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Abstract. In this paper, we present an algorithm to simulate a Brownian motion by
coupling two numerical schemes: the Euler scheme with the random walk on the
hyper-rectangles. This coupling algorithm has the advantage to be able to compute
the exit time and the exit position of a Brownian motion from an irregular bounded
domain (with corners at the boundary), and being of order one with respect to the
time step of the Euler scheme. The efficiency of the algorithm is studied through some
numerical examples by comparing the analytical solution with the Monte Carlo so-
lution of some Poisson problems. The Monte Carlo solution of these PDEs requires
simulating Brownian motions of different types (natural, reflected or drifted) over an
irregular domain.
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1 Introduction

The term “Brownian motion” is used to describe a particle in a fluid that has a permanent
and random agitation. The usage of this expression has been extended to all the mathe-
matical models that describe random phenomena such that the fluctuations of the option
markets in finance. Under appropriated hypothesis, a large class of stochastic processes
can be modeled using the Brownian motion.

Mathematically, the Brownian motion is a Wiener process in which the conditional
transition density of a particle at instant t+∆t given its position x at instant t is a Gaussian
law with mean x and variance ∆t. Let Xt be this stochastic process in dimension d. When
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the Euler scheme is used to simulate Xt over the time interval [0,T] using N time steps,
Xt is discretized by the sequence of random variables X̃tk

as follows:
{

X̃0 = x,

X̃tk
= X̃tk−1

+
√

∆tWk,
(1.1)

where ∆t = T/N, X̃tk

(law)
= Xk∆t is an approximation of the position of the particle at time

tk, Wk is a vector of d Gaussian variables with unit variance and k=1,··· ,N.
We are interested in simulating Xt over a bounded regular domain D ⊂R

d. In this
case, two random variables are associated to Xt, the exit time τ defined by:

τ = inf{t, Xt 6∈D}
and the exit position Xτ, the position the particle on the boundary of D at time τ. The exit
time is approximated by τd = inf{tk,X̃tk

6∈D}. It is known that τd is not a good approxi-
mation of τ because it is of order 1/2 with respect to ∆t (see [1]). A better approximation
of τ would be to consider at each iteration k of the Euler scheme the exit time of the
continuous stochastic process X̃t defined between two iterations by:

for t∈ [k∆t,(k+1)∆t], X̃t = X̃tk
+
√

t−k∆tWk, (1.2)

and τc = inf{t,X̃t 6∈ D}. τc is the exit time of the continuous time stochastic process X̃t

starting at X̃tk
. Its estimation is independent from the time step ∆t. Some algorithms were

presented to compute τc in [4, 9] for the one-dimensional case, in [1, 4, 5] from a regular
domain, [14] for a bi-dimensional cone and more generally in [3] in the case of a reflected
Brownian motion. These algorithms are based on considering the Brownian bridge be-
tween X̃tk

and X̃tk+1
and computing the probability that the Brownian bridge intersects

the boundary. These algorithms have the drawback of assuming that the boundary is
locally smooth when the Brownian particle is near the boundary. Hence these algorithms
cannot consider a rectangular domain (for example) and simulate the Brownian motion
near the corners.

In this paper, we propose to simulate the exit time τ and the exit position Xτ from
a bounded domain, by coupling the Euler scheme with the random walk on the hyper-
rectangles. The advantage of this algorithm over the ones described in [1,4,5] is to handle
domain boundaries with corners and for different types of Brownian motions (natural,
reflected, drifted). To show the efficiency of our algorithm, numerical experiments are
carried out by comparing the analytical with the Mont Carlo solution of some Poisson
problems. The Monte Carlo solution is computed using the Monte Carlo method which
requires the simulation of the exit time of the Brownian motion.

2 Brownian motion and diffusion process

To describe this stochastic process, the transition density p(x,y,t) of the particle’s position
at position y and time t starting at x must be specified. In the following, we show how it
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is derived from the diffusion equation.
Einstein related the Brownian motion to the diffusion process (see [16,17]). He consid-

ered a long thin tube of clear water. A drop of ink is injected at time t=0 and at location
x=0. The ink will diffuse in the water due to the irregular motion of the ink particles. Let
p(0,y,t) be the density of ink at y∈R and time t≥0. This ink density is also the transition
density of the position of an ink particle.

