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Abstract. The energetic optimization problem, e.g., searching for the optimal switch-
ing protocol of certain system parameters to minimize the input work, has been ex-
tensively studied by stochastic thermodynamics. In this work, we study this problem
numerically using iterative dynamic programming. The model systems under investi-
gation are toy actuators consisting of spring-linked beads with loading force imposed
on both ending beads. For the simplest case, i.e., a one-spring actuator driven by tun-
ing the stiffness of the spring, we compare the optimal control protocol of the stiffness
for both the overdamped and the underdamped situations, and discuss how inertial
effects alter the irreversibility of the driven process and thus modify the optimal pro-
tocol. Then, we study the systems with multiple degrees of freedom by constructing
oligomer actuators, in which the harmonic interaction between the two ending beads is
tuned externally. With the same rated output work, actuators of different constructions
demand different minimal input work, reflecting the influence of the internal degrees
of freedom on the performance of the actuators.

PACS: 05.40.-a, 82.70.Dd, 87.15.H-, 05.70.Ln

Key words: Iterative dynamic programming, stochastic thermodynamics, harmonic model.

1 Introduction

The past two decades have seen the rapid growth of researches on nano-machines. Var-
ious types of nano-machines have been proposed and synthesized for practical pur-
poses [1, 2]. This progress presents an urgent appeal and also a great challenge for
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physicists to understand the working principle and energetics of nano-machines. For
isothermal nano-machines including protein machines and their derivatives or mimics,
researchers are able to formulate a conceptual framework, the Brownian ratchet, to un-
derstand in general how a scalar energy source (light, chemical reaction, thermal agita-
tion, etc.) can facilitate a vectorial process. The ratchet mechanism has not only been used
to explain many experimental observations on chemically-driven protein motors [3–5],
but also been successfully employed to develop some micro-manipulation techniques
(e.g., a ratchet-like micro-device was designed for DNA segregation [6]). Within the
ratchet framework, the energetics (or thermodynamics) has also been extensively investi-
gated with multiple-state Langevin equations or Fokker-Planck equations (e.g., see [3] for
chemically-driven nano-machines, and [7] for externally-controllable nano-machines).

In this context, some general energetic topics of nano-machines can be put forward.
Particularly, in analogy to the optimization theory based on macroscopic finite-time ther-
modynamics [8,9], the energetic optimization problems can be re-formulated for ratchet-
type nano-machines. For instance, one may require the minimal input work (abbrevi-
ated as MIW) in a finite-time process to achieve least heat agitation [10] or maximum
power [11] or highest efficiency [12]. To properly formulate these questions, choosing
proper model systems is very important. While the multiple-state ratchet model may not
be a proper candidate (especially, not easy for analytical treatment), Sekimoto and Seifert
et al. initiated the study with a much simpler ratchet model. In this model, the ma-
chine performs Brownian motion on an energy landscape. And, a few parameters that
characterize the landscape can be switched externally according to a deterministic proto-
col [11, 15]. For such driven systems, stochastic thermodynamics has been firmly estab-
lished, and the work and heat can be co-identified under the construction of first-law-like
and second-law-like thermodynamic relations [15–17]. With the well-defined model sys-
tems and thermodynamics, a basic question is addressed, i.e., what is the optimal protocol
of the switching parameters to realize the minimal input work (abbreviated as OPMIW).
For the simple cases that the Brownian motion of an overdamped or underdamped bead
is controlled by a tunable harmonic potential, the authors were able to present analytical
solutions for the OPMIWs (see [11, 13] for overdamped case, and [14] for underdamped
case). While their analysis focused on analytically solvable potentials, Then and Engel
also presented a Monte Carlo numerical method to discuss similar optimization prob-
lems of more complicated systems [10].

In this work, we follow the same logic and introduce a numerical method called
iterative dynamic programming (abbreviated as IDP) [18] to investigate the OPMIW prob-
lems. For systems with polynomial potential functions up to the second order, the OP-
MIW problem is equivalent to the conventional optimal control problem, thus can be
solved numerically with IDP. Inspired by the controllable DNA nano-actuator convert-
ing chemical energy into mechanical work [19,20], we choose toy actuators as our model
systems. The simplest construction is a two-bead actuator, in which the two beads are
linked by a spring with externally tunable stiffness (a polymer can be regarded as such
an actuator if its persistence length is tuned externally). Although this model has been
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discussed by Seifert et al. [11], the promising numerical method enables us to study the
more complicated case when the actuator is working against a pulling force, and conse-
quently to study the relation between the output work and the input work. Furthermore,
since IDP can efficiently treat systems with multiple degrees of freedom [18], actuators
with different internal structures can be constructed and the related OPMIW problems
can be discussed by this method. Besides, additional constraints can be easily specified
(as will be clear in subsequent sections) to study some interesting issues on energetics.

In the following, we will first present the formulation of OPMIW problems for various
toy models. In Section 3, after testing the numerical precision of IDP for two analytically
solvable examples, we apply IDP to simple systems with overdamped or underdamped
dynamics, and also to systems with multiple degrees of freedom. Some general remarks
will be presented in Section 4. The details of IDP method can be found in the appendix.

2 Formulation for OPMIW problem

In this section, we will present the mathematical formulation of OPMIW problem for
various model systems. We consider the simplest model of a one-spring actuator first,
and then generalize the description to cases with multiple degrees of freedom.

2.1 Formulation for one-spring actuator

The one-spring actuator is basically the same model that Seifert and colleagues have con-
sidered before, in which a bead is trapped in a stiffening harmonic potential [11]. The
actuator is illustrated in Fig. 1(a), where two beads are connected by a spring with exter-
nally tunable stiffness. To study the energetic problems, one bead is fixed at the origin
while the other is pulled by a constant force.

