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Abstract. The guided and leaky modes of a planar dielectric waveguide are eigensolu-
tions of a singular Sturm-Liouville problem. The modes are the roots of a characteristic
function which can be found with several methods that have been introduced in the
past. However, the evaluation of the characteristic function suffers from numerical
instabilities, and hence it is often difficult to find all modes in a given range. Here a
new variational formulation is introduced, which, after discretization, leads either to a
quadratic or a quartic eigenvalue problem. The modes can be computed with standard
software for polynomial eigenproblems. Numerical examples show that the method is
numerically stable and guarantees a complete set of solutions.
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1 Introduction

Understanding the propagation properties of electromagnetic waves in layered dielectric
media is essential for many applications in photonics. Multilayer dielectric structure can
guide waves and are characterized by a refractive index that varies only in x-direction.
Furthermore, in each layer the permittivity of each is a piecewise constant function, and
a constant (with possibly different values) outside the finite interval x ∈ [0,w]. The two
semi-infinite intervals are the cover and substrate and the finite interval is the stack of
the waveguide. The magnetic permeability µ is constant.

The modes of such a structure have either transverse electric (TE) or transverse mag-
netic (TM) polarization. In the former case the electric field is of the form ~E(~r,t) =
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φ(x)exp[i(βz−kt)] ·~ey where φ satisfies the scalar equation

φ′′(x)+(k2n2(x)−β2)φ(x)=0, x∈R. (1.1)

Here, n(x)=
√

ǫ(x)µ is the refractive index.

In the TM case the magnetic field is of the form ~H(~r,t)=φ(x)exp[i(βz−kt)] ·~ey where
φ satisfies the scalar equation

(

1

n2(x)
φ′(x)

)′

+

(

k2−
β2

n2(x)

)

φ(x)=0, x∈R. (1.2)

Equations (1.1) and (1.2) are singular Sturm-Liouville problems, where the propagation
constant β is the unknown eigenvalue.

The spectrum consists of a discrete part, corresponding to guided modes, and a con-
tinuous part, corresponding to radiation modes. These modes form a complete set, that
is, any function in L2(R) is a superposition of a finite number of guided modes and a con-
tinuum of radiation modes [11]. Using the framework of thin-film translation matrices it
is easy to obtain a characteristic function whose real roots are propagation constants of
the guided modes. With the same framework one can also derive the form of the modes
in the continuous spectrum [5].

There is a third type of eigensolutions, known as leaky modes. These are unbounded
solutions corresponding to complex roots of the characteristic function whose modes
radiate energy away from the stack. Although leaky waves have infinite energy they
are physically significant and have been verified experimentally in finite regions of the
waveguide [19]. The leaky modes form a discrete set of expansion functions in the stack
and can therefore represent field solutions in this region [12]. Leaky-wave analysis has
the advantage that in the representation of a field the superposition integral of radia-
tion modes is replaced by a discrete sum of leaky modes. In practice, only a few modes
are necessary to obtain good approximations. This type of analysis has been applied in
several photonics applications, see, e.g., [10] and the references cited therein. For more
information on leaky modes in planar waveguides we refer to the recently published
survey article [8].

Since waves can travel in two directions in the semi-infinite layers of the waveguide,
the characteristic function has two branch cuts in the complex plane. To avoid the diffi-
culties of the iterative root finder caused by the branch cuts, Smith et. al. [15] suggest a
change of variables in which the characteristic function is analytic in the complex plane
except for the origin. To find all roots in a specified region of the complex plane one
can use a method by Delves and Lyness [6], which is based on the argument principle of
complex analysis. Similar techniques for finding the propagation constants of dielectric
waveguides are discussed in [1, 2, 4] and [16]. A related method to find the roots is by
continuation from a closed to an open waveguide [9].

The core of these methods is the evaluation of a characteristic function. Unfortunately,
the function exhibits the exponential scaling which can lead to numerical instabilities
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when evaluating this function in floating point arithmetic. It is well known that the effect
becomes noticeable if there are many or thick layers present, if the frequency is large or if
there are lossy layers, see, e.g., [7, 13, 14].

