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Abstract. In this paper we present the modelling of elastic intra-species electron-elec-
tron and inter-species electron-ion scattering in a plasma on the basis of the Fokker-
Planck collision operator. Taking into account the equivalence of this operator with a
stochastic differential equation, we propose a Particle-in-Cell based approach for the
numerical solution of the Fokker-Planck collision term. As we will see, the introduced
numerical concept allows the simulation of the collisional relaxation process in a fully
self-consistent fashion.
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1 Introduction

A better physical understanding of electrical space propulsion systems like pulsed plasma
thrusters [1] as well as a multitude of other discharge driven systems, in general, requires
the numerical modelling and simulation of highly rarefied plasma flows. Mathematically,
such phenomena demand a kinetic description which is established by the Boltzmann
equation. An attractive numerical approach to tackle the non-linear Boltzmann prob-
lem consists in a combination of the well-known Particle-in-Cell (PIC) and Monte Carlo
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methods. Basically, the minimal numerical model should accommodate the physics of
interaction of charged particles with electromagnetic fields, elastic and inelastic electron-
neutral scattering as well as elastic intra- and inter-species charged particle Coulomb
collisions. Note, that the endeavor to include plasma particle interactions into fully ki-
netic simulations, usually carried out with PIC codes, have a long history (for a review
see [2]).

In the present paper we focus our attention on elastic intra-species electron-electron
and inter-species electron-ion collisions. For the plasmas of interest it is assumed that
especially electron-electron interactions play a dominant role. They are crucial in de-
termining the shape of the electron energy distribution function and are responsible for
populating the high-energy tail of the velocity distribution to meet finally a Maxwellian
distribution function. It is clear from energetic considerations that the high-energy part
of the velocity distribution controls reactions like atomic excitation and ionization — the
energy sinks for electrons — and to some extent the plasma chemistry. Furthermore,
in bounded plasmas high-energy electrons can escape to the wall and thus establish an
additional contest between depopulating and population the high-energy tail of the dis-
tribution function. Due to the long-range nature of the Coulomb force electron-electron
collision is a result of a multiple small-angle scattering process of point charges. Be-
sides inadmissible small time steps which are needed to resolve the individual collision
event, electron-electron scattering is not a pure two-body interaction in a plasma because
a single electron typically influences many other electrons at the same time. Hence, clas-
sical Monte Carlo (MC) tools like hard sphere models for (two-body) short-range reac-
tions [3] seemed to be inadequate. Nevertheless several researchers successfully adapt
binary collision models for long-range Coulomb interaction in a plasma, e.g. in a pioneer
work Takizuka & Abé [4] proposed a (nonlinear) MC collision operator for PIC models
which mimics the Fokker-Planck (FP) operator in Landau form. Later on Ma et al. [5]
extended the Takizuka & Abé method for gyrokinetic simulations, where the scattering
angle of a binary collision event obeys a Gaussian distribution. For this purpose they
suggested a velocity-independent version of the Takizuka & Abé technique which relies
on the local thermal velocity. Moreover, these authors introduced a fast and highly effi-
cient implementation scheme for binary collisions. Afterwards, Wang and colleagues [6]
improved the Takizuka & Abé ansatz. In particular, they clarified the relation between
the newly proposed collision operator and the Landau operator which is equivalent to
the FP collision term. Note, that all these authors attempted to show the consistency of
their approach with the FP equation. However, none of these methods are derived from
the FP collision operator. Definitely noteworthy is the cumulative small-angle scattering
approach for the simulation of long-range Coulombs collisions introduced by Nanbu [7].
This approach represents a MC method which was deviated on the basis of physical con-
siderations and do not use any kinetic equation. Although it was shown in [8] that this
method is compatible with a first order solution of the Boltzmann equation (in Landau
form) in ∆t, this cumulative small-angle approach as well as the other mentioned meth-
ods are non self-consistent techniques to simulate the evolution of the distribution func-
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tion due to charged particle interaction.

A promising alternative to the mentioned techniques is to represent elastic intra- and
inter-species charged particle Coulomb collisions through a Fokker-Planck equation. In
the PIC community first Jones and coworkers [9] used the equivalence of the FP with
a Langevin equation and modeled isotropic electron-electron scattering by a grid-based
”collisional field” and a velocity-independent constant collision frequency. However, this
approach is only applicable when the distribution function is close to Maxwellian. Later
on Manheimer et al. [10] improved the approach of Jones and coworkers by introduc-
ing a Langevin formulation, where the velocity-dependent friction force vector and the
diffusion tensor are obtained from the distribution function of the scattering population
which is assumed to be isotropic.

In the present paper we tie up to the proceeding of Manheimer and colleagues and
start from the FP equation to describe elastic electron-electron and electron-ion collisions
in a plasma. The keys to compute the friction force vector and the diffusion tensor are
the Rosenbluth potentials. However, in order to circumvent any model assumptions like
isotropic velocity distribution of the field particles in computing these potentials, we ob-
serve that they are given by convolution integrals which addresses to use Fourier trans-
form techniques to calculate these quantities and their derivatives. Finally, the combina-
tion of a Langevin-type stochastic differential equation together with Fourier techniques
and appropriate particle-mesh methods, allows a first principle, full self-consistent sim-
ulation of the collisional relaxation process.

To outline this PIC-based approach for the numerical solution of the FP equation, we
state in Section 2 the governing equations for charged particle collisions in a plasma. Af-
terwards in Section 3, the overall numerical framework is briefly sketched out together
with the basic ideas and techniques to solve numerically the Langevin-type equation. Re-
sults obtained from numerical experiments for intra- and inter-species as well as coupled
intra-inter-species scattering are presented in Section 4. Finally, a short summary and an
outlook of our further activities are given in Section 5.

2 Mathematical model of Coulomb interaction in plasmas

In this section we focus our attention on a brief review of the basic equations necessary to
model elastic intra-species electron-electron and inter-species electron-ion — abbreviated
by (e,e) and (e,h), respectively — Coulomb scattering in a plasma.

2.1 Statement of the governing equations

To describe elastic intra- and inter-species charged particle Coulomb collisions in a plasma
it is convenient to start from the the Fokker-Planck (FP) equation (see, for instance,
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[11–13])
(

δ fe

δt

)

col
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[

Fe(v,t) fe

]
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2
∇T

v
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∇T
v
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De(v,t) fe

)

]T

, (2.1)

where ∇v denotes the usual differential operator with respect to velocity v. This equa-
tion describes the evolution of the electron distribution function fe = fe(v,t) — in which
we are interested here — as a result of multiple small-angle Coulomb scattering of point
charges, and represents the lowest order approximation to the Boltzmann collision inte-
gral. Therefore, it is not amazing that the FP model retains the significant properties of the
Boltzmann integral [14, 15]. Furthermore, note that the occurrence of the FP equation for
the description of elastic charged particle collisions in a plasma indicates that the short-
time behavior of the transition probability is modeled as a diffusion process (see [16]).
Basic for the present paper is the fact that the FP equation (2.1) is entirely equivalent to a
stochastic differential equation (SDE). This means that the stochastic variable V=V(t) —
identified later with the velocity of the electrons — with transition density fe fulfills the
equation (also called Langevin-type equation in the following)

dV(t)=Fe(V,t)dt+Be(V,t)dW(t) , (2.2)

where W(t)∈R
3 represents the three-dimensional Wiener process and the matrix Be ∈

R
3×3 is related to De ∈R

3×3 according to De =BeB
T
e . For sophisticated details and strin-

gent proofs we addresses the reader to references [16, 17] and also to [18].

