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Abstract. Aerosol modelling is very important to study and simulate the behavior of
aerosol dynamics in atmospheric environment. In this paper, we consider the gen-
eral nonlinear aerosol dynamic equations which describe the evolution of the aerosol
distribution. Continuous time and discrete time wavelet Galerkin methods are pro-
posed for solving this problem. By using the Schauder’s fixed point theorem and the
variational technique, the global existence and uniqueness of solution of continuous
time wavelet numerical methods are established for the nonlinear aerosol dynamics
with sufficiently smooth initial conditions. Optimal error estimates are obtained for
both continuous and discrete time wavelet Galerkin schemes. Numerical examples are
given to show the efficiency of the wavelet technique.
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1 Introduction

The distribution of aerosol particles in atmospheric environment has been recognized
to be of significance due to their effects on climate change and human health. Aerosol
modeling has been playing an important role in studying and simulating the behavior of
aerosol dynamics in atmosphere. The aerosol dynamic equations in terms of the aerosol
size distribution function describe different processes evolved in the lifetime of aerosols,
which include condensation, nucleation, coagulation, and deposition. The equations are
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nonlinear differential and integral equations. Some numerical methods have been stud-
ied to solve the equations such as sectional method [21], moment method [5, 32], modal
method [2, 36], finite element method [31], and stochastic approach [17], etc. The con-
ventional sectional approach has some limitation such as numerical diffusion and lower
accuracy, while the modal approach has the high numerical efficiency but less physical
representation of real aerosol distribution and overlap of various models [35]. But, on
the other hand, there have been few works on the theoretical analysis of numerical meth-
ods to the nonlinear aerosol dynamics which will definitely indicate to develop efficient
numerical techniques for the problem.

Wavelet multiresolution analysis was originally applied as a powerful tool for signal
and image processing. Wavelets cut up data into different frequency components and
then study each component with a resolution matched to its scale. The wavelet tech-
nique has great advantage of approximating the signals which contain discontinuities
and sharp spikes. Recently, wavelet techniques have been applied to many areas in ap-
plied mathematics including developing numerical schemes to solve the integral equa-
tions and the partial differential equations (see, e.g., [1, 7, 8, 10, 11, 13–15, 23, 24, 29, 33]).
Papers [10, 15, 29] developed efficient multilevel wavelet methods for solving nonlinear
integral equations on bounded domains. [7,13] developed wavelet Galerkin methods for
the numerical solution of second-order elliptic equations. Paper [1] considered wavelet
Galerkin methods for solving quasilinear hyperbolic conservation equations. [14] studied
generalized Petrov-Galerkin schemes with multiscale techniques for solving pseudodif-
ferential equations. [33] studied wavelet methods for parabolic problems combining with
a strongly elliptic pseudodifferential operator. Recently, paper [24] applied the wavelet
collocation method to compute the population balance equation. However, there is no
theoretical analysis provided for the methods to this problem.

Due to the localization properties that wavelets display both in space and frequency,
the wavelet multiresolution analysis allows us to obtain an efficient sparse representa-
tion of the solution function, especially useful when the solution contains singularities,
irregular structure and transient phenomena. Wavelet methods can distinguish smooth
and singular regions automatically. This leads to the most important advantage that
the wavelets can efficiently and accurately approximate sharp changes of solution func-
tions. On the other aspect, due to different condensation, coagulation and removal mech-
anisms, the aerosol size distribution is highly uneven distributed, such as multiple log-
normal distributions in some regions. Thus, it is very important to efficiently solve the
aerosol dynamic equations in size and time where the aerosol distributions vary very
sharply in the size direction. This motivates us to develop and analyze wavelet Galerkin
methods for solving the aerosol dynamic equations in this paper.

In this paper, we propose and analyze wavelet Galerkin methods for solving the
nonlinear aerosol dynamic equations. The aerosol dynamic equations are nonlinear dif-
ferential and integral equations which contain a nonlinear Volterra type integral term
and a nonlinear Fredholm type integral term of the size distribution function. We in-
troduce wavelet Galerkin methods to construct both the semi-discrete scheme and the
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fully-discrete scheme for the nonlinear aerosol dynamic equations. Compactly supported
wavelets on the bounded domain based on the Daubechies’ scaling and wavelet functions
are applied in the Galerkin scheme due to several good properties of them. We prove the
global existence and uniqueness of the approximate solution for the nonlinear problem
of the semi-discrete wavelet Galerkin scheme by the theory of variation methods and the
Schauder’s fixed point theorem. The error estimates in L2 norm are obtained for both the
semi-discrete and fully discrete wavelet Galerkin schemes. Numerical experiments are
given to illustrate the efficiency of the wavelet Galerkin scheme. To the best of our knowl-
edge, our work in the paper is the first theoretical work to numerical wavelet methods of
aerosol dynamic equations. Thus, the work has significance in both theoretical analysis
and application of the nonlinear equations of aerosol dynamics.