An alternative to evaluating the characteristic function is a variational approach where
the unknown eigenmode φ is approximated by either polynomial expansions [13] or fi-
nite elements [20]. This discretization scheme entails truncating (1.1) to a finite interval
and imposing artificial boundary conditions at the endpoints. The result is a highly non-
linear eigenvalue problem that must be solved by iteration. This approach avoids the
numerical instabilities associated with the characteristic function, but does not guarantee
that a complete set of solutions is found, since the solutions depend on the quality of the
initial guess.

In this article we propose a new variational formulation for computing the guided
and leaky modes. After discretization the variational form reduces to either a quadratic
or a quartic eigenvalue problem, depending on whether the permittivity is equal or dif-
ferent in the two semi-infinite layers. The benefit of this method is that it does not rely on
evaluating any characteristic function, thus the method is stable even for guiding struc-
tures consisting of multiple and thick layers. Furthermore, the method can be applied to
waveguides with lossy materials and generalizes to the case where the stack has an arbi-
trary index profile. There are several numerical methods and software packages available
for solving polynomial eigenvalue problems, they have been reviewed in [18].

The outline of this article is as follows. In Section 2 we briefly review the derivation
of the characteristic function and explain the source of the numerical instabilities of its
evaluation. Section 3 derives the new variational forms and their discretizations. Finally,
in Section 5 we present numerical results with the variational formulation.

2 Characteristic function

A material consisting of J+1 layers is completely described by J+1 refractive indices
n0,··· ,nJ and the positions x1,··· ,xJ of the J interfaces, c.f. Fig. 1. The layer with index 0
is the cover and layer J is the substrate. The other layers are referred to as interior layers.
To simplify notations we shift the origin to the first interface, i.e., x1 =0 and write xJ =w.

Since the transverse wave numbers

αj =
√

k2n2
j −β2 (2.1)

are constant in each layer, the solutions of (1.1) and (1.2) consist of a left- and a right
going harmonic in the interior layers. The guided and leaky modes are characterized by
one harmonic in the semi infinite layers. Hence such a mode has the form

φ(x)=







exp(iα0x)φ(0), x≤0,

cos(αj(x−xj))φ(xj)+sin(αj(x−xj))/αjφ
′(xj), xj ≤ x≤ xj+1,

exp(−iαJ(x−w))φ(w), w≤ x,

(2.2)
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x1 =0 x2 xJ−1 xJ =w

n0 n1 nJ−1 nJ

. . .
-

Figure 1: The geometry parameters.

In an interior layer φ(x) is an even function of the transverse wave number, therefore the
branch choice of the square root in (2.1) is irrelevant. On the other hand, the branch choice
in the semi-infinite layers determines the direction of propagation and whether a mode
is exponentially decaying or increasing. The proper branch choice will be discussed later.

In the TE case, the values φ(xj) and φ′(xj) at the interfaces are determined from the
condition that the function and the derivative are continuous. This condition gives rise
to translation operators which describe how the state vectors are mapped from one layer
to the next

[

φ(xj+1)
φ′(xj+1)

]

=

[

cos(αjwj) sin(αjwj)/αj

−sin(αjwj)αj cos(αjwj)

][

φ(xj)
φ′(xj)

]

, (2.3)

where wj =xj−xj−1. In matrix-vector notation (2.3) is ψj =Tjψj−1, where the subscript in-
dicates a translation in positive x-direction through the j-th layer. Suppose the solution of
(1.1) is normalized such that φ(x1)=1. Then it follows directly from (2.2) that φ′(x1)=iα0.
In this case the state vectors at the other interfaces are products of translation operators

[

φ(w)
φ′(w)

]

=TJ−1 ···T1

[

1
iα0

]

. (2.4)

If φ(x) for a given propagation constant β is a solution of (1.1) then the derivatives of the
solution given by (2.4) must match the derivative of the solution in the right semi-infinite
layer. This leads to the condition φ′(w) =−iαJ φ(w). Thus the characteristic function is
given by

FTE(β)= iαJ φ(w)+φ′(w). (2.5)

For a given β the left hand side of (2.5) can be computed using (2.4), thus FTE(β) is a
function of the propagation constant and we can solve FTE(β) = 0 numerically using a
nonlinear solver such as Newton’s method.

In the TM case, the functions φ(x) and φ′(x)/n2(x) are continuous. A discussion
similar to the TE case shows that the state vector must be transferred across the layer
using the formula

[

φ(w)
φ′(w)

]

=TJ−1MJ−1 ···T1M1

[

1
iα0

]

,

where

Mj =

[

1 0
0 n2

j /n2
j−1

]

.
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The characteristic function is given by

FTM(β)= iαJ φ(w)+
n2

J

n2
J−1

φ′(w),

where φ′(w) is the value of the derivative approached from layer J−1.