2.1.1 Intra-species (e,e)-collisions

In the latter equations, (2.1) and (2.2), the central quantities are the dynamical friction
force (or drift) vector Fe = Fe(v,t)∈R

3 and the diffusion tensor De = De(v,t). Both, in
general, depend also on the actual location x which is not taken into account in the fol-
lowing. Their components are defined by

Fe, j =∑
s
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(es)
P
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me
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) ∂Hs

∂vj
(2.3)

and
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s
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∂2Gs

∂vj ∂vk
, (2.4)

respectively, where the index ”s” goes over all scattering populations (sometimes called
the field particles) with charge qs, mass ms, density ns and temperature Ts, which are the
electron or/and ion populations in the present context. Here,

Γ
(es)
P =

e2 q2
s

4πǫ2
0m2

e

ln(Λ)

denotes the plasma parameter (see [19]), where ǫ0 is the permittivity of free space and

ln(Λ) is the Coulomb logarithm in the classical limit. Note that the quantity ν̄es=ns Γ
(es)
P /v̄3

s
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can be considered as an energy-weighted average of the speed-dependent momentum
transfer collision frequency between the electrons ”e” and the species ”s”, where the
thermal velocity is given by v̄2

s = kB Ts/ms with the Boltzmann constant kB. The keys to
compute friction force and diffusion coefficients are the Rosenbluth potentials [11] which
are defined by

Hs(v,t)=
∫

R3

d3w
fs(w,t)

|g| , Gs(v,t)=
∫

R3

d3w |g| fs(w,t) , (2.5)

where g = v−w is the difference between the velocity v of the scattered-off (also called
test) particles and the velocity w of the field particles. Clearly, the drift vector Fe and
the diffusion tensor De as well as the derived — ”square root” — tensor Be themselves
depend on the velocity v and, hence, both Eqs. (2.1) and (2.2) are, in general, non-linear
problems which have to be solved numerically in an appropriate manner. The direct nu-
merical solution of the FP equation can be performed (see, for instance [20] and references
given therein), but such an approach will make no clear link to the available PIC-based
numerical tools for computing the particle distribution function in phase space [21]. A
more promising approach is established by the use of the SDE (2.2) to which we will
turn our attention in the next section. There, we also present the numerical methods that
allow to compute the Rosenbluth potentials and their derivatives, especially for elastic
intra-species scattering without any assumptions.

2.1.2 Inter-species (e,h) collisions

In the situation of intra-species (e,e) scattering a priori no knowledge about the velocity
of field electrons after collision is available. However, in the case of inter-species (e,h)
collisions plausible estimations are obvious. Here, we exploit the fact that the velocity of
the electrons v = |v| is much larger than the one of the ions w = |w| and, furthermore,
the smallness of their mass ratio is taken into account. Then, it is appropriate to per-
form a Taylor expansion of |g|−1 and |g| up to lowest order to obtain the approximated
Rosenbluth potentials which take the simple form

Hh(v,t)=
1

v
− 3v̄2

h

4v3
and Gh(v,t)=v+

3v̄2
h

4v
, (2.6)

where it is assumed that fh(w,t) is normalized in velocity space and that the mean
∫

R3 d3ww fh vanishes. From these results we immediately obtain the friction force vec-
tor

Fe(v,t)=−nh Γ
(eh)
P v−2

(

1− 9

4

v̄2
h

v2

)

v̂ (2.7)

and the diffusion tensor

De(v,t)=nh Γ
(eh)
P v−1

[

H− 3

4

v̄2
h

v2

(

I−3v̂v̂T
)

]

(2.8)
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with

H =I−v̂v̂T , (2.9)

where the unit vector v̂=(v̂1, v̂2, v̂3)T =v/v is introduced for the sake of convenience.

In the following we examine the situation v̄2
h/v2 ≪1 in detail (see also [10]) and note

first that in this case De represents the transversal diffusion since v̂T
H =0. Second, due

to the special properties of the matrix (2.9) namely, H
T =H and H

T
H =H we conclude

that the square root tensor Be can be written immediately as

Be =αvH (2.10)

with the abbreviation α2 = nh Γ
(eh)
P v−3. Note, that in contrast to the diffusion matrix de-

fined by (2.8) as well as the situation of intra-species collisions no eigenvalue problem
has to be solved to obtain Be for the present approximation. Assuming that the energy
of the electrons is conserved exactly, i.e. v= |v|= constant and identifying v̂ with V̂, the
SDE (2.2) takes the form

dV̂(t)=−α2 V̂(t)dt+αH dW(t) (2.11)

which establishes an equation for the sines and cosines of the polar and azimuthal angles.
Since the matrix H is not linear in v̂ an exact solution of Eq. (2.11) is not expected. How-
ever, taking into account the zero expectation property of the Itô integral and using the
Itô formula (see Section 3.2) [16, 17] it is possible to find ordinary differential equations
for both the mean and second moment. The solution of these equation are directly given
by

Mi(t)=e−α2 (t−t0) Mi(t0) (2.12)

and

Pij(t)=1/3δij +
[

Pij(t0)−1/3δij

]

e−3α2(t−t0) , (2.13)

where δij denotes the Kronecker symbol, Mi(t) and Pij(t), i, j = 1,2,3, are the elements

of the expectation values E{V̂} and E{V̂V̂T}, respectively, and t0 is the initial time (see
also [22]). It is obvious, that the higher the electron velocity the slower the final moments
(2.12) and (2.13) are reached. In essence, the consequence of the performed approxima-
tion in the inter-species (e,h) collision case is that the evolution of the electron and ion
distribution function is decoupled. That means, the force experienced by the electron in
a collision with an ion depends on its own velocity — especially only, if the leading term
of the right-hand side of (2.7) and (2.8) is considered — and on the (higher) moments
of the ion distribution function, which clearly differs from the intra-species collisional
relaxation process. In addition, the cumulative effects of impacts cannot thermalize the
electrons because they cannot change their velocity but only their direction.
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Figure 1: Building blocks of the PIC-based approach for the Fokker-Planck equation.