We only focus on one-dimensional problems here, thus the potential energy of the
one-spring actuator can be written as

V(x,λ)=
1

2
λx2− f x, (2.1)

where λ is the stiffness of the spring, x is the position of the movable bead, and f is a
constant pulling force (suppose f is pointing to the positive direction of x-axis). For the
overdamped case, the Langevin equation describing the motion of the movable bead is

γ
dx

dt
=−λx+ f +

√

2kBTγξ(t), (2.2)

where γ is the frictional coefficient, kB is the Boltzmann constant, T is the temperature of
the thermostat, and ξ(t) is Gaussian white noise satisfying

〈ξ(t)ξ(t′)〉=δ(t−t′). (2.3)
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Figure 1: Illustration of the models in study. (a) The one-spring actuator with constant pulling force f . (b)
The oligomer actuator. The N =2 case is portrayed.

In the following, γ and kBT are set equal to unity for simplicity. If the unit of another
quantity is specified, e.g., the force f , the dimensions of all the quantities involved in the
model can be expressed by the dimensions of γ, kBT and f . The Fokker-Planck equation
for the probability evolution of x reads

∂g(x,t)

∂t
=

∂

∂x

[

g(x,t)
∂V(x,λ)

∂x
+

∂g(x,t)

∂x

]

, (2.4)

where g(x,t) is the probability distribution function of x at time t.
According to stochastic thermodynamics [11], under the framework of Langevin equa-

tion [Eq. (2.2)], the work increment dw along the stochastic trajectory of x is

dw=
∂V

∂λ
λ̇dt=

1

2
λ̇x2dt. (2.5)

Averaging with the Fokker-Planck equation [Eq. (2.4)], when λ is switched from an initial
value λi to a final value λ f within finite time, the expected input work Win to the actuator
can be expressed as

Win =
∫ t f

ti

1

2
λ̇

〈

x2
〉

dt, (2.6)

where ti and t f are the beginning and ending time point of the switching process respec-
tively. The dot over λ denotes the time derivative of λ. The angular brackets denote an
instant ensemble average using the probability distribution g(x,t). During the switching
process, the average position 〈x〉 is changing, consequently the finite-time output work
of the actuator is defined as

Wout = f 〈x〉|t=ti
− f 〈x〉|t=t f

. (2.7)

There exist several differential constraints on the moments of g(x,t) when optimizing
Win. Multiplying both sides of Eq. (2.4) by x or x2 and taking average, we obtain the
following relations

˙〈x〉= f −λ〈x〉 , (2.8)

˙〈x2〉=2−2λ
〈

x2
〉

+2 f 〈x〉. (2.9)
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In IDP calculation, we usually consider Win as a function of time by defining

Win(t)=
∫ t

ti

1

2
λ̇

〈

x2
〉

dt, (2.10)

which satisfies the following differential equation

Ẇin =
1

2
u〈x2〉. (2.11)

Here, the time derivative of λ-protocol has been explicitly expressed as a temporal func-
tion u, i.e.,

λ̇=u. (2.12)

Eqs. (2.11) and (2.12), together with Eqs. (2.8) and (2.9), compose the formulation of the
OPMIW problem for current system. The task now turns into searching for the optimal
trajectory of u that minimizes Win(t f ). Once ti, t f , λi, λ f and the initial values of 〈x〉 and

〈x2〉 are all specified [Win(0) is zero by definition], the problem can be solved with IDP
method.

For underdamped one-spring actuator, while Win is the same with Eq. (2.6), the set of
differential constraints become

˙〈x2〉=2〈xp〉/m, (2.13)

˙〈xp〉= 〈p2〉/m−〈xp〉/m−λ〈x2〉+ f 〈x〉, (2.14)

˙〈p2〉=−2〈p2〉/m−2λ〈xp〉+2 f 〈p〉+2, (2.15)

˙〈x〉= 〈p〉/m, (2.16)

˙〈p〉=−〈p〉/m−λ〈x〉+ f , (2.17)

where p and m are the momentum and mass of the movable bead, respectively.

2.2 Generalization to models with multiple degrees of freedom

In this subsection, we consider a nano-system with coordinates vector ~x and time-

dependent potential function V(~x,~λ(t)). The parameter vector, ~λ, of the potential is ex-
ternally tuned according to certain protocol. To model the actuation process, constant
forces are loaded on the system, thus the potential function can be written as

V(~x,~λ)=V0(~x,~λ)−~f ·~x, (2.18)

where, V0(~x,~λ) represents the internal energy of the system (e.g., the elastic energy of the

springs in the toy actuator). ~f is not a normal three-dimensional force vector, instead, it is
a high-dimensional vector with each element representing the force on the corresponding
degree of freedom.
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The dynamics of~x can be described by overdamped or underdamped Langevin equa-
tions. For example, in overdamped case, the Langevin equations read

dxj

dt
=−∂V(~x,~λ)

∂xj
+
√

2ξ j(t), j=1,2,··· ,d, (2.19)

where d is the dimension of ~x. For simplicity, we suppose that the random forces on
different elements of ~x are uncorrelated, and the frictional coefficients are all the same.
Thus, the noise terms {ξ j} (j=1,2,··· ,d) satisfy

〈ξi(t)ξ j(t′)〉=δ(t−t′)δij. (2.20)

It is worth noting that models without such restrictions can also be solved with IDP.

In the same spirit as Section 2.1, when ~λ is switched from its initial value ~λi to the

final value~λ f in finite time, the input work to the system, Win, can be formally expressed
as

Win =
∫ t f

ti

~̇λ·
〈

∇λV(~x,~λ)
〉

dt, (2.21)

where ∇λ is the gradient with respect to ~λ, and the brackets again denotes the average
over the instant distribution function g(~x,t) of the system. Besides, during the switching,
the change of 〈~x〉 leads to an output work

Wout =~f ·〈~x〉|t=ti
−~f ·〈~x〉|t=t f

. (2.22)

If V(~x,~λ) is a polynomial function up to the second order in ~x, the number of differen-
tial constraints on the moments of g(~x,t) would be finite, the OPMIW problem can be
rigorously expressed as an IDP-sovable optimization problem.