We have p(0,y,0)=δ(y). The event that the particle moves from y to y+h in time θ is
also considered, and its transition density is denoted by ρ(θ,h). Then:

p(0,y,t+θ)=
∫ ∞

−∞
p(0,y−h,t)ρ(θ,h)dh

=
∫ ∞

−∞

(

p−pyh+
1

2
pyyh2+···

)

ρdh. (2.1)

Given that:

• ρ is a transition density,
∫ ∞

−∞
ρdh=1;

• ρ(h,θ)=ρ(θ,−h) by symmetry so
∫ ∞

−∞
hρdh=0;

• and the variance of ρ,
∫ ∞

−∞
h2ρdh= θ.

These assumptions lead to:

p(0,y,t+θ)−p(0,y,t)

θ
=

1

2
pyy(0,y,t)+h.o.t. (2.2)

When θ tends to 0, we have

pt =
1

2
pyy. (2.3)

This is the diffusion equation. It has the following analytical solution:

p(0,y,t)=
1√
2πt

e−
y2

2t . (2.4)

This says the transition density of the position of the Brownian motion at time t starting
at x=0 is a normal distribution N(0,t). More specifically, this motion is called a natural

Brownian motion. It is a stochastic process, Xt that verifies the following properties:

• X(0)= x almost surely;

• X(t)−X(s)∼N(0,t−s), ∀0≤ s≤ t;

• ∀0≤ t1 ≤ t2≤···≤ tn the random variables X(t1),X(t2)−X(t1),··· are independent.

In our work, other types of Brownian motion are used. The transition densities of
their positions are also deduced from the solutions of the corresponding diffusion equa-
tions. We give a short description of them in the following, without the exhaustive math-
ematical theory behind.
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The Brownian motion over the segment [−1,1] and starting at x at t = 0 is a natural
one that is killed when the particle reaches one of the two boundaries of the segment. Its
position y at time t verifies the following PDEs (Kolmogorov’s equations):































∂t p(t,x,y)= 1
2 ∆x p(t,x,y) over R

∗
+×(−1,1),

p(t,x,y)−→δy(x), t→0,

∂t p(t,x,y)= 1
2 ∆y p(t,x,y) over R

∗
+×(−1,1),

p(t,x,y)−→δx(y), t→0,

p(t,x,y)=0 if |x|=1 or |y|=1.

(2.5)

Two random variables can be defined based on this stochastic process, the exit time τ (the
time Xt reaches the boundary) and the exit position Xτ :

τ = inf{t, Xt 6∈ [−1,1]}, (2.6)

Xτ ∈{−1,1}. (2.7)

Note that Dirichlet conditions are taken on the boundaries of the segment. One can de-
duce the analytical expression of the transition density p of the position of the particle
(see [11]):

p(x,y,t)=
1√
2πt

∞

∑
n=−∞

(

exp
(

− (x−y−4n)2

2t

)

−exp
(

− (x−y−2−4n)2

2t

)

)

. (2.8)

The Brownian motion defined over [−1,1] and reflected at −1 is a natural Brownian
motion where the particle is not killed at 1 but it rebounds into the interior of the segment
and killed at −1. This corresponds to a Neumann condition at 1 in the preceding system
of PDEs (2.5). The exact mathematical definition of the reflection (using the local time
notion) can be found in [3]. Finally, the third type of Brownian motion is the drifted

one. In this case, the particle has a random displacement superposed to a deterministic
one with a constant velocity µ. This corresponds to the transport term µ∇p that has to
be added to the Laplacians in (2.5). The analytical expressions of p(x,y,t) in these cases
(reflected and drifted) can be found in [2].

The link between PDEs and Brownian motion is also valid in dimension d where the
segment [−1,1] is replaced by a domain D⊂R

d.

So far, the Brownian motion is characterized by the solution of some PDE. Conversely,
the solution of a PDE can be computed using the Brownian motion. If the following
Poisson problem has to be solved:







1

2
∆u+g(x)=0, x∈D,

u(x)=ψ(x), x∈∂D,
(2.9)
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then the solution u(x) can be expressed in terms of Brownian motion through the Feymann-
Kac relationship (see [12]):

u(x)=Ex

[

ψ(Xτ)+
∫ τ

0
g(Xτ)ds

]

. (2.10)

In this relationship, Xt is a Brownian motion killed when it reaches the boundary ∂D,
τ= inf{t,Xt 6∈D} is its exit time and Xτ is its exit position. If ∂D includes some Neumann
conditions, Xt has to be reflected over this part of the boundary. If the Poisson equation
contains an additional transport term µ∇u then Xt is the drifted Brownian motion. The
usage the Feymann-Kac relationship to compute u(x) is called Monte Carlo methods for
solving PDEs.