3 Numerical framework

In this section we briefly outline the PIC-based concept for the numerical solution of
the FP equation, where especially the equivalence of this equation with the SDE (2.2) is
exploited. The entirety of these techniques allow to compute the collisional relaxation
process in a fully self-consistent way.

3.1 The PIC approach for the FP equation

Here, the PIC-based approach to solve the FP equation numerically is reviewed shortly
(for details see [23]); more information of the general PIC methodology can be found in
the books of Hockney & Eastwood [24] and Birdsall & Langdon [25]. For sake of clear-
ness, we consider in the following a single spatial grid cell, in which a sufficiently large
number of particles is located, and assume that a computational Cartesian mesh in veloc-
ity space is associated with this local grid zone. From Fig. 1 the analogy with the classical
PIC concept is immediately evident: One part of the computational cycle is situated in
a mesh-free zone, while another one needs a discretization grid, with two interface pro-
cedures closing the whole calculation. In the following, a short description of the single
building blocks of the Fokker-Planck solver is given.

Reconstruction. From the actual location of the plasma particles in the three-dimensional
mesh-free velocity space, the distribution function fe(v, t) is resolved on the Cartesian ve-
locity mesh with equidistant spacing. It is well-known that for such mesh arrangements
simple and very effective localization strategies are available. Furthermore, we apply
the volume-weighting technique — the straightforward extension of the area-weighting
method — to compute relative coordinates for each particle with index ”ν” from which
individual particle weights w(ν) can be determined (see Appendix A). These particle
weights then contain the necessary information to assign each particle to the eight nodes
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of the corresponding grid cell of the velocity mesh and to reconstruct the distribution
function needed for the next section.

Rosenbluth Solver. The assumption of an isotropic but non-Maxwellian velocity distribu-
tion of the scatterer implies an enormous reduction of the problem since the diffusion and
friction coefficients can be written in terms of one-dimensional quadratures [10, 13, 26].
However, in cases where no model assumptions concerning the distribution function can
be imposed, it seemed to be expedient to apply Fourier transformation techniques [27,28]
to evaluate the Rosenbluth potentials (2.5) and also their derivatives, because they are
convolutions of the scatterer distribution function and of the absolute value of the rela-
tive velocity. In this context it is worth mentioning that the use of the analytical Fourier
transform of g−1 increase the efficiency of the computations. Furthermore, bear in mind
that the application of the Fourier approach allows a first principle determination of the
deterministic friction and stochastic diffusion arising in the SDE (2.2) which results in the
self-consistent modeling of collisional relaxation. Note, that in classical PIC methods for
the Vlasov equation a Poisson or Maxwell solver undertakes the task of the Rosenbluth
solver.

Interpolation. The ”Langevin forces”, which are the deterministic friction and the stochas-
tic diffusion (as well as the square root of the diffusion), have to be computed at the
actual position of each particle in grid-free velocity space. Since interpolation is nothing
else than the ”inverse operation” of assignment, the particle weights w(ν) are once again
used to interpolate the Langevin forces at the location of particle ”ν” in continuous ve-
locity space (see Appendix A).

Langevin Solver. Under the action of the velocity-dependent Langevin forces, each particle
is moved in velocity space according to the Langevin-type equation (2.2), where appro-
priate numerical methods are required. For our purposes, we use weak approximations
to the SDE (2.2). Note, that the SDE takes the role of the deterministic Lorentz equation
in the classical PIC approach.

3.2 Numerical solution of the Langevin-type equation

The mathematical character of the SDE (2.2) contrasts sharply with its deterministic coun-
terpart. Especially, this fundamental difference finds expression in the numerical approx-
imation of the stochastic law of dynamics (2.2). In the following, we sketch out in short
the path of approximation for the SDE and start from its equivalent stochastic integral
formulation

V(t)=V(t0)+

t
∫

t0

F{s}ds+
3

∑
p=1

t
∫

t0

bp{s}dW p(s) , (3.1)

where the subscript ”e” has been omitted for convenience. Here, the column vector bp =
Bep with the usual Cartesian unit vectors ep∈R

3 is introduced, {s} abbreviates (V(s), s)
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and t = t0+∆t. Note, that the first integral on the right-hand side of (3.1) is an ordinary
integral (of Riemann or Lebesgue type) while the second one is a stochastic integral —
here — in the Itô sense with peculiar calculus and properties (see, for instance [16, 17,
29]). In order to obtain an appropriate weak numerical scheme to solve (3.1) we use the
integrated form of the multi-dimensional Itô formula,

Ψ{t}=Ψ{t0}+

t
∫

t0

ds
[

L(0)Ψ
]

{s}+
3

∑
p=1

t
∫

t0

dW p(s)
[

~bp ·∇c Ψ
]

{s} (3.2)

for the arbitrary function Ψ, where the diffusion operator L(0) is defined by

L(0)Ψ=

{

∂

∂t
+

3

∑
j=1

Fj
∂

∂vj
+

1

2

3

∑
j,k=1

Djk
∂2

∂vj ∂vk

}

Ψ.

Applying (3.2) recursively to the components of the friction vector Ψ= Fj and the square
root tensor Ψ=Bjk, respectively, we get the truncated weak Itô-Taylor expansion (ITE) for
the stochastic variable V. The desired order of weak convergence is closely related with
the underlying hierarchical set of multi-indices, which itself determines the truncation of
the Itô-Taylor series. Keeping in the following all stochastic integrals with multi-index µ
of length l(µ)≤2, one obtains the multi-dimensional — that is three spacial dimensions
and three independent Wiener processes — second order weak ITE

V(t0+∆t)=V(t0)+F{t0}I(0)+
3

∑
p=1

bp{t0}I(p)+
3

∑
p,q=1

[

bp ·∇v bq

]

{t0}I(p,q)

+
3

∑
p=1

[

bp ·∇v F
]

{t0}I(p,0)+
3

∑
p=1

[

L(0)bp

]

{t0}I(0,p)+
[

L(0)F
]

{t0}I(0,0) , (3.3)

where the occurring multiple Itô integrals are given by

I(p) =
∫ t0+∆t

t0

dW p(s) and I(p,q) =
∫ t0+∆t

t0

dWq(s2)
∫ s2

t0

dW p(s1)

with the convention dW0(s)=ds. For more details about the ITE we address the reader to
the literature, for instance [17]. Moreover, we note that the first three terms on the right-
hand side of (3.3) establish a first order weak scheme while the additional four terms are
necessary to assure a second order weak series expansion. A characterstic feature of weak
approximation is the freedom to replace multiple Itô integrals by suitable simpler random
numbers which coincide with the lower order moments. Then, after the replacements of
the Itô integrals by simpler noise increments, one obtains from the ITE (3.3) the desired
— but still non-derivative free — order two weak Milstein scheme. It is clear from (3.3)
that this weak expansion requires the evaluation of derivatives up to second order of the
friction and derived diffusion coefficients. However, in the environment of self-consistent
computations the drift and diffusion coefficients are not known analytically in the course
of the simulation and, hence, it is desireable to avoid the use of such derivatives. To
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obtain an explicit scheme, i.e. to avoid completely the differentiations in (3.3), one has to
observe the occurrence of the Itô formula for the friction vector F in the Milstein scheme
and to shift the remaining derivatives with the aid of deterministic Taylor expansions (for
details see, [23]). Then, for the discrete approximation Vn of V(tn) with V0 = V(t0) the
explicit order two weak Itô-Taylor scheme takes the form [17]