The translation matrix Tj can be diagonalized Tj =SjΛjS
−1
j where

Sj =

[

−i i
αj αj

]

and Λj =

[

eiαjwj 0

0 e−iαjwj

]

.

and thus there is an exponential scaling if αj has a nonzero imaginary part.

To illustrate how this scaling can cause numerical instabilities consider the waveguide
of Fig. 2.
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Figure 2: Refractive index and dominant guided mode of an unstable waveguide. The parameters are w1=w4=2,
w2 =w3 =1, n0 =1.5, n1 =1.53, n2 =1.66, n3 =1.6, n4 =1.03, n5 =1.0, k=9, β/k≈1.63986.

For k = 9, the dominant propagation constant is β/k ≈ 1.63986. Since the refractive
index in Layer 4 is smaller than this value, it follows from (2.1) that α4 is purely imaginary
and hence the translation operator T4 has one exponentially large and one exponentially
small eigenvalue.

On the other hand, it can be seen from Fig. 2 that the corresponding mode decreases

in this layer. Therefore the transformed state vector S−1
j [φ(x4),φ′(x4)]

T
must have one

component that is close to zero as otherwise the solution φ(x) would grow large in the
layer.

In the presence of floating point errors the exponentially growing solution will be ex-
cited, and thus errors will be significantly magnified when the state vector is translated
across the layer. This effect becomes more noticeable when the width of the layer or the
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Figure 3: Numerically computed characteristic function of the unstable waveguide in Fig. 2. Three different
frequencies. Double precision arithmetic.

frequency is increased. This is illustrated in Fig. 3 which shows the numerically com-
puted characteristic function in the interval of β/k where the guided modes occur. When
k=7 or k=9, the roots disappear in numerical noise.

The mentioned instability can also cause difficulties when computing eigenfunctions
even if the computation of the root appears to be stable. Further examples in Section 5
will illustrate this behavior.

3 Variational formulation

We first derive the variational form for the TE polarization. Since the discussion of the
TM polarization is completely analogous we will only present the final result at the end
of this section.

From the representation (2.2) it follows that the guided and leaky modes are the solu-
tions of the eigenvalue problem

φ′′(x)+(k2n2(x)−β2)φ(x)=0, x∈ (0,w), (3.1)

φ′(0)−iα0φ(0)=0, (3.2)

φ′(w)+iαJφ(w)=0. (3.3)

Since the transverse wave numbers α0 and αJ depend in a nonlinear way on the eigen-
value β2 the system (3.1)-(3.3) does not constitute a regular Sturm-Liouville problem. The
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actual nature of this problem becomes more clear in variational form. Thus we multiply
(3.1) by a test function and integrate. Using integration by parts gives

0=
∫ w

0
ψ̄

(

φ′′+
(

k2n2−β2
)

φ
)

= ψ̄(w)φ′(w)−ψ̄(0)φ′(0)−
∫ w

0
ψ̄′φ′+

∫ w

0

(

k2n2−β2
)

ψ̄φ.

Now we use boundary conditions (3.2) and (3.3) to obtain

−
∫ w

0
ψ̄′φ′+

∫ w

0

(

k2n2−β2
)

ψ̄φ−iαJ ψ̄(w)φ(w)−iα0ψ̄(0)φ(0)=0. (3.4)

The ensuing discussion depends on whether the refractive indices in the semi infinite
layers are the same or whether they are different. We begin with the former case as it is
more straightforward.

3.1 Case 1: n0 =nJ

From (2.1) it follows that β2 = k2n2
0−α2

0. Furthermore we have α0 = αJ . Letting q =
k2

(

n2−n2
0

)

in Eq. (3.4) gives

∫ w

0
ψ̄′φ′−qψ̄φ+iα0(ψ̄(w)φ(w)+ψ̄(0)φ(0))−α2

0

∫ w

0
ψ̄φ=0. (3.5)

We introduce the bilinear forms

a(ψ,φ)=
∫ w

0
ψ̄′φ′−qψ̄φ,

a+(ψ,φ)= ψ̄(w)φ(w)+ψ̄(0)φ(0),

and write (ψ,φ) to denote the usual L2(0,w)-inner product. By letting z= iα0 in equation
(3.5) we obtain

a(ψ,φ)+za+ (ψ,φ)+z2(ψ,φ)=0. (3.6)

This is a quadratic eigenvalue problem in variational form. The task is to find the values
of z and the nontrivial φ such that (3.6) holds for all ψ. Once z is found the propagation
constant can be recovered from (2.1)

β2 = k2n2
0+z2.