To better illustrate the energetics of OPMIW, we only focus on the one-way switching

processes of ~λ throughout this article. One can integrate these and other processes into
a complete working cycle to construct a novel nano-machine, as illustrated in [13], the
related optimization problem may need to be re-formulated. Besides, in present study,

the systems are initially equilibrated under the potential function V(~x,~λi). Consequently,
the initial conditions of the differential constraints, i.e., the initial values of the moments
of g(~x,t), are selected as the corresponding equilibrium values. However, both the initial
and final values of the moments can be chosen arbitrarily in computation as long as the
optimal protocol exists. Setting the final values of the moments of g(~x,t) means that
additional constraints are included in OPMIW problem.

2.3 Formulation for oligomer actuators

Under the general framework for systems with multiple degrees of freedom, we consider
the one-dimensional oligomer actuators consisting of N+1 (N = 1,2,···) beads in this
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subsection. Instead of the linear oligomers without branches and cross-links, we consider
a sub-family of structured actuators with the potential function

V(x1,x2,··· ,xN)

=
1

2
x2

1+
1

2

N

∑
i=2

(xi−xi−1)
2+

1

2
λx2

N− f xN . (2.23)

Here, the beads are numbered from 0 to N, xi denotes the position of the ith bead. While
the adjacent beads are connected by a spring with elastic coefficient 1.0, xN is connected
to x0 by an additional spring with tunable elastic coefficient λ. To study the energetic
problems, x0 is assumed to be fixed at the origin, a pulling force f is imposed on xN .
The actuators are driven by switching λ from the initial value λi to the final value λ f in
finite-time. The current model system is inspired by the recently designed DNA oligomer
actuators [19,20]. In these DNA actuators, certain intra-molecular bonds can be modified
by switching the light or chemical conditions, which results in considerable change of
end-to-end distance (i.e., a potential actuation process). Here, in the same spirit, a model
actuator achieves an actuation when the ’intra-molecular bond’ between bead 0 and bead
N is tuned externally. Therefore, the N = 1 model is exactly the above-mentioned one-
spring actuator in which the only bond is tuned, and thus only the last two energy terms
in Eq. (2.23) need to be included in computation. The N > 1 models describe structured
actuators with extra degrees of freedom, e.g., the N =2 actuator illustrated in Fig. 1(b).

In current article, overdamped Langevin equations are chosen to model the dynamics
of the actuators. For N =2 case, the optimal index, i.e., the input work, Win, is

Win =
∫ t f

ti

1

2
λ̇〈x2

2〉dt. (2.24)

The differential constraints are

˙〈x2
1〉=−4〈x2

1〉+2〈x1x2〉+2, (2.25)

˙〈x1x2〉=−(3+λ)〈x1x2〉+〈x2
1〉+〈x2

2〉+ f 〈x1〉, (2.26)

˙〈x2
2〉=−2(1+λ)〈x2

2〉+2〈x1x2〉+2 f 〈x2〉+2, (2.27)

˙〈x1〉=−2〈x1〉+〈x2〉, (2.28)

˙〈x2〉=−(1+λ)〈x2〉+〈x1〉+ f . (2.29)

For N =3 case, Win is

Win =
∫ t f

ti

1

2
λ̇〈x2

3〉dt. (2.30)
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The differential constraints are

˙〈x2
1〉=−4〈x2

1〉+2〈x1x2〉+2, (2.31)

˙〈x2
2〉=−4〈x2

2〉+2〈x1x2〉+2〈x2x3〉+2, (2.32)

˙〈x2
3〉=−2(1+λ)〈x2

3〉+2〈x2x3〉+2 f 〈x3〉+2, (2.33)

˙〈x1x2〉=−4〈x1x2〉+〈x2
2〉+〈x2

1〉+〈x1x3〉, (2.34)

˙〈x2x3〉=−(3+λ)〈x2x3〉+〈x1x3〉+〈x2
3〉+〈x2

2〉+ f 〈x2〉, (2.35)

˙〈x1x3〉=−(3+λ)〈x1x3〉+〈x2x3〉+〈x1x2〉+ f 〈x1〉, (2.36)

˙〈x1〉=−2〈x1〉+〈x2〉, (2.37)

˙〈x2〉=−2〈x2〉+〈x1〉+〈x3〉, (2.38)

˙〈x3〉=−(1+λ)〈x3〉+〈x2〉+ f . (2.39)

3 Numerical results and discussions

3.1 Numerical accuracy of IDP

To test the numerical accuracy of IDP, we first investigate the two examples that have
been analytically solved by Schmiedl and Seifert [11]. Both of the two systems are one-
dimensional systems satisfying overdamped Langevin dynamics. The two model poten-
tials are V1(x,λ) = 1

2(x−λ)2 (with tunable average position) and V2(x,λ) = 1
2 λx2 (with

tunable stiffness) respectively.

The comparison between the numerical results and the analytical solutions is shown
in Fig. 2, where the potential functions, the initial and final values of λ, the switching
time interval ∆t and the MIW, Win, are all listed. We only list one MIW value in either
figure, since the numerical MIW is the same with the analytical MIW [Eq. (9) and Eq. (19)
in [11]] up to the shown numerical accuracy. In either figure, the solid line is the analytical
protocol of λ, and the hollow triangles denote the numerical results. Obviously, for the
two examples studied here, the numerical results accurately follow the analytical curves.
The important characteristics of the OPMIWs for the model systems, i.e., the jumps both
at the beginning and at the end of the optimal protocols, are successfully reproduced.

The triangles in Fig. 2 distribute non-uniformly along the time axis due to the em-
ployed method of variable step-length. In this scheme, the space between neighboring
time points are also optimized. Hence, more time points will be gathered at the sharply
changing parts of the λ-protocol, with less at the smoothly changing parts. As a result,
higher accuracy can be obtained with limited discretization of [ti,t f ]. Implementing the
variable step-length method does not change the procedure of IDP (see the appendix).
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Figure 2: (color online). Comparison between numerical and analytical solutions [Eq.(9) and Eq.(19) in [11]]
for overdamped systems with harmonic potentials. (a) Results for the system with tunable averaged position
λ. (b) Results for the system with tunable elastic constant (spring stiffness) λ. The potential functions and
related parameters are shown in the figure.