3 Numerical approximation of the Feymann-Kac relationship

The Feymann-Kac relationship gives the solution of a PDE in terms of Brownian motion.
Computing the solution using this relationship involves three ingredients: simulation of
a Brownian motion Xt (as well as τ and Xτ), integration of g along the path of Xτ and
approximation of the expectation operator. These three ingredients are detailed in the
following.

Firstly, the simulation of a Brownian motion over a domain D⊂R
d is commonly done

using the Euler scheme. A time step ∆t is specified and Xt is replaced by X̃tk

(law)
= Xk∆t,

a sequence of random variables representing the position of the particle at time tk. This
sequence of random variables X̃tk

is updated iteratively as follows:
{

X̃0 = x,

X̃tk
= X̃tk−1

+
√

∆tWk,
(3.1)

where Wk is a d-dimensional vector of Gaussian variables. The updating (X̃tk
)k∈N is

stopped when X̃tk
6∈D and τ is approximated by τ̃=tk. If Xt is a drifted Brownian motion,

one has to add a drift term µ∆t to the update equation. If Xt is reflected on some part of
∂D and when X̃tk

is near this reflecting boundary, the update equation has to be replaced
by the one proposed in [3] (the symmetrized scheme) or use our coupling algorithm as it
is explained in the numerical example.

Secondly, the integral over the path of Xt, f =
∫ τ

0
g(Xt)dt, must be approximated. One

must start by considering the following stochastic differential equations (SDE):
{

d f = g(Xt)dt

with f (0)=0 and X(0)= x,
(3.2)

and integrate it until time τ. This SDE is discretized using the Euler scheme as follows:
{

X̃k+1 = X̃k+
√

∆tWk,

f̃k+1 = f̃k+g(X̃k)∆t,
(3.3)
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where f̃
τ̃d ≈

∫ τ
0 g(Xt)dt.

Finally the expectation operator in the Feymann-Kac relationship is estimated using a
Monte Carlo method. N independent Brownian paths are simulated, namely (X̃i

tj
)j∈{0,···,τd,i},

where τd,i stands for the discrete exit time associated to path i. The numerical solution of
problem (2.9) is given by uN,∆t:

uN,∆t =
1

N

N

∑
i=1

[

ψ(X̃i
τd,i)+ f i

kd,i

]

, (3.4)

where X̃i
τd,i is the exit position of path i. If the numerical solution of a PDE is computed

using a Monte Carlo method, the numerical error is the sum of two errors:

• ED
∆t, the error in the numerical approximation of the integral

∫ τd

0 g(Xs)ds and it is

an O(∆t1/2) in the case of the Euler scheme;

• EMC
N,∆t, the Monte Carlo error from replacing the expectation operator with a finite

sum, and we have EMC
N,∆t =O(N−1/2) with high probability.

We recall that

|uN,∆t−u(x)|=
(

ED
∆t+EMC

N,∆t

)

=O(∆t1/2+N−1/2).

3.1 Order of the approximation

The difficulty of integrating numerically Eq. (3.2) until time τ is that τ is a random vari-
able and we do not have an accurate estimation of it. As explained in [10, 15], the naive
approach to approximate τ with inf{tk X̃tk

6∈ D} makes the Euler scheme of order 1/2
with respect to ∆t instead of one. This loss of accuracy is due to the fact that, when the
particle is near the boundary and we have X̃tk

and X̃tk+1
inside D, we do not know if the

Brownian motion Xt has left D between X̃tk
and X̃tk+1

(see Fig. 4).
To cope with this difficulty, we propose to couple the Euler scheme with the random

walk on the hyper-rectangles. When X̃tk
is near the boundary and the probability that

tk ≤τ≤ tk+1 is not neglectful, X̃tk
is placed into a hyper-rectangle having one of its facets

tangent to the boundary (see Figs. 2 and 6). The construction of such hyper-rectangle
depends on the geometry of the domain. It is discussed in the numerical experiments in
Section 6.