This paper is organized as follows. In Section 2, we describe the nonlinear model of
the aerosol dynamics. After introducing the basic properties of wavelet and approxima-
tion theory, we propose the semi-discrete and fully discrete wavelet Galerkin schemes for
the nonlinear aerosol dynamics in Section 3. Then, in Section 4, we derive error analysis
for semi-discrete scheme and further in Section 5, the global existence and uniqueness of
the approximation solution are proved. In Section 6, we analyze error estimates for the
fully-discrete scheme. Numerical examples are given in Section 7. Finally, we draw some
conclusions in Section 8.

2 Aerosol dynamics model

Consider aerosol dynamic equations (see [20, 22, 31])

∂u(v,t)

∂t
=−∂(G(v)u(v,t))

∂v
+

1

2

∫ v−Vmin

Vmin

β(v−w,w)u(v−w,t)u(w,t)dw

−
∫ Vmax

Vmin

β(v,w)u(v,t)u(w,t)dw−R(v)u(v,t), (2.1)

u(Vmin,t)=0, t∈ (0,T], (2.2)

u(v,0)=u0(v), v∈ [Vmin,Vmax], (2.3)

where t > 0 is the time, v is the aerosol particle volume, T > 0 is the time period. u(v,t)
is the number concentration distribution function of aerosol particles. In practice one
assumes that the particle population has a nonzero minimal volume and a finite maxi-
mal volume, i.e., the dynamic equation is solved in a finite volume interval [Vmin,Vmax],
where Vmin and Vmax are chosen as lower and upper limits of the aerosol volume respec-
tively. The first term on the right-hand side of Eq. (2.1) is the condensation process which
describes the net rate of change, per unit volume of air, of particles of volume v due to
condensation of vapor species onto the particles. The condensation growth rate G(v) is
defined as the rate of change of the volume of a particle of volume v. The second term on
the right-hand side of Eq. (2.1) is an integral of Volterra type which describes the creation
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of particles of volume v by coagulation of smaller particles. The third term is an integral
of Fredholm type which models the loss of volume v particles due to coagulation. Coag-
ulation of aerosol particles may occur through a variety of mechanisms such as Brownian
motion, turbulent diffusion, etc. The coefficient β(v,w) is the coagulation kernel between
two particles of volume v and w entering collision.

The forms of the growth rate G(v) and the coagulation kernel β(v,w) have close re-
lations with the atmospherical surroundings. The condensation growth rate can be de-
scribed as: G(v) = Gγvγ, 0 < γ≤ 1, where Gγ is a positive number involving numerical
and physical constants and difference in vapor pressure of the diffusing species in bulk
gas [19, 22]. Three cases of growth rate G(v) are widely used in applications, which are
linear growth rate, condensation growth in free molecule size regime and in continuum
size regime [5, 20, 22]. The coagulation is mostly due to the Brownian activity. The coag-
ulation kernel in the continuum size regime can be written for spherical aerosols of size
v and w as (see [17, 20]):

β(v,w)=
2kbTe

3µair

[

2+
( v

w

)1/3
+
(w

v

)1/3
]

, (2.4)

where kb = 1.381×10−23 JK−1 is the Boltzmann’s constant, µair is the dynamic viscosity
of air and Te is the temperature. It is noted that the Brownian kernel can be consid-
ered in first approximation as a constant (see [20]); indeed for equal size aerosols the
coagulation kernel is reduced to β̄ =8kbTe/(3µair), where β̄ is usually called the Brown-
ian constant. When taking the temperature Te = 298K and the dynamic viscosity of air
µair =6.552×10−2kg/mhour, it is equal to 2.166×10−6cm3/hour for average atmospheric
conditions. On the finite volume interval, the coagulation kernel is bounded, β(x,y)≤β0.
The removal term, the last term on the right side of Eq. (2.1), denotes particles of volume
v lost due to sinks of aerosols. R(v) is the removal rate for a particle of volume v and
there exists a positive real number R0 such that R(v)≤R0.

In computation, we select a dimensionless finite particle size x scaled into interval Ω=
[0,1] through transformation x=av+b, where a=1/(Vmax−Vmin), b=−Vmin/(Vmax−Vmin)
(see [22, 31]). Then we have the corresponding equation

∂u(x,t)

∂t
=−∂[G(x)u(x,t)]

∂x
+
∫ x

0
β(x−y,y)u(x−y,t)u(y,t)dy

− 1

a1
u(x,t)

∫ 1

0
β(x,y)u(y,t)dy−R(x)u(x,t), (x,t)∈Ω×(0,T], (2.5)

u(0,t)=0, t∈ (0,T], (2.6)

u(x,0)=u0(x), x∈Ω, (2.7)

where G(x)= aG(v) and β(x,y)= 1
2a β(v,w).