3.2 OPMIW for overdamped cases

In this subsection, we consider the overdamped one-spring actuator introduced in Sec-
tion 2.1. Without the pulling force, this model turns into the analytical solvable model
with tunable stiffness (see Section 3.1). The force complicates the problem, making it very
hard to get an analytical solution. However, the model system is quite suitable for IDP.
For all the processes studied in this subsection, λ is switched from 1.0 to 3.0, and the force
is set as 1.0 if not further claimed.

We first solve the OPMIW problems for processes with different switching time in-
tervals and the same λi, λ f and f . Some of the OPMIWs are shown in Fig. 3(a). As can
be seen, there are always jumps at the beginning and at the end of the optimal protocols,
which is similar to the cases in the already studied systems [10, 13]. Intuitively, with in-
finite or large enough time interval, all the jumps should approach zero no matter how
large the force is (or even whatever the potential function is), because the switching pro-
cess is actually quasi-static or reversible. ’reversible’ here means that the input work can
be completely converted into the free energy of the system, without any heat dissipation.
This is consistent with the second law of stochastic thermodynamics Win ≥ ∆F, where
∆F is the free energy difference between the two equilibrium states that are determined
by λi and λ f respectively. This inequality holds for any protocols of control variables
in a driven process including the OPMIW. To verify this, the MIWs for processes with
different switching time are shown in Fig. 3(c). It can be seen that the MIW decreases
monotonically with the increase of switching time, and asymptotically reaches ∆F when
the switching time goes to infinity [the value of ∆F is indicated as the dashed line in
Fig. 3(c)]. Consequently, the non-negative quantity Win−∆F can be taken as an indicator
of the irreversibility of a driven process. In fact, it is exactly the total dissipation of the
actuator and the environment [15]. In contrast to the input work, as shown in Fig. 3(c),
the output mechanical work increases monotonically with the switching time and also
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Figure 3: (color online). Numerical results for the overdamped one-spring actuator. (a) The optimal protocols
with switching time 0.25 (squares), 1.00 (circles) and 10.0 (upward triangles). The switching time of the protocols
have been re-scaled to [0.0,1.0] for better visualization. The stiffness of the spring, λ, is switched from 1.0 to
3.0. (b) Relation between the initial (circles) or final (squares) jump in OPMIW and the irreversibility, Win−∆F.
The data points correspond respectively to processes with switching times of 25.0, 10.0, 5.0, 3.0, 2.0, 1.5, 1.0,
0.75, 0.50, 0.25 and 0.10 (in the order of increasing irreversibility). (c) The minimal input works (squares) and
the corresponding output works (circles) for processes with different switching time. The horizontal dashed line
indicates the free energy difference between the two equilibrium states determined by λi and λ f . The horizontal
dotted line indicates the maximal output work of the system, which can only be realized with infinite switching
time. (d) Relation between the initial or final jump in OPMIW and the irreversibility, Win−∆F. The data points
correspond respectively to processes with different pulling forces of 0, 0.25, 0.5, 1.0, 2.0, 5.0 and 10.0 (in the
order of increasing irreversibility, the switching time is set as 1.0).

reaches an asymptotic value that is only determined by the initial and final equilibrium
states. When the system finally reaches equilibrium, the change of average position 〈x〉
reaches its maximum with the largest output work. Thus, longer switching time results
in a final state closer to equilibrium and a larger output work. The above results suggest
that IDP can provide physically sound and numerically correct results for the OPMIW
problems discussed here.

While the infinitely slow process without any jumps leads to the lower bound (zero)
of dissipation, the upper bound of dissipation, i.e., the highest irreversibility, occurs in the
case of zero switching time (i.e., λ is switched from λi to λ f instantaneously). Between
these two extremes are the processes with finite switching time. Thus, it is reasonable to
expect that the shorter switching time corresponds to the larger jumps in OPMIW [see
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Fig. 3(a)] due to the increased irreversibility. For switching processes with different time
intervals, the relations between the magnitude of jumps (both of the initial and of the final
jumps) and the irreversibility of the OPMIW are plotted in Fig. 3(b). The trends of these
curves indeed conform to the above guess. We also notice that when the switching time
approaches zero, i.e., almost with the largest irreversibility, the OPMIW becomes stepwise
and has very little advantage over the other control protocols: different λ-protocols result
in almost the same input work since the switching is too fast to change the position of the
bead.

Similarly, we also study the processes with the same switching time interval and var-
ious pulling forces. For current model system, larger force results in larger irreversibility,
which, as expected, leads to larger jumps in the optimized λ-protocol [see Fig. 3(d)]. From
Fig. 3(b) and (d), together with other results of changing the switching range of λ (data
not shown) or the bead mass (the inertial effects will be discussed in the next subsection),
we expect that the magnitude of either the initial or the final jump in OPMIW may always
monotonically correlate to the irreversibility, no matter what the potential function is. Of
course, this observation needs further validation in other systems.

3.3 OPMIW for underdamped cases

In this subsection, we study the underdamped one-spring actuator introduced in Section
2.1. Similar to the overdamped cases, the OPMIWs for the underdamped actuators also
have initial and final jumps. Besides, for the system with tunable average position in Sec-
tion 3.1, δ-function-like pulses have been analytically found in the optimized λ-protocol.
Although the current model system can not be solved analytically, the δ-function-like
pulses in OPMIW have also been inferred when the pulling force is zero [14]. For all
the processes studied in this subsection, a constant force f =1.0 is always loaded on the
movable bead, λ is switched from 1.0 to 3.0 with switching time 1.0.

We first calculate the OPMIW for the one-spring actuator with mass m =0.02. Three
optimal protocols with different allowable range of u ≡ dλ

dt are plotted in Fig. 4(a). In
contrast to the overdamped cases, the optimized λ-protocols are no longer monotonic.
There are always an upward peak at the beginning and a downward peak at the end of
the OPMIW. The upward (downward) slope of either peak always matches the upper
(lower) bound of u, indicating that the δ-function-like traces do exist in the OPMIW of
current model system. The initial upward δ-peak enables an instant acceleration of the
bead to ensure a nearly constant velocity during the process, and the final downward
δ-peak enables an instant deceleration of the bead to ensure minimal dissipation [14].
Nevertheless, to exactly reproduce a δ-function trace of λ, the allowable range of u should
be very large in computation, which is numerically hard (see the discussion in appendix)
and is not the focus of this article.