Vn+1 =Vn+
∆t

2

[

F(V⋆
n+1)+F(Vn)

]

+
1

4

3

∑
p=1

{

[

bp(T+
p )+bp(T−

p )+2bp(Vn)
]

∆W
p
n

+
3

∑
q=1
q 6=p

[

bp(U+
q )+bp(U−

q )−2bp(Vn)
]

∆W
p
n

}

+
1

4
√

∆t

3

∑
p=1

{

[

bp(T+
p )

−bp(T−
p )

][

(∆W
p
n )2−∆t

]

+
3

∑
q=1
q 6=p

[

bp(U+
q )−bp(U−

q )
][

∆W
p
n ∆W

q
n +R

p,q
n

]

}

(3.4)

with the auxiliary vectors

V⋆
n+1 =Vn+F(Vn)∆t+

3

∑
p=1

bp(Vn)∆W
p
n , (3.5)

T±
p =Vn+F(Vn)∆t±bp(Vn)

√
∆t, (3.6)

U±
q =Vn±bq(Vn)

√
∆t, (3.7)

and the time increment ∆t, where it is assumed that the vector functions F and bp do

not depend explicitly on time. Here, ∆W
p
n is a Gaussian random number with mean

E{∆W
p
n }= 0 and variance E{(∆W

p
n )2}= ∆t which is compactly expressed by the nota-

tion ∆W
p
n ∼N (

0,∆t
)

. The quantity R
p,q
n is given by R

p,q
n =−∆t for p = q while for p > q

R
p,q
n ∼N (

0, (∆t)2
)

and R
q,p
n =−R

p,q
n , where p,q = 1,2,3. It should be pointed out, that

the ”predictor step” (3.5) represents nothing else than the explicit first order weak Euler
— or Euler-Maruyama — scheme. Finally note, that recently a slightly modified weak
second-order scheme has been proposend in [30] which is developed on the basis of the
weakly convergence requirement and the sufficient moment conditions. Although this
scheme is somewhat more efficient than the second order weak Milstein scheme it is also
non-derivative free and, hence, we prefer the Itô-Taylor scheme (3.4) for our investiga-
tions.

To get an appreciation of the approximation characteristics of the introduced weak
schemes, we consider the one-dimensional SDE

dV(t)= βV(t)dt+γ1 V(t)dW1(t)+γ2V(t)dW2(t) (3.8)

for the variable V which depend on t with two independent Wiener increments and initial
value V0=3.0, where β=1.5 and γ1=γ2=0.02. Note, all quantities appearing in the latter
equation have no units. Clearly, applying Itô calculus, one immediately gets M(t)=V0eβt



D. D’Andrea, C.-D. Munz and R. Schneider / Commun. Comput. Phys., 7 (2010), pp. 877-903 887

for the mean value. While solving the linear SDE (3.8) respectively, with the weak Euler
(3.5) and the second order weak scheme (3.4) for the discretizations ∆t = 0.25 and ∆t =
0.125, we record the relative error

ǫR(t)=
1

M(t)
|M(t)−<V(t)> |,

where the sample average

<V(t)>=
1

Np

Np

∑
ν=1

V(ν)(t)

is computed for Np =105 simulation particles. The evolution of ǫR(t) obtained form the
Euler and the second order weak scheme is seen in Fig. 2. Clearly, the relative error of the
weak second order Itô-Taylor scheme for the coarsest discretization is always below that
one of the Euler scheme for the smallest ∆t. This means that the second order approach
allows a calculation of the mean value with an accuracy which is never reached by the
first order Euler method. The jagged behavior of the second order result for ∆t = 0.125
seemed to be a hint that more simulation particles are needed for higher order compu-
tations with small discretization ∆t. This speculation is affirmed by the thick line with-
out symbols seen in Fig. 2, where 106 simulation particles are used. To determine the
experimental order of convergence — that is also to demonstrate the consistency — of
the schemes under consideration we plot in Fig. 3 |M(T)−< V(T) > | as a function of
∆t = 2−n T, n = 1,2, ··· , in a double-log scale where T = 1. In addition to the results of
the explicit first order Euler (line with full gradients) and the explicit second order weak
scheme (line with full squares) we present in Fig. 3 the result obtained from the non-
derivative free Milstein scheme (dashed-dotted lines with circles). From the slope of the
first order Euler scheme we find a good agreement between design and experimental
(∼0.9) order of convergence. Similar, the behavior of the non-derivative free second or-
der scheme is also very satisfactory and yields ∼ 1.9 for the experimental convergence
order. For large and moderate ∆t (2−1≤∆t≤2−4) the slope of the explicit scheme agrees
very well with that of the weak Milstein scheme. However, for small step sizes (∆t<2−4)
the second order explicit approach shows after a steeper slope a “plateau” behavior. A
very similar behavior (not shown here) is also observed for the Milstein scheme, but for
very small discretizations (∆t<2−7). The difference in the convergence behavior between
second order explicit and Milstein scheme may be attributed to the additional approxi-
mation of the derivatives in the explicit case. The appearance of the “plateau” behavior
is alleviated if the number of trajectories (that means simulation particles) considerably
increases as already mentioned above.

4 Results

Each single block in Fig. 1 has been tested separately, thoroughly in its three-dimen-
sional version [23] providing very good reliability. Here, we present the validation of
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Figure 2: The evolution of the relative error between exact and numerical solution as a function of t, where a
first order Euler (lines with full symbols) and a second order weak (lines with open symbols) scheme is applied

with 105 simulation particles (squares: ∆t=0.25; circles: ∆t=0.125). The line without symbols represents the
second order result for ∆t=0.125 with 106 simulation particles.
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Figure 3: Log-log plot of the error versus the discretization ∆t. First order Euler scheme: line with full gradients;
second order explicit scheme: line with full squares and non-derivative free Milstein scheme: dashed-dotted line
with circles.

the whole Fokker-Planck module by means of a sequence of numerical experiments for
intra- and inter-species scattering demonstrating the good approximation properties of
the introduced schemes. In order to perform a general investigation, all the quantities
have been treated as dimensionless quantities. As reference sizes we considered the mass
and charge of electrons with a number density of nc = 1018 m−3. The thermal velocity v̄e
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is derived from a Maxwellian distribution function of electrons at a temperature of Tc =

10 eV: vc = v̄e = 1.326 ·106 m/s. From these parameters and the plasma parameter Γ
(ee)
P

(see Section 2.1.1) one obtains that one time unit is equivalent to

tc =v3
c /(nc Γ

(ee)
P )= 0.22 µs.