Here, we are considering the continuous time Brownian motion X̃t starting at X̃tk
and

killed at the boundary of the hyper-rectangle. Its exit time τc = inf{t,X̃t 6∈hyperrectagle}
is the exit time τ of the Brownian motion if it exits on the tangent facet to the boundary of
the domain. This estimation of the exit time is independent of the time step of the Euler
scheme. If X̃tk

is near a reflecting boundary, then X̃tk
is simulated using also the hyper-

rectangle with a reflecting tangent facet (this case is discussed in the numerical examples).
From [1, 13], one can deduce that, when using the coupling algorithm, the numerical
integration error along the Brownian path, ED

∆t, is of order one with respect to ∆t. The
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advantage of this algorithm over the other existing ones described in [1,4,5] is that it can
handle the simulation of a Brownian motion near an irregular boundary, a boundary with
corners while the other existing algorithms impose some smoothness conditions on the
boundary. It can also be extended to the case of the reflected and the drifted Brownian
motion. These cases are discussed later and in the numerical experiments.

Some numerical experiments are carried out to verify the order 1 of ED
∆t with respect

to ∆t using our algorithm by comparing the analytical solution with the Monte Carlo
solution of some PDEs.

4 Random walk on the hyper-rectangles

The algorithm for simulating the exit time and the exit position of a Brownian motion
from a hyper-rectangle is presented. This algorithm is a generalization of the random
walk on the rectangles algorithms proposed in [6]. The hyper-rectangle of dimension d
is of the form ∏

d
i=1[−Li,Li]. We denote by Xt the Brownian motion starting from x at

t = 0 inside the hyper-rectangle and (δ,y) the exit time and exit position of Xt from the
hyper-rectangle.

Algorithm 4.1 describes the simulation of the exit time and the exit position from the
hyper-rectangle. It can be summarized in the following steps.

We recall that the multidimensional Brownian motion Xt has each of its coordinates
Xi

t a one dimensional Brownian motion defined on the segment [−Li,Li]. let ti be the exit
time of each coordinate Xi

t and ε i =±Li its exit position. The exit time of Xt, δ= infi t
i.

The algorithm is divided in two parts: finding the first coordinate (named imin) that
will exit first and its exit time (δ) and then simulating the position (y) of the Brownian
motion at time δ.

The exit time and the exit position (t1 and ε1) of the first coordinate X1
t are simulated.

δ and imin are assigned to t1 and 1 respectively and will be updated during the algorithm.
Then each coordinate i from 2 to d is checked if it will exit before δ through the following
steps. The exit position ε i of Xi

t is simulated. The probability that its exit time ti of Xi
t is

less than δ and conditioned by ε i is computed and a uniform random number is drawn
in [0,1]. If this random number is less than this probability, then current coordinate i will
exit before all its preceding ones. The exit time ti is simulated, imin and δ are updated
to i and ti respectively and i is added to an initially empty set A. This set contains all
the coordinates that their exit times have been simulated. Once all the coordinates are
scanned, δ is the smallest exit time of all the coordinates thus it is the exit time of the
multidimensional Brownian motion.

Finally, the exit position y of the Brownian motion has to be simulated. It is the po-
sition of each coordinate at time δ. For each coordinate i from 1 to d, if i = imin then its
position is already simulated. If i∈A then its position at δ is simulated conditioned only
by its simulated exit time and position, else, the position is simulated conditioned by its
simulated exit position and an exit time greater then δ.
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Algorithm 4.1: Simulation of the exit of Brownian motion from a hyper-rectangle

A=∅

{Simulation of the exit position of X1}
compute α1 =P[X1

t1
= L1]

{Choosing the exit position of X1}
if U(0,1)<α1 then

ε1 = L1

else

ε1 =−L1

end if

{Simulation the exit time of X1}
draw t1 with P[t1∈·|X1

t1
= ε1]

δ= t1 and imin =1
{Simulation of the exit time from the hyper-rectangle}
for i=2 to d do

{Simulation of the exit position of Xi}
compute αi =P[Xi

ti
= Li ]