To demonstrate the feasibility of IDP-based OPMIW study for underdamped systems,
we turn to a subset of protocols in which λ grows monotonically with time. This subset
of protocols might be easier to implement in practice. We calculate the OPMIWs for ac-
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Figure 4: (color online). The OPMIWs of underdamped one-spring actuator. (a) The non-monotonic OPMIWs

for the m = 0.02 actuator with different bounds of u≡
∣

∣

dλ
dt

∣

∣. The results obtained with the bound of 5 (solid
line), 10 (dashed line) and 15 (dash-dotted line) are shown. (b) The input works for protocols with three jumps
and two plateaus (m = 0.2, see the main text for more details). The horizontal axis indicates the position of
the intermediate jump. The left vertical axis shows the input work. The OPMIW (downward triangles) for
this model is also shown for comparison. The right vertical axis shows the λ value. The dotted horizontal line
indicates the MIW value for this model.

tuators with different bead mass m, with two OPMIWs (m=0.2 and m=0.01) illustrated
in Fig. 5(a). The initial and final jump of λ value are found again in the OPMIWs. As
expected, when m decreases, thus γ/m increases, the underdamped protocol will con-
verge to the overdamped one. For finite m, however, plateaus appear immediately after
the initial jump and before the final jump in an optimized λ-protocol. This phenomenon
can be roughly explained as following. On one hand, after the first plateau stage, the
bead has been accelerated to finite velocity. This velocity remains almost constant when
λ starts to increase again until reaching the other plateau of λ-protocol. Therefore, from
the perspective of minimal dissipation, the dissipation due to non-uniform velocity is
minimized by including the first plateau stage. On the other hand, from the perspective
of minimal input work, in the plateau stages with almost constant λ, no work is input
into the system. Besides, in the final plateau stage, the established velocity of the bead is
damped. Thus, the extra dissipation after switching, which would be payed by the input
work, is reduced. In a word, the protocol between the initial and final jumps can be well
interpreted either from the perspective of minimal dissipation or minimal input work.
In the following, we will perform more detailed analysis on the numerical OPMIWs to
provide in-depth perspective of inertial effect, as well as to further verify the correctness
of the computational results.

As shown in Fig. 5(a), the OPMIW becomes stepwise when m increases. Taking the
m = 0.2 actuator as example, except for the initial and final jump, a narrow region with
sharply increasing λ value exists approximately in the middle of the OPMIW. Actually,
this short piece of increasing λ-protocol can be well approximated by a jump of λ value
without prominent increase of input work. In contrast, the position of this narrow region
is more prone to changing the input work. To illustrate this point, we compare differ-
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Figure 5: (color online). Numerical results for the underdamped one-spring actuators. (a) The OPMIWs with
different bead mass. The OPMIWs for m=0.01 (hollow circles) and m=0.2 (hollow triangles) are shown. For
comparison, the OPMIW for the overdamped case is also shown (hollow squares). The curves have been shifted
for better visualization. The relations between the instant energy terms of the system and the cumulative input
work are shown in (b) (overdamped case) and (d) (m=0.2), where the instant potential energy is denoted by
hollow circles, the cumulative input work is denoted by dotted line, the kinetic energy is denoted by hollow
downward triangles. The horizontal axis is the cumulative input work. The arrows in (b) and (d) indicate
the direction of time evolution. (c) shows the variation range of irreversibility. The maximum and minimum
irreversibility are plotted for different bead masses of 0.01, 0.5, 1.0, 5.0, 10.0 and 50.0.

ent stepwise protocols with three jumps and two plateau stages of λ value. The initial
and final jumps of these protocols are set the same with the OPMIW of m =0.2 actuator
(thus the magnitude of the intermediate jump is also determined), only the position of
the intermediate jump is variable. For one-spring actuator with bead mass 0.2, the input
works of these protocols are plotted in Fig. 4(b). As can be seen, the stepwise protocol
with the smallest input work has its intermediate jump located within the intermediate
increasing region of OPMIW, and its input work is only slightly larger than the MIW.
This result strongly supports that the OPMIW obtained here is an optimum of the ’proto-
col sub-space’ (i.e., the space of monotonical λ-protocols). When m further increases, the
input works of various λ-protocols will gradually converge to the same value. This can
be seen from Fig. 5(c), where the possible variation range of irreversibility is shown for
actuators with different mass. The variation range is defined as the maximal irreversibil-
ity minus the minimal irreversibility (or equivalently, the maximal input work minus the
minimal input work). The former is obtained by instantaneous switching and is obvi-
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ously identical for actuators with different mass, and the latter is obtained with OPMIW.
Fig. 5(c) shows that the larger bead mass corresponds to the larger minimal irreversibility
and thus the smaller variation range, which means that all the λ-protocols (including OP-
MIW) lead to nearly the same irreversibility and input work when m approaches infinity.

The inertial effect can also be perceived from the relation between input energy and
system energy. For overdamped case, the potential energy of the system [i.e., the instant
ensemble average of Eq. (2.1)] increases monotonically with the cumulative input work as
shown in Fig. 5(b). By contrast, as shown in Fig. 5(d), this relation is no longer monotonic
for the underdamped cases (only the m = 0.2 case is shown here). In the first plateau
stage of OPMIW, while no work is input, part of the potential energy transforms into
kinetic energy and heat, which is indicated by the first downward jump on the potential
energy curve and the first upward jump on the kinetic energy curve in Fig. 5(d). During
the ascending stage in the middle of OPMIW, the kinetic energy remains almost constant,
and the potential energy begins to increase with the cumulative input work. In the second
plateau stage, both potential and kinetic energy are dissipated as heat, which is indicated
by the second (downward) jump on the kinetic and potential energy curves. When m
becomes larger, the second jump on either energy curve disappears first and then does
the first jump (data not shown). When m approaches infinity, the bead is too heavy to be
accelerated. Consequently, the whole system seems to be switched instantaneously from
an equilibrium state to a non-equilibrium state. The input work is completely stored as
potential energy and the kinetic energy remains unchanged.