4.1 Intra-species electron-electron Coulomb collisions

The first numerical experiment is designed for the validation and assessment of the ap-
plied approximation methods coded in the FP module. For this we consider the three
dimensional normal distribution

f (v)=(2π)−
3
2

3

∏
i=1

1

σi
e
− (vi−µi)

2

2σ2
i

which is also a solution of the FP equation (see, e.g., [12]). The numerical simulation is
initialized as follows: In the mesh-free velocity space, the initial velocities components

V
(ν)
i (t = 0) of the ν = 1,··· , Np = 3·105 particles are independent identically distributed

Gaussian random numbers with mean µi =0 and variance σ2
i /v2

c =4.0 which also ensures
that the velocity distribution is a Maxwellian. Subsequently, the PIC cycle (Fig. 1) with
the weak second order Langevin solver (3.4) is 3·103 times passed through with time step
size ∆t/tc = 0.05. Throughout this computation the velocity mesh which is needed for
the Rosenbluth solver consists of Ng =64 grid points in each direction. Since the system
is in an equilibrium configuration, the shape of the velocity distributions as well as their
variances, respectively depicted in Figs. 4 and 5, are not expected to change during the
simulation. However, the latter shows a less satisfactory temporal behavior of the vari-
ance which in fact increases in time. This artificial warming — a measure for the lack of
energy conservation [31] — is presumably due to the grid interface operations, especially,
by the ”particle sharing” of the nodes in the assignment procedure. The hypothesis that
such a deviation from stationary solution is attributable to the grid is confirmed by the
fact that the numerical solution is considerably improved by increasing the number of
grid points, as clearly seen in Fig. 5 (line with triangles). The remaining increase in the
variance may reflect the presence of other numerical errors — whereto also the effects
of the finite sample size of the simulation particles belong to — which are inherent in
any discrete approximation. To cure these insufficiencies we here revisited the normal-
ization approach introduced by Lemons and coworkers [32] to provide global internal
energy and mean velocity conservation. In the following this renormalization procedure
is briefly recapitulated for sake of clarity and, in addition, a time-dependent extension
is proposed. For this purpose we assume that the two conservation quantities, namely,
the mean ~µ0 =~µ(t0) and the total variance σ2

0 =∑
3
i=1σ2

i (t0) are computed at the beginning
of the simulation from the particles average. Furthermore, we require that the velocities
V(ν), ν = 1, ···Np, of all simulation particles Np are known at t = tn from the numerical
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Figure 4: Distribution function recorded at t/tc = 150. Full line: exact solution, line with full diamonds:
643 nodes, line with full triangles: 1283 grid points. The numerical result obtained with 643 grid points and
correction (open circles) coincides exactly with the analytical solution.

Figure 5: Comparison of the temporal evolution of the variance of the x-component for two discretizations of
the Cartesian velocity mesh. Line with square: 643 grid points, line with triangles: 1283 nodes, line with circles:
643 nodes and correction.

solution of the stochastic collision law (2.2). From this knowledge we then estimate the
actual mean ~µac(t) and variance σ2

ac(t) according to

µac,i =
1

Np

Np

∑
ν=1

V
(ν)
i and σ2

ac,i =
1

Np−1

Np

∑
ν=1

(V
(ν)
i −µac,i)

2 for i=1,2,3.
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At each time step t = tn, the internal energy of the whole system is given, essentially, by
the sum of the variances in the three directions σ2

ac =∑
3
i=1σ2

ac,i(t) and is demanded not to

change from σ2
0 . From this requirement, a numerical error is evaluated as ǫN=σ2

0−σ2
ac and

in the spirit of the equipartition principle is equally subdivided in the three directions

σ2
de,i =σ2

ac,i−
1

3
ǫN ,

where σ2
de,i =σ2

de,i(t) denotes the ”desired” value of the variances. In contrast to the vari-
ance, the desired mean value components µde,i are immediately obtained from µde,i=µ0,i.
Applying now the renormalization transformation according to

V
(ν)
i → Ṽ

(ν)
i =µde,i+

(

V
(ν)
i −µac,i

)

√

√

√

√

σ2
de,i

σ2
ac,i

(4.1)

one obtains the redistributed particle velocity function which ensures that the mean
<Ṽi>=µde,i and the variance σ2

Ṽ
=σ2

de,i achieve the required values. In essence, the renor-
malization (4.1) eliminates any instabilizing fluctuations in the moments of the electron
distribution fe by linear transforming the particles velocities without changing the shape
of the distribution functions so that their means and variances recover the desired val-
ues while the system evolves stochastically. Exactly this property is utilized to guarantee
global energy and momentum conservation at each time step and its successful approach
is clearly demonstrated by the results plotted additionally in the Figs. 4 and 5: The open
circles lie exactly on the exact Maxwellian distribution (full thick line) and the variance
(line with circles) stay — besides small oscillations — constant.

A further numerical experiment is performed to study the intra-species (e,e) relax-
ation of an arbitrary initial velocity distribution to its equilibrium from first principles.
The velocity distributions of the Np = 3·105 simulation particles are initialized accord-
ing to parabolas with different mean values (µx/vc = 3.75, µy/vc = 3.0 and µz/vc = 2.25)
and variances (σ2

x /v2
c =0.34, σ2

y /v2
c =0.59 and σ2

z /v2
c =0.94) in each velocity direction. The

evolution of these initial distributions is monitored for 2·103 iterations with time step size
∆t/tc =0.0125, where the renormalization correction (4.1) is now applied. The first mea-
surement of interest is seen in Fig. 6, where the temporal evolution of the three variances,
computed from the particle velocities, are plotted. Since the diffusive intra-species col-
lision model provides, by means of the friction and diffusion ”forces”, mechanisms that
allow internal energy exchanges, one expects that such a system reaches thermal equi-
librium. This expectation is clearly confirmed: During a transient phase (t < 10), where
σ2

z (dashed-dotted line with diamonds) decays and σ2
y (dashed line with circles) slightly

and σ2
x (full line with squares) strongly increase, the variances reach a common state after

approximately 103 temporal cycles. The final configurations of the particle velocity dis-
tribution functions are depicted in Fig. 7. As a consequence of the properties of the FP

approximation also a system of charged particles in a “naive” non-equilibrium condition
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Figure 6: Temporal evolution of the variances (σ2
x(t) full line with squares, σ2

y (t) dashed line with circles and

σ2
z (t) dashed-dotted line with diamonds) for the ”parabola experiment”.