{Choosing the exit position of Xi}
if U(0,1)<αi then

ε i = Li

else

ε i =−Li

end if

{Simulation of the exit time of Xi}
draw ti with P[ti∈·|Xi

ti
= ε i]

if ti <δ then

δ= ti, imin = i and A= A∪{i}
end if

end for

{Simulation of the exit position from the hyper-rectangle}
for i=1 to d do

if i= imin then

yi = ε i

else if i∈A then

draw yi with P[yi∈·|ti,X
i
ti
= ε i]

else

draw yi with P[yi∈·|δ< ti,X
i
ti
= ε i]

end if

end for

return (δ,y)

4.1 Some practical aspects for the algorithm implementation

In the preceding section, the transition density pLi(x,y,t) of the Brownian motion over
[−Li,Li] is required. It can be deduced from the one over [−1,1] using the scaling princi-
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Figure 1: Simulation of the Brownian motion using
the Euler scheme.

Figure 2: Simulation of the Brownian motion by
coupling the Euler scheme with the random walk
on the hyper-rectangles.

ple:

pLi(x,y,t)=
1

Li
p
( x

Li
,

y

Li
,

t

L2
i

)

.

The distribution function q(t,x) of the exit time τ:

q(t,x)=Pr[τ < t]=1−
∫ 1

−1
p(t,x,y)dy. (4.1)

In the case where the Brownian motion is a natural one killed at the both boundaries of
[−1,1], p(x,y,t) is given by equation (2.8) and

q(t,x)=2−
∞

∑
n=−∞

(

F
( (x−1−4n)2

√
2t

)

−F
( (x+1−4n)2

√
2t

))

(4.2)

with F(.) the complementary error function. For the other Brownian motion types (re-
flected and drifted) see [2].

We compute the conditional transition density of the Brownian motion (see [8]) by
using

• Conditioning by the exit position: let S(x)=P[Xτ =1|X0 =x] be the probability that
Xt exits from 1. S(x)=(1−x)/2. The transition density of the position of Xt given
that it will exit from 1 (Xτ =1) is given by:

p1(t,x,y)=
S(y)

S(x)
p(t,x,y); (4.3)

• Conditioning by the exit time: the transition density of the position of Xt given that
it will exit at time τ =T is given by:

r(t,x,y)=
p(t,x,y)

q(T−t,y)
q(T,x). (4.4)
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The analytical expressions of these transition densities in the case of a reflected or a
drifted Brownian motion can be found in [2].

The computation of p(x,y,t) and q(x,t) with these mathematical expressions (Eqs. (2.8)
and (4.2)) can be very expensive because it requires evaluation the function er f c(.) and
the infinite series must be truncated at high order. An alternative method for computing
p(x,y,t) would be solving the diffusion equations in (2.5) with finite differences. Let δx
and ∆t be respectively the mesh size and the time step used to solve (2.5) using the finite
differences method and pijk = p(iδx, jδx,k∆t) be the numerical solution of (2.5) with this
method computed at positions x= iδx, y= jδx and time t= kδt. One can compute all the
possible values of pijk and place them into a three dimensional array, before simulating
the Brownian motion.

Hence, p(x,y,t) can be approximated by p∗(x,y,t), a trilinear interpolation of the pijk’s.
This alternative method is found to be very much faster than the one using the analytical
expression of p(x,y,t) (because it uses tabulated values) and is very accurate.

5 Coupling the two numerical schemes

We denote by euler step the updating procedure of the Euler scheme given in (3.3) and
rec step(δ,y) the updating procedure using the from the hyper-rectangle and defined as
follows:

{

X̃k+1 =y,

fk+1 = fk+g(X̃k)(δ−tk).
(5.1)

Let CONF be a confidence region of D such that the probability that the Brownian motion
exits from the domain between two iterations (tk ≤ τ ≤ tk+1) is neglectful. Given that
X̃tk+1

∼N(X̃tk
,∆t), CONF is the set of points such that the distance of X̃tk

to the boundary

of D is larger than dCONF = 4
√

∆t. The coupling algorithm of the Euler scheme with
the random walk on the hyper-rectangles consists in doing an Euler step if the Xt is
very likely to stay in the domain and hyper-rectangles step if the exit probability is not
neglectful. It is given in Algorithm 5.1.