3.4 Oligomer actuator: OPMIW for more degrees of freedom

In this subsection, we will investigate how the internal degrees of freedom can change the
OPMIW and performance of an actuator. Concretely speaking, we try to study an optimal
design problem, i.e., can we construct a more efficient actuator that output the specified
amount of mechanical work with least input work? To explore this question, we study
the model systems introduced in Section 2.3, with N equals to 1, 2 and 3 respectively.
In a fast enough actuation process, an actuator might be driven out of equilibrium, thus
its internal structure may begin to substantially affect the performance of the energetics,
which leaves room for optimal design.

Now, we can explicitly address the optimization problem. With the same variation
range of λ∈ [λi,λ f ], the same time interval t∈ [ti,t f ] and identical pulling force, as well as
an extra requirement of equal amount of output work (i.e., rated output work), the MIW
values for different structured actuators can be compared. The one with the lowest MIW
should outweigh the others. For illustration, we only consider the overdamped N=1,2,3
models. In all the examples, λ is switched from 1.0 to 3.0, the switching time interval is
[0.0,1.0], the pulling force is set as 1.0, and the rated output work is chosen as 0.3.

The OPMIWs for the N = 1,2,3 models are plotted in Fig. 6(a). While there are both
initial and final jumps in the OPMIWs of the N = 1 and N = 3 models, the final jump
in the OPMIW of the N = 2 actuator disappears, and a plateau region appears instead.
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Figure 6: (color online). Numerical results for oligomer actuators. (a) The OPMIWs for the N = 1 (squares),
N =2 (circles) and N =3 (upward triangles) models. The switching time is 1.0, and λ is switched from 1.0 to
3.0. (b) The minimal input works (squares), the maximal output works in finite-time (upward triangles), the
rated output work (circles), and the free energy differences (downward triangles) for the N=1, N=2 and N=3
actuators.

This is a consequence of constraining the output work. As shown in Fig. 6(b), among the
three models considered here, the N =2 actuator possesses a maximal finite-time output
work which is the closest to the rated output work. Since this maximal output work is
realized by instantaneously switching λ from λi to λ f at the beginning of the time interval
(which is an infinitely fast process), the switching process of the N =2 actuator may also
be relatively fast to realize the rated output work. Consequently, in contrast to protocols
with final jump, λ f is reached before t f in the OPMIW of N=2 actuator. Actually, for any
model system studied in this subsection, the OPMIW will become one-step-like when the
rated output work approaches the maximal finite-time output work.

In spite of the fast switching OPMIW, the MIW of the N = 2 model turns out to be
the smallest among the three models [see Fig. 6(b)]. In other words, the N = 2 actua-
tor performs the best when generating a finite-time output work of 0.3, which demon-
strates the possibility for an optimal design of oligomer actuators. Interestingly, the N=2
model also has the smallest irreversibility among the three models [see the gap between
MIW and free energy change in Fig. 6(b)]. This observation inspires us to propose an
premature conjecture that irreversibility and performance might be related for actuators
with similar construction and different number of degrees of freedom. If such a relation
does exist, the above discussion about optimal design could be generalized no matter the
intra-molecular interaction is harmonic or not (for a real macromolecule, the intramolec-
ular interaction is usually not harmonic), since it is the irreversibility that determines the
energetic performance of an actuation device.

4 Conclusion and perspective

In current article, we study the OPMIW problems by introducing a numerical method,
iterative dynamic programming (IDP). We first apply IDP to the systems with one degree
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of freedom and simple potential functions. Both the overdamped and the underdamped
systems are investigated. For these two situations, jumps of the control variable are al-
ways found both at the beginning and at the end of OPMIW. For the underdamped case,
the δ-function-like traces in OPMIW are also found. With vanishing mass, the under-
damped models indeed converge to the overdamped one, and with increasing mass, the
OPMIW of the underdamped models become stepwise. However, with quite large mass,
the OPMIW only marginally outweigh the other protocols in terms of the input work,
which is similar to other cases (such as vanishing switching time) with large irreversibil-
ity.

Furthermore, we use IDP to study the optimal control and optimal design problems
for the systems with multiple degrees of freedom. We consider a family of toy oligomer
actuators in which the interaction between the two ending monomers can be tuned ex-
ternally. The energetic performance of such actuators with different monomer number
are compared, in the sense of outputting the same amount of mechanical work with as-
least-as-possible input work. Our results indicate that properly choosing the number of
degrees of freedom can indeed bring better energetic performance.

The above logic can be generalized to systems with more complex internal struc-
tures, e.g., a spring network with different harmonic interactions between the bead pairs.
This construction is in the same spirit with the Gaussian Network Model (GNM) widely
used to describe the thermal fluctuations of folded proteins [21] or the Elastic Network
Model(ENM) used to describe the large-scale motion of motor proteins [22]. While those
works focus on the structure-function and dynamics-function relations of protein ma-
chines, our studies might suggest a new perspective on energetics-structure relations.
For instance, if the binding or release of substrates can be understood as tuning the lo-
cal interaction between the residues of the motor proteins, energetic optimization prob-
lems similar to those studied here could also be raised. To carry out such investiga-
tion, however, all the thermodynamic relations and optimization problems should be re-
formulated for chemically-driven protein machines. The stochastic thermodynamics of
chemical reaction networks [25] and the structural details of the macro-molecules should
be combined, leading to a possibly formidable framework (one potential candidate is
the generic ratchet model of chemically-driven machines [3]) either for analytical or for
numerical treatments. Therefore, at this preliminary stage, it may be beneficial to first
construct some simple toy models to mimic the nano-machines. The toy actuators stud-
ied in this article can serve as the basic elements.
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A Iterative dynamic programming

In the main text, we have presented the numerical results of IDP for various OPMIW
problems. Here we provide a brief introduction to IDP. More details can be found in [18].