Figure 7: Final configuration of the particle velocity distribution functions (symbols) starting from the initial
parabola data are compared with the exact expressions (lines) whose variances are obtained from Fig. 6.

evolves in the course of time to its equilibrium conditions, that is relaxes to Gaussian
shaped distributions with same variance under positive entropy production. Note, the
mean values of all velocity components remain constant since there is no external force
to cause a stream motion of the particles.

For both numerical experiments presented above a velocity mesh was indispensable
to reconstruct the velocity distribution function for the computation of the friction force
and diffusion coefficients. Besides the numerical error due to the weak approximation
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Figure 8: Left: Log-log plot of the L1-norm versus the number of simulation particles (Np = 3·102,3·103,3·
104,3·105) for the discretization Ng = 32 (line with filled squares), Ng = 64 (line with open diamonds) and
Ng = 128 (line with filled circles). Right: The averaged relative L1-norm of error as a function of the velocity
mesh discretizations Ng =16, 32, 64 and 128.

of the SDE 2.2 (see Section 3.2), this proceeding clearly introduces additional numerical
errors which are attributed to the particle-mesh and mesh-particle coupling as well as the
grid computations (Fourier transformation, etc.) in the Rosenbluth solver. To judge the
quality of the numerical method as a function of the number of particles Np and the num-
ber of grid points Ng we calculate the physical quantity Q(v)=∂H(v)/∂vx corresponding
to the velocity dependent friction force in the vx-direction and compare it which its ex-
act value (see, e.g. [12]). This value is obtained by initializing the three directions of the
velocity as three Gaussians: in the following we choose µi = 0 and σ2

i /v2
c = 1. The com-

parison is done on Npro = 103 “probe” positions which are uniformly distributed in the
vx-direction according to

U
(λ)
pro /vc =8(2Z−1),

where Z ∈ [0,1] and λ = 1, ··· , Npro. Starting, for instance, with Ng = 32 and varying Np

according to 3·102, 3·103, 3·104 and 3·105 it is possible to evaluate Q(v) on the probes for
each Np and to construct a graph of the L1-norm of the distance from the exact reference
solution as

<EL1
(Np,Ng)>=

1

Npro

Npro

∑
λ=1

∣

∣

∣
Qnum

(

U
(λ)
pro ; Np, Ng

)

−Qex

(

U
(λ)
pro

)∣

∣

∣

∣

∣

∣
Qex

(

U
(λ)
pro

)∣

∣

∣

. (4.2)

If we repeat the same procedure for Ng =64 and Ng =128, respectively we finally obtain
the left plot in Fig. 8. Initially increasing Np decreases the error as intuitively expected
but beyond a certain number of simulation particles (Ng =32, Np .103; Ng =64, Np >103

and Ng =128, Np≥3·105) a sort of saturation effect arises. Actually when the distribution
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function is sufficiently smooth a further increase of Np can hardly improve the L1-norm of
the error. The residual error seems to be a direct consequence of the applied assignment
and interpolation (see Appendix A) which is formal second order accurate (see, e.g. [33]).
To check this hypothesis we fixed the number of simulation particles in a spatial grid cell
equal to Np=3·105 — so that for the chosen Ng saturation is always met —, initialized the
velocity of the particles as above and discretize the Cartesian velocity mesh by Ng = 16,
32, 64, 128 grid points in each direction resulting in a velocity step size of ∆v/vc = 1.25,
0.6250, 0.3125, 0.1563, respectively. The result of this numerical experiment is depicted in
the right plot of Fig. 8, where the L1-error is shown as a function of the four discretizations
Ng. Clearly, these errors are located nearly on a straight line. The absolute value of the
slope of this line is a measure for the experimental order of convergence (EOC). We extract
from the right curve of Fig. 8 an EOC∼ 1.7 which is a reasonable result since both the
assignment and the interpolation procedure is second order accurate. Finally note, that
in situations when the friction force and diffusion coefficients are given analytically (see
next section) the coupling interfaces and the grid computations can be omitted and the
discussed sources of error do not occur.

4.2 Simulation of inter-species Coulomb collisions

In this sub-section simulation results which allow the assessment of the inter-species col-
lision model and module will be presented. For that purpose, we consider a monochro-
matic electron beam consisting of 3·104 simulation particles which enter the ions reser-

voir in x-direction V̂(t0)= (1,0,0)T with initial velocity |V(t0)|/vc =3. The electrons are
advanced according to the SDE (2.2) which is solved by an Euler scheme of kind (3.5),
where the friction force is established by (2.7), the square root matrix B is obtained from
the diffusion tensor (2.8) by the solution of an eigenvalue problem [28] and the thermal
velocity of the ions v̄h is fixed equal to v̄e/48. The event dynamics for 4·103 iterations
is monitored through the electrons mean and variance seen in Fig. 9 together with their
counterparts obtained from the exact moment equations (2.12) and (2.13). To guarantee
the global conservation laws, the previously discussed renormalization technique (4.1) is
applied, where the desired mean is now the actual one. Since (2.11) represents a stochas-
tic law for the randomization of the directions in velocity space, we fixed σ2

0 according to
σ2

0 =~µ2(t0). As reported in Fig. 9 (left), the electrons ”loose” completely their initial drift
velocity which is not noticed in the case of intra-species interaction. Obviously, the nu-
merical result (open symbols) is nearly in perfect agreement with the exact solution (2.12)
(full line); hardly visible deviations occur only for times greater than ∼120 (which corre-
sponds to ∼26 µs). The initial kinetic energy is transformed in thermal energy which is
redistributed in each direction according to the equipartition principle. This is observed
in Fig. 9 (right), where the temoral evolution of σ2

x (t) (numerical: open squares; analyti-
cal: full line) and σ2

y (t) (numerical: open circles; analytical: dotted line) are plotted. Note,
that also in this case a noteworthy concurrence between the numerical and exact result is
observable. These variances show that the x-component of the electron velocity possesses
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Figure 9: Left: Evolution of the mean value of the electron velocity in x-direction; open symbols: numerical
result, full line: exact solution (Eq. (2.12)). Right: Behavior of the electron variances in the course of time for

(e,h) collisions. σ2
x(t): simulation result (open squares) and exact solution (full line); σ2

y (t): numerical result

(open circles) and analytical solution (dashed line).