3.2 Case 2: n0 6=nJ

This case is more complicated since it involves a suitable transformation for both α0 and
αJ . To that end we again use (2.1), this time to obtain

β2 =
k2(n2

0+n2
J)

2
−

α2
0+α2

J

2
(3.7)
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and
α2

0−α2
J = k2(n2

0−n2
J) :=δ2. (3.8)

Next we let q(x)= k2[n2(x)− 1
2(n2

0+n2
J)] so that

k2n2(x)=q(x)+
k2

2

(

n2
0+n2

J

)

. (3.9)

Using (3.7) and (3.9) we rewrite (3.4) as

∫ w

0
ψ̄′φ′−qψ̄φ+iαJ ψ̄(w)φ(w)+iα0ψ̄(0)φ(0)−

α2
0+α2

J

2

∫ w

0
ψ̄φ=0. (3.10)

Now we introduce the following variables:

z0 =
1

2
(α0+αJ), z1 =

1

2
(α0−αJ). (3.11)

which is equivalent to
α0 = z0+z1, αJ = z0−z1. (3.12)

These transformations give, using (3.8)

z0z1 =
1

4
(α0+αJ)(α0−αJ) =

1

4

(

α2
0−α2

J

)

=
1

4
δ2 (3.13)

and
α2

0+α2
J

2
=

1

2

[

(z0+z1)
2+(z0−z1)

2
]

= z2
0+z2

1. (3.14)

As in Case 1, we introduce the bilinear forms

a(ψ,φ)=
∫ w

0
ψ̄′φ′−qψ̄φ, (3.15)

a±(ψ,φ)= ψ̄(w)φ(w)±ψ̄(0)φ(0). (3.16)

Then it follows from (3.14) that (3.10) is equivalent to

a(ψ,φ)+iz0a+(ψ,φ)−iz1a−(ψ,φ)−(z2
0+z2

1)(ψ,φ)=0.

Since n0 6= nJ it follows that δ2 6= 0 and therefore, by Eq. (3.13), z0 and z1 are nonzero.

Substituting z1 = δ2

4z0
into (3.10) leads to

a(ψ,φ)+iz0a+(ψ,φ)−i
δ2

4z0
a−(ψ,φ)−

(

z2
0+

δ4

16z2
0

)

(ψ,φ)=0.

We let z= iz0, multiply by z2 and rearrange. The resulting equation is

δ4

16
(ψ,φ)+z

δ2

4
a−(ψ,φ)+z2a(ψ,φ)+z3a+(ψ,φ)+z4(ψ,φ)=0. (3.17)
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This is a quartic eigenvalue problem. Once the eigenvalues z have been found, the trans-
verse wave numbers and the propagation constant can be recovered from (3.7) and (3.12).
This leads to

α0 = i

(

δ2

4z
−z

)

,

αJ =
1

i

(

δ2

4z
+z

)

,

β2 =
k2(n2

0+n2
J)

2
+

δ4

16z2
+z2.

The variational form for the TM polarization can be derived in a similar manner. We only
state the result

δ4

16
(ψ,φ)p+z

δ2

4
b−(ψ,φ)+z2b(ψ,φ)+z3b+(ψ,φ)+z4(ψ,φ)p =0, (3.18)

where the bilinear forms are

b(ψ,φ)=
∫ w

0

1

n2(x)

[

ψ̄′φ′−qψ̄φ
]

,

b±(ψ,φ)=
ψ̄(w)φ(w)

n2
J

±
ψ̄(0)φ(0)

n2
0

,

and (·,·)p denotes the inner product with respect to weight function p= 1
n2(x)

.

We conclude with some final comments that are obvious from the definitions.

1. If we let δ =0 and z 6=0 in Case 2 then variational form (3.17) reduces to the varia-
tional form for Case 1. The same is true for the TM polarization.

2. The bilinear forms in (3.17) and (3.18) are bounded in H1(0,w).

3. If the refractive index is real, then all bilinear forms are Hermitian. However, the
derivation is also valid for the case of a complex index.