Generally speaking, IDP can solve the optimal control problems of following style.

J =
∫ t f

ti

L(~s,~u,t)dt, (A.1)

~̇s= r(~s,~u,t), (A.2)

where L is a function of the state variables ~s, the control variables ~u and time t. Since~s
are determined by ~u through the differential constraints Eq. (A.2), J is simply an objective
functional (also named as optimization index) of the protocol ~u(t). The related optimiza-
tion problem is to find the optimal trajectory ~u(t) that minimizes or maximizes J. Once
the initial condition of the state variables and the initial time ti are specified, the problem
is well formulated. In principle, it is also possible to include more constraints on the final
values of the state variables, the final time t f and the control variables. Conventionally,
this kind of problems is solved with Pontryagin principle [23], though it is usually hard to
obtain analytical solutions. The dynamic programming method (DP) [24] is a conceptu-
ally sound numerical method for the optimal control problems. However, it also suffers
from the difficulty of numerical interpolation and the restriction on dimensionality. In
view of this, Luus developed IDP method to complement DP. With dramatic enhance-
ment of speed, IDP is still promising for finding the global minimum, and achieves good
numerical precision as shown in current article and also in Ref. [18]. Here, we only de-
scribe the main procedures of IDP, readers can learn the underlying principles from [18].

By introducing an additional state variable s∗ satisfying

ṡ∗= L(~s,~u,t), (A.3)

s∗(ti)=0, (A.4)

s∗(t f )= J, (A.5)

the problem can be transformed into a set of differential equations shown in Eq. (A.6) to
Eq. (A.8):

ṡ∗= L(~s,~u,t), (A.6)

~̇s= r(~s,~u,t), (A.7)

J = s∗(t f ). (A.8)

As a result, the optimization index J is determined solely by the state variables at time t f .

A.1 The procedure of IDP

The computational procedure of IDP is described in this subsection.
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Before calculation, the time interval, [ti,t f ], should be discretized into P stages with
identical length l, i.e., Pl = t f −ti, with constant control variables in each stage. Thus, the
protocol of control variables can be represented by a P-dimensional array, each element
of the array stores the values of control variables in the corresponding time stage. In each
time stage, an allowable range of control variables should be specified. The allowable
range does not change in one cycle of computation (the definition of a computation cycle
will be given below).

A reference P-dimensional array, U, of control variables pre-exists to initiate each
cycle. The elements of U are denoted as Ui (i=1,2,··· ,P). The allowable range of control
variables is determined by U, together with the size of the range, R. For the case of one-
dimensional control, the allowable range in the ith time stage could be [Ui−R,Ui+R]. Of
course, it is not necessary to set the reference control at the center of the allowable range.
To start the first computation cycle, it is necessary to specify an initial P-dimensional
array as the reference and also the initial size R of the allowable range. It should be noted
that R could be either independent or dependent on time. We only discuss the former
case here, since no substantial difference exists between the two cases.

In calculation, a matrix of state variables should be first constructed as the mesh grid
for dynamic programming. For simplicity, we only discuss the case of one-dimensional
control in the following.

First, The allowable interval of control variable at each time stage is uniformly di-
vided into Ns−1 parts, with the Ns nodes of this partition taken as the allowable values
of control. All the largest allowable values in each time stage are grouped as the first
P-dimensional array of control (i.e., the first control protocol). The second largest ones
are grouped as the second P-dimensional array, etc. Finally, Ns P-dimensional arrays of
control variable (Ns control protocols) are obtained. Suppose the arrays are labeled with
m, the elements of one array are labeled with n, then all these control values can be put
into a Ns×P matrix, with its elements denoted as umn.

Given the matrix of control variable, we can begin to construct the matrix of state
variables. The idea is to use each P-dimensional array as the control protocol to calculate
the corresponding state variables in different time stages. For the arbitrarily selected jth
array, the calculation starts from the initial state S0, which is determined by the initial
conditions. An updated state Sj1 can be obtained by taking uj1 as the control variable and
integrating Eq. (A.6) and Eq. (A.7) from ti to ti+l. Sj1 is stored as an element into the
matrix of state variables. After that, starting from Sj1, another updated state Sj2 can be
obtained by taking uj2 as the control variable and integrating from ti+l to ti+2l. With
similar procedure, the jth row of the matrix can be constructed by integrating along the
jth control protocol. After all the integrations are finished, we get a Ns×P−1-dimensional
matrix of the state variables as shown in Fig. 7. Subsequently, the optimal control value
for each element of the matrix can be estimated by the backward iteration method of
dynamic programming.

The backward iteration starts from the states SiP−1 (i = 1,2,··· ,Ns), i.e., the states at
time t f −l. T trial values of control variable should be provided in priori. Starting from
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Figure 7: The process for building the matrix of state variables.

certain SiP−1, taking respectively the T trial values as the control variable and integrating

Eq. (A.6) and Eq. (A.7) from t f −l to t f , we get T states, S
j
iP−1 (j=1,2,··· ,T), at t=t f , which

correspond to different J values. The trial control value leading to the minimal J (here
we only consider the minimization problems) is chosen as the optimal control variable
for SiP−1, and will be stored together with SiP−1.

Subsequently, for each SiP−2 (i = 1,2,··· ,Ns), by one round of integration from t f −2l

to t f −l, T states, S
j
iP−2 (j = 1,2,··· ,T), at t = t f −l are generated. To proceed, we need to

start from these states and integrate from t f −l to t f . Then, since the resulted T states
are at t = t f , their corresponding J values can be compared to judge the optimal control
value for SiP−2. Similarly with the preceding paragraph, the trial control value leading
to the minimal J should be selected as the optimal control of SiP−2. The control values of

S
j
iP−2 (j=1,2,··· ,T) can be determined by the aid of the matrix of state variables. The key

is to find the nearest state to S
j
iP−2 among SiP−1 (i=1,2,··· ,Ns). If the nearest state to S

j
iP−2

is SmP−1, the control value of S
j
iP−2 should be set equal to the optimal control of SmP−1.