a slower dynamics with respect to y (and z not plotted there) due to the initial non-zero
group velocity. Probably the most interesting conclusion is drawn from the shape of the
electron velocity distribution functions depicted in Fig. 10 (left) which are recorded at
time t/tc =200, that is when steady-state is obviously reached. Unlike the (e,e) collision
case in which the velocities were Gaussian distributed around their initial mean values,
here they are virtually uniformly distributed around the zero mean value. The visible
discrepancy at the left and right edges may be a hint that the longitudinal part of the
diffusion (2.8) is not completely balanced by the friction (2.7). Nevertheless, since the nu-
merical simulations agree in an amazing fashion with the exact results obtained from the
expressions (2.12) and (2.13) as well as provide reasonable shapes of the velocity distri-
bution function, we propose that the approximations for the friction vector and diffusion
tensor (2.7) and (2.8), respectively, represents a ”natural quasi conservation” model for
inter-species collisions in a plasma. A drawback in some respects is that the solution of
the eigenvalue problem to compute B is computational time consuming. In the following
an attractive first order weak alternative is presented which, at least, eases this disadvan-
tage. From the physical point of view it is obvious that for scattering of rapid electrons
off infinitely massive ions electron momentum and energy must be conserved exactly in
each collision event. Furthermore, in this case the crudest approximation (v̄2

h/v2 ≪1) for
the friction and diffusion introduced previously seems to be appropriate. However, mul-
tiplying both sides of (2.11) by V̂T, one immediately recognizes that the energy conserva-
tion is violated due to the friction force. This problem seemed to be a direct consequence
of the approximation of the diffusion tensor which excludes longitudinal diffusion i.e.,
in the direction parallel to the velocity vector. To overcome this insufficiency we propose
the following procedure: Since the square root matrix (2.10) is responsible for the ran-
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Figure 10: The left plot shows the final electron velocity distribution function of the inter-species collision
experiment in dependence of velocity (in all directions), where the friction force and diffusion components are
computed from (2.7) and (2.8), respectively. The velocity distribution as a function of vx (dashed) is compared
with this one computed from (4.3) (full line) in the right graph.

domization of the directions, we retain this quantity with its advantageous properties.
But instead to drop the friction vector completely (see [10]), we replace α2 in (2.11) by the
yet unknown parameter δ to enforce energy conservation. The electrons are then moved
by the time-discretized SDE (2.11) which is given by (see also Eq. (3.5))

Vn+1 =(1+δ∆t) |Vn|V̂n +αn |Vn|
√

∆tHn~ηn , (4.3)

where the subscripts indicate the actual time t=tn and the components of~ηn are Gaussian
random numbers with mean zero and variance equal to one. Clearly, δ is then adjusted in
such a way that kinetic energy conservation is assured in each collision event. Assuming
that V̂T

n V̂n =1 and neglecting terms in δ2, one obtains after some straightforward algebra
the result

δ=−α2
n

2
~ηT

n Hn~ηn . (4.4)

The previous electron-ion collision simulation experiment is repeated, where the elec-
trons are now moved according to the Langevin-model (4.3) with (4.4). Additionally, the
renormalization method is applied for consistency. The simulation results for the mean
value and the variances obtained with this model are nearly identical with those depicted
in the Fig. 9. The final electron velocity distribution function for the vx-component is seen
in the right plot of Fig. 10 (full line) together with the result extracted from the left graph
(dashed-dotted line) for comparison. It is obvious from this figure that the local enforced
energy conservation for each collision event according to (4.3) with (4.4) results in a less
smeared velocity distribution at the left and right edges. Moreover, the use of the dis-
cretized SDE (4.3) for electron-ion collision modeling reduces the needed CPU time by a
factor of ∼6 compared to this approach, where an eigenvalue problem have to be solved
to get the square root tensor B.
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Figure 11: Mean (dashed line) and variance (lines with symbols) time evolution of the three velocity distribution
functions during (e,e) collision process (left plot). Here, the mean value remains constant during simulation
while the variances tend to a common value. Right plot: Evolution of the mean value and variances during
the coupled (e,e)-(e,h) collision process. Thermal energy increases at expenses of the initial kinetic energy in
x-direction.

4.3 Coupled calculations: Elastic intra-inter-species scattering

In the following we present results from a more realistic simulation experiment, where
both the intra- and inter-species collision modules run together. As in the last sub-section,
the ions are thought to be (nearly) immobile with respect to the faster and lighter elec-
trons. The velocities of the latter are initialized with three Gaussians with different vari-
ances, respectively,

σ2
x(t0)/v2

c =1.0, σ2
y (t0)/v2

c =2.25, σ2
z (t0)/v2

c =4.0,

where the electrons impact the ion reservoir with an additional stream velocity Vx(t0)/vc=
3.0 in the x-direction. For a better understanding of the coupled simulation, we first per-
form a numerical reference experiment with the described initial data, where the inter-
species collisions are switched off. The result of this computation is depicted in Fig. 11
(left). Obviously, the variances reach the equilibrium value

[σ2
x (t0)+σ2

y (t0)+σ2
z (t0)]/(3v2

c ) ≈ 2.4

after ∼ 80 time units (which matches to ∼ 17 µs), while the mean value of < Vx >= µx

stays constant at the initial velocity Vx(t0)/vc =3.0 since no randomization mechanism is
available to convert the initial kinetic energy into the thermal internal energy; i.e to turn
”coherent flow” to ”disordered motion”. The result of the coupled intra-inter-species
simulation is seen in the right plot of Fig. 11. In contrast to the previous experiment,
the inter-species collision part provides a mechanism which re-distributes the initial ve-
locities uniformly in each direction resulting in the ”decay” of the mean velocity while
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the variances (thermal energy) are forced to reach a common value. Consequently, in the
coupled numerical experiment the initial kinetic energy is transformed in thermal energy
and it is clear from the right plot of Fig. 11 that in this case the variances in each direction
will posses a value which is that of intra-species contribution plus one third of the square
of the initial flow velocity. Moreover, it is obvious from the right part of Fig. 11 that the
coupled calculation is slower than the two independent processes seen in the right and
left plots of Figs. 9 and 11, respectively. This observation may be traced back to the fact
that the parameter α2 in Eq. (2.11) is no longer a constant during the simulation. In fact,
a comparison of the dashed curve in the right plot in Fig. 11 with that one in Fig. 9 (left)
admits the conclusion that α2 is smaller in the coupled simulation. Although transient
non-Gaussian shapes in certain directions may occur due to inter-species collisions, the
final result of collisional relaxation is of course a Maxwellian, i.e. a Gaussian distribution
function in each direction in velocity space.

5 Conclusion and outlook

In the present paper we have shown that intra-species electron-electron collisions in full
velocity space can be effectively modeled using the equivalence between Fokker-Planck
(FP) equation and stochastic differential equation (SDE), where the latter equation is
solved numerically with explicit weak, up to second order accurate, Itô-Taylor schemes.
In conjunction with the computation of the friction force and diffusion on a velocity grid
with Fourier techniques at each time step, the proposed Particle-in-Cell- (PIC-) based FP

solver allows a fully self-consistent simulation of collisional relaxation. A renormaliza-
tion method has further been adapted in order to reduce drastically the most of approx-
imation inherent errors, i.e. to ensure the conservation of particles velocity mean and
internal energy during the numerical simulations.

The inter-species electron-ion scattering process and some aspects of its numerical
modeling have been emphasized in this paper. Due to the natural approximations, the
friction and diffusion coefficients are now available in analytical form so that the com-
putations on the velocity grid can be circumvented. Some interesting aspects of the SDE

for the randomization of the directions in velocity space related to the lowest order ap-
proximation have been found: In this case an analytical solution of both first and second
moment can be derived. These results served as natural benchmark to test also the local
energy conservation approach for inter-species scattering simulation.