6 Numerical experiments

Some numerical experiments are carried out to verify the efficiency of our proposed cou-
pling algorithm. This is done by computing the relative error between the analytical
solution and the Monte Carlo solution of some Poisson problems. The Monte Carlo so-
lution requires the computation of the exit time and the exit position of the Brownian
motion from the domain which are computed using the coupling algorithm.
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Algorithm 5.1: Coupling the Euler scheme with the random walk on the hyper-rectangles

X̃0 =x, f =0,k=0
while X̃k ∈D do

if X̃k ∈CONF then

X̃k+1 = X̃k +
√

∆tWk

f̃k+1 = f̃k+g(X̃k)∆t
k=k+1

else

choose a hyper-rectangle containing X̃tk
and having one facet tangent to D

simulate (δ,y)
X̃k+1 =y
fk+1 = fk+g(X̃k)(δ−tk)
k=k+1

end if

end while

return (δ,y)

We start with the Poisson problem defined in (2.9) with:

{

D=[−1,1]×[−1,1],

g(x)=1, ψ(x)=0.
(6.1)

The analytical solution of this particular problem can be deduced from the eigenfunctions
of the Laplacian over the square and we have u(0,0)=0.858··· .

Concerning the construction of the confidence region CONF and the tangent rectan-
gles, four rectangles are taken such that each one has one side on the boundary of the
domain (see Fig. 3). When X̃tk

motion is inside one of these rectangles, the random walk
on hyper-rectangles is used for the updating procedure otherwise the Euler scheme is
used. The width of these four rectangles is dCONF =4

√
∆t. The choice of the value for the

width comes from the property that X̃tk+1
−X̃tk

∼ N(0,∆t) and Pr[|X̃i
tk+1

−X̃i
tk
|≥ 4

√
∆t] is

neglectful. Hence the probability to have the Brownian motion exits the domain from the
Euler updating is neglectful.

Table 1: Relative error between numerical and analytical solutions of problem (6.1) for different Euler time
steps.

Euler time step Relative Error

5×10−4 0.0061
10×10−4 0.0056
20×10−4 0.0059
40×10−4 0.0082
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R1

R3

CONF

R2R4

Figure 3: Construction of the confidence region and
the tangent rectangle in case of problem (6.1).

d_CONF

Figure 4: Construction of the confidence region and
the tangent rectangle in case of problem (6.2).

In this case, ED
∆t=0 so it is independent of the Euler time step. This is because we have

∫ τ
0 g(Xs)ds=τ and the estimation of τ is drawn using the hyper-rectangle algorithm and

the exact probabilities expressions. Thus, the numerical error only contains the Monte
Carlo error out of the two cited before. Table 1 gives the relative error between numerical
and analytical solutions of problem (6.1) for different Euler time steps. These results show
that the relative error is independent from the Euler time step and it is relatively small
(containing one source of error).

In the next numerical examples we compare the computational cost of our algorithm
with the one proposed in [5] for the same Poisson problems. We recall that in [5] a numer-
ical algorithm of order one is proposed to approximate the exit time and the exit position
of the Brownian motion based on the Brownian bridge assumption. The following two
cases of the Poisson problem are considered in dimensions d=2,5:

(6.2.1)



























D={x,‖x‖≤1},

g(x)=−∑(xi)2,

ψ(x)=
1

6
∑(xi)4,

u(x)=ψ(x), x∈D,

(6.2.2)



























D={x,‖x‖≤1},

g(x)=Πd
i=1cos(2πxi),

ψ(x)=
g(x)

2π2
√

d
,

u(x)=ψ(x), x∈D.

(6.2)

The construction of the hyper-rectangle is shown in Fig. 4. The outer circle repre-
sents the boundary of the domain and the inner circle is the boundary of the confidence
region where the Euler scheme is used. The hyper-rectangle is taken as a hypercube of
side length equals dCONF = 4

√
∆t. One of the facets of the hypercube is tangent to the

boundary of the domain at the orthogonal projection of X̃tk
on the boundary. Note that

the hypercube is not completely inside the domain but we neglect this geometrical error.
The solution u(x) is computed at point x=(x0,0,··· ,0) for different values of x0.