4 Discretization

Using a finite element method, we can approximate the eigenvalues of (3.6) and (3.17).
We introduce a partition ξ ={x1 = ξ0 < ξ1 < ···< ξN = xJ} with N≫n. In our partitioning,
we ensure that

{

xj

}

∈ξ. For our basis functions, we use piecewise linear functions, ϕi, so
that

ϕi(x)=































1, x= ξi,
x−ξi−1

ξi−ξi−1
, ξi−1 < x< ξi,

ξi+1−x

ξi+1−ξi
, ξi < x< ξi+1,

0, otherwise.
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The usual finite element formulation yields the quartic matrix eigenvalue problem: find
z such that

A0+zA1+z2 A2+z3 A3+z4 A4 (4.1)

is singular. We note these matrices are sparse, since from (3.16)

A1 =
δ2

4
diag(−1,0,0,··· ,0,0,1),

A3 =diag(1,0,0,··· ,0,0,1),

and from (3.15)

A0(i, j)=
δ4

16
(ϕi,ϕj),

A2(i, j)=(ϕ′
i,ϕ

′
j)−(qϕi,ϕj),

A4(i, j)=(ϕi,ϕj).

The discretizations of (3.6) and (3.17) are standard problems in numerical linear algebra,
which can be solved with general purpose software packages.

5 Numerical examples

We have implemented the finite element discretization and use Matlab’s polyeig routine
to solve the eigenvalue problem (4.1). This routine converts the quartic eigenvalue prob-
lem into a generalized eigenvalue problem, which is solved using the QZ-factorization.
Apparently, the routine does not exploit the sparsity of the matrices and it is conceivable
that a Krylov subspace method is a more effective method for solving (4.1). However,
for the computations presented here, the polyeig routine was able to find the eigenvalues
within 75 seconds of CPU time.

The quartic eigenvalue problem has solutions corresponding to all branch choices of
(2.1) in the semiinfinite layers j =0, J. Only some of the branches correspond to physical
solutions, namely modes which radiate only in the cover, and those which radiate in both

the cover and the substrate [11]. Specifically, if nJ <
Re(β)

k < n0, then we select solutions

with Re(α0)<0, Im(α0)>0 and Re(αJ)>0, Im(αJ)<0. If
Re(β)

k <nJ , we select modes leak-
ing into both the substrate and the cover. Therefore Re(α0)<0, Im(αJ)>0 and Re(αJ)<0,
Im(αJ)>0.

We first consider a six-layer structure which has been studied in the literature [1, 5].
For this particular guide the characteristic function can be computed in a stable man-
ner: For k=9.92918 the dominant guided mode has the propagation β/k=1.622729, and
hence α2 is purely imaginary. However, α2w2 is relatively small and thus the translation
operator T2 is not very ill-conditioned. The same is true for T3. The mode is shown in
Fig. 4.
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Figure 4: First guided mode, as computed using the characteristic function. The parameters are w1=w2=w3=
w4 =0.5, n0 =1.50, n1 =1.66, n2 =1.60, n3 =1.53, n4 =1.66, n5 =1.0, k=9.92918, β/k≈1.63.
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Figure 5: Convergence of eigenvalues as mesh is refined.

Unlike the methods that find the roots of the characteristic function, the finite ele-
ment method only provides an approximation to the eigenvalue. The approximation is
improved by refining the mesh width. In the case of piecewise linear elements the error
decays like O(h2) where h is the mesh width. The constant in the asymptotic estimates
gets larger for the eigenvalues of higher order, see, e.g., [17]. We begin with a coarse uni-
form mesh of unit width and refine at each iteration by a factor of two, so that in the kth
iteration h = 2−k+1. In each step we compare the approximations with those computed
in [1, 9]. The convergence results for the first eight modes are shown in Fig. 5.