Furthermore, a coupled electron-electron and electron-ion collision simulation has
been presented. This numerical experiment gains detailed insight as a non-isotropic ini-
tial configuration in velocity space relaxes to a Maxwellian, i.e. a Gaussian distribution
function with zero mean and same variances in each direction in velocity space.

Clearly, the presented results of numerical experiments reveal the high quality and re-
liability of the approximation methods which operate in the Particle-in-Cell-based Fokker-
Planck module.
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An inherent difficulty of the existing FP solver is closely related with one of the ma-
jor problems that affects the solution of particle codes, namely, the statistical noise linked
with relative low number of particles. Conceivables remedies in this context are the veloc-
ity distribution function averaging over several spatial grid cells or the particle creation
and destruction technique. Moreover, additional investigations are desirable to decide
whether strong numerical approximations of the SDE are also suitable to model intra-
and inter-species collisions. However, the main focus for scientific future activities will be
the coupling of the FP with a fully electromagnetic Maxwell-Vlasov PIC module, which
should bring deeper insight in and better understanding of the complex interaction of
collective plasma phenomena with charged particle Coulomb collisions.
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strömungen”. D. D’Andrea wishes to thank the Forschungszentrum Karlsruhe for the
financial support during the year 2007.

A Aspects of particle-mesh coupling

The shape of the distribution function must be reconstructed on a velocity grid in order
to evaluate the integrals (2.5). For this purpose we use a Cartesian mesh in velocity space
with an equidistant spacing ∆v1, ∆v2 and ∆v3 in x-, y-, and z-direction, respectively. The

velocity grid vector vi,j,k =
(

v1(i),v2(j),v3(k)
)T

is then given by

vi,j,k =v0+∆vi,j,k , (A.1)

where v0 = (v01,v02,v03)T is the starting point of the velocity mesh and the increment
∆vi,j,k is evaluated according to ∆vi,j,k = (i∆v1, j∆v2,k∆v3)T with 0≤ i ≤ I, 0≤ j ≤ J and
0≤ k≤K.

Reconstruction Block. This step takes place in two distinct phases: first the velocity of
particle “ν” is localized with respect to the velocity grid, which means to find out the cell
Zi,j,k of the velocity grid where it is met. This grid cell is identified by the indices

iκ = INT

[

V
(ν)
κ −v0κ

∆vκ

]

+1; κ =1,2,3 , (A.2)

where V(ν) = (V
(ν)
1 ,V

(ν)
2 ,V

(ν)
3 )T is the velocity vector of the νth particle at time tn and

INT(.) denotes the integer part of a real number. Note, that the high efficiency of this
approach is due to the equidistant grid spacing.
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Figure 12: Assignment of the particle’s velocity to the nodes (grid-based model) and interpolation of the results
obtained in the nodes onto the particle’s position in velocity space (mesh-free model) with the aid of the
volume-weighting approach.

Second, the contribution of the located particle to the value of the distribution func-
tion in each node of grid cell Zi1,i2,i3 must be calculated. The basic idea is to take into ac-
count the distance of the particle from the node. For this purpose, we apply the concept
of assignment functions [24] which are nothing else than B-splines. For sake of clearness
we describe this procedure in one dimension. A basic property of a kth order B-spline is
that it can be determined recursively [34], for instance, a first order B-spline — in which
we are interested here — is computed from the “top-hat” function

B
[0]
[i,i+1]

(ξ) := B
[0]
[ξi ,ξi+1]

(ξ)=

{

1, ξ∈ [ξi ,ξi+1),

0, otherwise,
(A.3)

according to

B
[1]
[i−1,i,i+1]

(ξ) := B
[1]
[ξi−1,ξi,ξi+1]

(ξ)=
ξ−ξi−1

ξi−ξi−1
B

[0]
[i−1,i]

(ξ)+
ξi+1−ξ

ξi+1−ξi
B

[0]
[i,i+1]

(ξ) , (A.4)

that is the “triangle” function centered around ξi, where ξi are the nodes of the discretiza-

tion. The coefficients of B
[0]
[.]

(ξ) appearing in (A.4) are usually called the weights with

which a “unit” quantity located at ξ contributes to the node ξi. Clearly, if ξ ∈ [ξi,ξi+1)
then

wi =w(ξi)=
ξi+1−ξ

ξi+1−ξi
(A.5)

is the only contribution to ξi. An index shift i→ i+1 in (A.4) yields the contribution to
the node ξi+1

wi+1 =w(ξi+1)=
ξ−ξi

ξi+1−ξi
. (A.6)
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From this proceeding we immediately obtain the particle assignment weights by identi-

fying ξ with V
(ν)
κ and the nodes ξi by vκ(iκ). This concept is easily extended to two- and

three-dimensional situations. In that context, we have to calculate the weights w
(ν)
i1,i2,i3

=

w(ν)(v1(i1),v2(i2),v3(i3)) of the considered particle with respect to the eight surrounding
nodes of grid cell Zi1,i2,i3 (see Fig. 12). Geometrically this means, that we have to evaluate
the four areas Ai1,i2 , ··· , Ai1+1,i2+1 of the section parallel to the (x,y)-plain, where the par-
ticle is located — this is known as the area-weighting method [24, 35]. These areas form
the bases of eight cuboids whose volumes are given by

w
(ν)
i1+m1,i2+m2,i3+m3

=
3

∏
κ=1

w
(

vκ(iκ +mκ)
)

; ∀κ : mκ ∈{0,1} , (A.7)

where w(vκ(iκ+mκ)) is computed from (A.5) and (A.6). By construction it is not amazing
that

1

∑
m1,m2,m3=0

w
(ν)
i1+m1,i2+m2,i3+m3

=1 (A.8)

holds and, hence, the weights are fractions of the volume of the actual grid cell Zi1,i2,i3 .

Interpolation Block. The inverse operation is now also possible: any information stored
on the grid nodes can be brought to the particles. The components of the friction force
vector and the diffusion tensor — abbreviated by Ri1,i2,i3(tn) — evaluated at the nodes
vi1,i2,i3 of the cell Zi1,i2,i3 are assigned to the νth particle according to [24]

R(ν)(tn)=
1

∑
m1,m2,m3=0

w
(ν)
i1+m1,i2+m2,i3+m3

Ri1+m1,i2+m2,i3+m3
(tn) , (A.9)

where the weights w
(ν)
i1,i2,i3

are already determined in the reconstruction step. The fact that
the particle-based weights (A.7) have to be computed only once at the interface mesh-
free/grid-based and used for assignment as well as for interpolation is a very attractive
feature, which enhances the efficiency of the numerical scheme.
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