The same procedure applies to other elements Sij (i = 1,2,··· ,Ns; j = P−3,P−4,··· ,1)
of the matrix of state variables. One cycle is finished while the above procedure has been
performed for S0. After a cycle, we get the matrix with renewed optimal control values
u∗

ij (i = 1,2,··· ,Ns; j = 1,2,··· ,P−1) for states Sij (i = 1,2,··· ,Ns; j = 1,2,··· ,P−1), as well as

the optimal control value u∗
0 for S0.

Before the next cycle, it is necessary to refresh the reference array of control variable.
The procedure is as following. Starting from S0, Eq. (A.6) and Eq. (A.7) are first integrated
from ti to ti+l with the optimal control u∗

0, with a new state S∗
0 obtained. u∗

0 is stored as
the first element of a P-dimensional array. Then, within the states S1j (j=1,2,··· ,Ns), the
one nearest to S∗

0 is picked out. Suppose the nearest one is S1m, starting from S∗
0 , and

integrating Eq. (A.6) and Eq. (A.7) from ti+l to ti+2l with the optimal control value u∗
1m

of S1m, we get a new state S∗
1 . Once again, u∗

1m is store in the P-dimensional array as the
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second element. A P-dimensional array of control variable can be generated by repeating
the above procedure step by step. This protocol will be taken as the new reference array
of control variable. Besides, the size of the allowable range, R, of control variable should
be contracted before the new cycle. The new reference array and R together determine
the allowable range of control in the next cycle.

A pass is constituted by prescribed number of cycles. Several passes are included in
each calculation. At the beginning of a new pass, R is restored partially to its initial value,
and the optimal control protocol generated in last pass is used as the initial reference
array of control variable.

A.2 Variable step-length IDP

The IDP algorithm with variable step-length is almost the same with normal IDP method.
Only slight re-formulation is needed. Here the time interval [ti,t f ] is scaled to [0,1]. As
in normal IDP method, the [0,1] interval is now uniformly divided into P segments. Fur-
thermore, each segment i corresponds to a real time length of vi, and the real time length
in each segment is introduced into IDP algorithm as an extra control variable. Due to
the scaling of time, Eq. (A.6) to Eq. (A.8) for the ith time segment should be expressed as
below,

ds∗

dt′
= L(~s,~u,t′)v′i, (A.9)

d~s

dt′
= r(~s,~u,t′)

dt

dt′
= r(~s,~u,t′)v′i, (A.10)

J = s∗(1), (A.11)

where v′i satisfies

v′i ≡
dt

dt′
=viP, (A.12)

t′ is the scaled time. The sum for all vi should be equal to t f −ti. This constraint can be
incorporated by substituting the origin optimization index J by a new one I, which is
the sum of J and a penalty function for violating the constraint. For example, I could be
chosen as below

I = J+θ(Σivi−t f +ti)
2, (A.13)

where θ is a positive constant, vi is the value of v at the ith time segment. The other kinds
of constraints can be implemented in similar way.

B Computation details

As pointed out in the main text, the time derivative of λ-protocol is expressed as a tem-
poral function u under current formulation. When searching for the OPMIW, u should be
confined within a finite interval at all time. Consequently, larger range of u is necessary
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to describe the abrupt changing of λ, e.g., a noncontinuous jump or a δ-function trace of
λ value. However, if in a preliminary calculation the optimized λ-protocol is found to
be monotonic, and some parts of the protocol are jump-like (for example, the u values
in these parts are always equal to the allowable upper or lower bound), it is possible to
accurately estimate the OPMIW in the following way. Instead of u = dλ

dt , we can con-

sider the reversed case, u′ = dt
dλ , in calculation because of the monotonicity of t versus λ,

and re-formulate all the functions of t to functions of λ. Since there is usually no need
to specify large range for u′, the calculation is simplified. This situation happens to be
true for all the overdamped examples studied in current article. Because the initial cal-
culation without restriction almost ensures the monotonicity of λ, the above-mentioned
scheme should be promising for finding the global minimum. For demonstration, the
re-formulated Eqs. (2.11), (2.12), (2.8) and (2.9) of the overdamped one-spring actuator
are shown below,

dWin

dλ
=

1

2
〈x2〉, (B.1)

dt

dλ
=u′, (B.2)

d〈x〉
dλ

= f u′−λ〈x〉u′, (B.3)

d
〈

x2
〉

dλ
=2u′−2λ

〈

x2
〉

u′+2 f 〈x〉u′. (B.4)

It is worth noting that although we adopt the formulation with explicitly expressed
time derivative of λ, the other strategies that may be more natural for noncontinuous
λ-protocols, e.g., approximating the λ-protocol with a stepwise function, can also be im-
plemented with IDP.

In current article, we usually study each model (and parameter settings) with two
IDP calculations. In the first calculation, the initial reference protocol is selected as a
straight line connecting the two points, (ti,λi) and (t f ,λ f ) (with constant u≡ dλ

dt or u′≡
dt
dλ ). After that, the resulted control protocol is selected as the initial reference in the
second calculation. According to our experience, this procedure can ensure the successful
application of IDP in all the examples here.

In computation, we apply the Runge-Kutta method in Ref. [26] for integration. The
error tolerance in integration is set as 10−9 for the two examples in Section 3.1, and 10−7

for the others. According to our experience, the MIW calculated with 10−9 tolerance are
precise up to the seventh digit after the dot, the ones calculated with 10−7 tolerance are
precise up to the fifth digit after the dot. Usually, the number of stage, P, is selected
within the range of [15,20]. In the matrix of state variables, the number of state at each
time point is selected within [10,20]. The number of trials along each dimension of control
variable is about 10, leading to around 100 trials for two-dimensional control variables
(including u≡ dλ

dt and the length of time steps). When new cycle begins, the contraction
factor for the range of control variables is selected as 0.92. When new pass begins, the
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restoration factor for the range is selected as 0.88. Most of the calculations can be finished
within 3 hours by single-thread computation with Intel(R) Q6700 CPU.
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