Fig. 5 verifies the order one of ED
∆t with respect to ∆t using the coupling algorithm
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Figure 5: Verification of the order 1 of the coupled algorithm for problems (6.2.1) (first column) and (6.2.2)
(second column) in dimensions 2 (first row) and dimensions 5 (second row).

in the case of problems (6.2). The numerical solution is computed using 5×106 indepen-
dent paths. The 95% confidence interval for the numerical solution is about uN,∆t±1.4%
in all the cases, and it took about 10 hours on a standard PC machine. However, the
computational time of our algorithm is about 10 times larger than the one needed by the
algorithm in [5] and it is not possible to handle the computational cost in the case of a
very high dimensions (d=32 or d=128) as in [5].

Hence, one can conclude that it is only interesting to use our coupling algorithm near
the domain’s corners where the cited algorithms fail to simulate the Brownian motion
and to use these cited algorithms where the domain boundary is locally smooth.

So far, the proposed coupling algorithm was studied in the case of the natural Brow-
nian motion. The efficiency of the algorithm is now studied in the cases of the reflected
and the drifted Brownian motion. We now consider the following Poisson problem:



















1

2
∆u(x)+g(x)=0, x∈D,

∂u

∂n
=0, x∈ΓN ,

u(x)=ψ(x), x∈∂D−ΓN ,

(6.3)
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Figure 6: Verification of the order 1 of the coupling algorithm in the case of a reflected Brownian motion:
problem (6.3.1) (left) and (6.3.2) (right).

with:

(6.3.1)















D=[−0.75,0.75]×[0,1], ΓN ={x∈D, x2 =0},

g(x)=2πsin(2πx1)
(

πcos(2πx2
2)(1+4x2

2)+sin(2πx2
2)

)

,

ψ(x)=sin(2πx1)cos(2πx2
2), u(x)=ψ(x),

(6.3.2)















D=[−0.75,0.75]×[0,1], ΓN ={x∈D, x2 =0},

g(x)=2πsin(2πx1)
(

πcos(2πx2)(1+2x2)+sin(2πx2)
)

,

ψ(x)=sin(2πx1)cos(2πx2), u(x)=ψ(x).

For more details about the mathematical definitions of these two stochastic processes,
see, for example, [2]. In case (6.3), the Poisson problem in (6.3) is considered with a
Neumann condition over ΓN . In terms of Brownian motion, ΓN is a reflecting boundary.
The Construction of the confidence region in this case is the same as in the first example
but the rectangle R2 has a reflecting side on the Neumann boundary. Inside the rectangle
R2, the exit time and position of the Brownian motion are simulated using our preceding
algorithm with a slight modification. For the first coordinate, we used the transition
densities of the one dimensional Brownian motion reflected at one end of the segment
and killed at the other.

Fig. 6 gives the numerical results and the order one of the coupling algorithm.

The efficiency of the simulation of the drifted Brownian motion is studied through
the following Poisson problem:







1

2
∆u+µt.∇u+g=0, x∈D,

u(x)=ψ(x), x∈∂D,
(6.4)
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Figure 7: Verification of the order 1 of the coupling algorithm in the case of a drifted Brownian motion: problem
(6.4), the solution is computed at the center of D.

with























D=[−1,1]×[−1,1],

g(x)=−∑(xi)2
(

1+
2

3
µixi

)

,

ψ(x)=
1

6
∑(xi)4, u(x)=ψ(x).

The simulation of the exit time and the exit position from the rectangle for drifted
Brownian motion is done with the same algorithm but using the expressions of the tran-
sition densities of the drifted one. Again, the order one the coupling algorithm is verified
in the case of the drifted Brownian motion with a drift µ=0.5 and 1, see Fig. 7.

7 Conclusion

An algorithm was presented in this paper to simulate a Brownian motion over an ir-
regular domain. The algorithm couples the Euler scheme with the random walk on the
hyper-rectangles. It has the advantage over other existing algorithms of being of order
one with respect to the time step of the Euler scheme to handle boundary domain with
corners. The efficiency of the algorithm is studied by comparing the analytical solution
with the Monte Carlo solution of some PDEs over irregular domains. The drawback
of this algorithm is being computationally very expensive in high dimensional domains
when compared with other existing algorithms. So in conclusion, we can say that our
algorithm can replace the other existing algorithms in the low dimensional case (dimen-
sion less than 10) but in the high dimensional case one has to use it only near the corner
of the boundary.
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