mpa) against thickness ratio and power law index for L/R=50.

nx nz η R/h=5 R/h=10 R/h=50 R/h=100
1 0 -1 302.932 38.516 0.431 0.102

0 301.448 38.359 0.429 0.101
0.5 300.685 38.281 0.428 0.101
1 299.904 38.203 0.428 0.101

1 0.5 -1 201.652 25.765 0.298 0.073
0 200.563 25.657 0.296 0.072

0.5 200.001 25.604 0.296 0.072
1 199.425 25.551 0.295 0.072

1 1 -1 158.973 20.408 0.239 0.059
0 158.029 20.321 0.238 0.059

0.5 157.541 20.277 0.238 0.059
1 157.042 20.234 0.237 0.059

1 5 -1 109.723 14.199 0.158 0.037
0 108.890 14.131 0.158 0.037

0.5 108.459 14.097 0.158 0.036
1 108.016 14.063 0.157 0.036

served that the buckling load is decreased by increasing the thickness ratio R/h, same as
increasing in the aspect ratio L/R. The difference between the results for R/h= 10 and
R/h = 100 is approximately 100%. For L/R= 10 and L/R = 50, the difference is about
75%.

The graphs of the dependency of the critical buckling loads and non-homogenous
cylindrical shells on the material gradients are shown in Figs. 6 and 7. For 2D-FG shell,
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Fig. 6. Comparison of critical buckling loads for 1D-FG and 2D-FG cylindrical shells with R/h=10
Figure 6: The comparison of the critical buckling
loads for 1D-FG and 2D-FG cylindrical shells with
R/h=10.
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Figure 7: The comparison of the critical buckling
loads for 1D-FG and 2D-FG cylindrical shells with
R/h=100.
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Effect of power law indexes on critical buckling loads of an 2D-FG cylindrical shells versus R/h Figure 9: The effect of power law indexes on the
critical buckling loads of a 2D-FG cylindrical shells
versus R/h ratio for the various power law indexes
and L/R=50.

the critical buckling loads are increased more than the other type. The critical loads are
decreased when increasing L/R ratio.

It is also found that the critical buckling loads are affected by increasing the R/h ratio.
For variations of R/h ratio from 10 to 100, the critical buckling load decreases almost
100% in all the cases.

It is also seen from Figs. 8 and 9 that via increasing the power law index nz from 0 to
5, when nx = 1, the critical buckling loads are decreased. This decrease is about 46% for
nx =1, nz =0.5 and nx =1, nz =5. It is evident that by increasing L/R ratio from 10 to 50
the values of critical buckling loads are decreased.

Moreover and as it can be seen in Fig. 10, by changing the magnitude and the load
parameter η, the critical buckling loads are decreased. As expected, the critical buckling
load value of the shell for η =−1 is higher than the others. The critical buckling load
reaches maximum value for lower value of parameter η.

The results confirm that the buckling characteristics are significantly influenced by the
variation of the power law indexes, load parameters, thickness ratios, and aspect ratios.
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Figure 10: The effect of the load parameter (η) on the critical buckling loads of a 2D-FG cylindrical shells
versus R/h ratio for various loads parameter.

5 Conclusions

In the present article, the equilibrium and stability of simply supported 2D-FG cylindrical
shells under combined loading and using the GDQ method are derived. Derivations are
based on the classical shell theory and the power form composition of the constituent
materials. The buckling analysis of such shells under different types of mechanical loads
is investigated. It is concluded that:

1. The critical buckling loads of 2D-FG cylindrical shells are higher than 1D-FG cylin-
drical shells.

2. The critical buckling loads of a 2D-FG cylindrical shell under combined loading
decline when power law index in z direction increases, when nx =1.

3. The critical buckling load decreases for 2D-FG cylindrical shell under combined
loadings when the load parameter increases.

4. The more the R/h ratio, the less the critical buckling load of 2D-FG cylindrical shell
under combined loading.

5. The more the L/R ratio, the less the critical buckling load of 2D-FG cylindrical shell
under combined loading.
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