Now we present more detailed results from application of our method to the six-layer
waveguide studied above. Since in this example the evaluation of the characteristic func-
tion is numerically stable, we use approximate eigenvalues provided by our method as
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Table 1: First modes of the six-layer waveguide shown in Fig. 4.

n0 =1.5,n1 =1.66,n2 =1.60,n3 =1.53,n4 =1.66,n5 =1.0
w1 =w2 =w3 =w4 = .5,λ0 = .6328

Re(β)
k

Im(β)
k

Re(βh)
k

Im(βh)
k Newton its

TE0 1.622729 0.000000 1.622722 0.000000 2
TE1 1.605276 0.000000 1.607286 0.000000 2
TE2 1.557136 0.000000 1.557197 0.000000 2
TE3 1.503587 0.000000 1.504373 0.000000 3
TE4 1.461857 0.007156 1.466823 0.006705 3
TE5 1.382489 0.018166 1.388745 0.017075 2
TE6 1.281364 0.035877 1.260756 0.031881 3
TE7 1.142314 0.0528761 1.155354 0.026225 3
TE8 1.003037 0.070771 1.052660 0.020142 4
TE9 0.804025 0.155492 0.818605 0.070079 4
TE10 0.492614 0.335904 0 .537435 0.132294 4
TE11 0.298779 0.699429 0.161929 0.667641 3
TE12 0.252121 1.005043 0.141075 0.972545 4
TE13 0.222071 1.269684 0.122014 1.228778 4
TE14 0.211786 1.516328 0.115630 1.467105 4

Table 2: First modes of a six-layer lossy waveguide.

n0 =1.5,n1 =1.66,n2 =1.60,n3 =1.53−i1.53×10−4,n4 =1.66−i1.66×10−4,n5 =1.0
w1 =w2 =w3 =w4 = .5,λ0 = .6328

Re(β)
k

Im(β)
k ×10−4 Re(βh)

k

Im(βh)
k ×10−4 Newton its

TE0 1.622729 0.00673 1.622722 0.00745 2
TE1 1.605276 1.66244 1.607286 1.65000 2
TE2 1.557136 0.20880 1.557193 0.21147 2
TE3 1.503587 0.55032 1.504373 0.61542 3

an initial guess for Newton’s method to compute the propagation up to six significant
digits. In Table 1, βh is the eigenvalue approximation computed by our method. β results
from using our approximation as an initial guess and applying Newton’s method. We
also include the number of Newton steps required to find β to within the specified toler-
ance. For this data we used h = 2−6. Note that, in general, as the mode order increases,
more Newton steps are required. This is consistent with the theory illustrated by Fig. 5,
i.e., for a fixed mesh size, as the mode order increases, the error in the finite element ap-
proximation will also increase. The results given in Table 1 agree within the displayed
number of digits with those presented in [1, 9].

Our method can also be applied to waveguides whose parameters are complex. The
results presented in Table 2 also agree with [1].

The previous two examples are stable and hence one can reliably compute the modes
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Figure 6: Characteristic function for the guide of Fig. 7. Three different frequencies.
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Figure 7: Comparison of first guided mode, computed by translation operators and FEM.The parameters are
w1 =w3 =1, w2 =3, n0 =1.473, n1 =1.56, n2 =1.0, n3 =1.56, n4 =1.0, k=11, β/k≈1.5434.

with the characteristic function as well as with the variational approach. For an unstable
guide, such as the one of Fig. 2 only the variational method leads to usable results. In
our experimentations we also found examples where Newton’s method applied to the
characteristic function yields the proper propagation constants, but fails to provide the
correct eigenfunction.

To illustrate the difficulties that may arise, we consider a two-channel waveguide
similar to those studied in [3, 21]. The geometry of this structure is shown in Fig. 7.
For k = 11 there are four guided modes. Newton’s method applied to the characteristic
function converges to the right roots, albeit it is impossible to reduce the residual to less
than 103 in magnitude. This can be explained by the fact that the translation operator T2
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Figure 8: Comparison of second guided mode, computed by translation operators and FEM.
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Figure 9: Comparison of third guided mode, computed by translation operators and FEM.

is unstable. However, since the other function values are in the range of 1015−1020, the
roots can be still identified; see Fig. 6.

Figs. 7-10 compare the four guided modes computed by the variational method with
the modes computed using translation operators. Since the two channels are well sep-
arated, the modes are similar to the modes of each individual channel. In particular,
the first mode of the two channel structure is mainly supported by one channel and the
second mode by the other channel. Then, modes three and four are again supported
by first and second channel respectively. We see that the variational method reproduces
the expected behavior. On the other hand, all modes computed by translation matrices
are supported by the right channel, which can be explained by the conditioning of the
translation operator.
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Figure 10: Comparison of fourth guided mode, computed by translation operators and FEM.
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