The aerosol dynamic equation (2.1) or (2.5) is a nonlinear integral and differential
equation which includes the nonlinear Volterra type and Fredholm type integral terms of
coagulation and the transport term of condensation. The diameter of aerosol particles can
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span orders of magnitude, from a few nanometer to several micrometer. Atmospheric
particles are usually classified into different groups corresponding to their sizes. Due
to different condensation, coagulation and removal mechanisms evolved with different
groups, the aerosol size distribution is highly uneven distributed, such as multiple log-
normal distributions in some regions. Thus, the most important problem encountered in
the solution of this equation is how to efficiently solve the equation in size and time since
the aerosol distribution varies very sharply in the size direction. The wavelet technique
is relatively new developed method and is widely used in digital signal processing and
image compression. The wavelet expansion can be viewed as a localized analysis with
multiresolution structure that automatically cuts up functions into different frequency
components, and thus study each component with a resolution to match its scale. This
leads to the most important advantage that the wavelets can efficiently and accurately ap-
proximate sharp changes of functions. This motivates us to develop and analyze wavelet
Galerkin methods for solving the aerosol dynamic equation (2.5) in this paper.

3 Wavelet Galerkin methods

We denote by L2(Ω) the usual square integrable functions with inner product 〈·,·〉 and
the associated norm by ‖·‖ and by Hs(Ω) the standard Sobolev space with norm ‖·‖s .
Further we define the space H1

E(Ω) = {v ∈ H1(Ω) : v(0) = 0}. Let also ‖·‖∞ denote the
norm on L∞(Ω). If (X,‖·‖X) is a Banach space, L∞(0,T;X) will be the Banach space of
strongly measurable functions f : [0,T]−→X such that

‖ f‖L∞(0,T;X) = sup
0<t≤T

‖ f (t)‖X <∞. (3.1)

Remark 3.1. The existence and uniqueness of the solution to aerosol dynamic equation
(2.5) refers to [6]. Henceforth, it will be assumed Eq. (2.5) has a unique solution u which
belongs to H1

E(Ω) for t∈ [0,T]. Further, the required smoothness of the solution will be
made when needed in analysis in Sections 4-6.

Wavelets have emerged in the last decades as a synthesis of ideas from fields as differ-
ent as electrical engineering, physics and mathematics. Multiresolution analysis (MRA)
is one of the most sophisticated ways of generating wavelets in L2(R) (see, for exam-
ple, [16, 25]), which is defined as a sequence of closed subspaces Vj such that:

Vj⊂Vj+1, j∈Z;
⋂

j∈Z

Vj ={0};
⋃

j∈Z

Vj = L2(R); (3.2)

f (x)∈Vj ⇔ f (2x)∈Vj+1, j∈Z; (3.3)

f ∈V0⇔ f (·−k)∈V0, k∈Z. (3.4)

There exists a scaling function φ, of which the translation and dilation generate the basis
of Vj via

Vj =span{φj,k}k∈Z,
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with

φj,k(x)=2j/2φ(2jx−k), j,k∈Z.

We denote the orthogonal complement of Vj in Vj−1 by Wj−1,

Vj =Vj−1⊕Wj−1. (3.5)

Then each element of Vj can be uniquely written as the sum of an element in Vj−1 and
an element in Wj−1, which contains the details needed to pass from an approximation at
level j−1 to an approximation at level j. A basis function ψ for W0 is called a wavelet.
Similarly, we have

Wj =span{ψj,k}k∈Z,

where

ψj,k(x)=2j/2ψ(2jx−k), j,k∈Z.

Daubechies in [16] constructed the most well-known family of wavelets, which include
members from highly localized to highly smooth. The family of compactly supported or-
thonormal wavelets constructed by Daubechies’ possesses the advantage of orthogonal-
ity, compact support, and exact representation by polynomials of a fixed degree (see, [7]).
The support of the Daubechies’ scaling function is [0,2N−1], where N > 0 is an inte-
ger. The size of the support increases linearly with the regularity. Moreover, the wavelet
function ψ has the support [1−N,N] and has N vanishing moments

∫ ∞

−∞
xkψ(x)dx=0, k=0,1,··· ,N−1. (3.6)

All the above concerns bases for L2(R).
In both theory and application of wavelets, multiresolution analysis and wavelets

can be obtained on bounded intervals. While keeping the interior basis functions which
have the compact supports in the bounded interval, for several basis functions which
straddle the boundary, one needs to reconstruct these several basis functions for satisfy-
ing the boundary conditions as well as other properties if needed. Based on the shifted
Daubechies’ scaling and wavelet functions verifying supp φ = supp ψ = [0,2N−1], a se-
quence of subspaces Vj(Ω) and Wj(Ω) on the interval Ω =[0,1] can be constructed (See,

for example [12,37], etc). Suppose that a level integer J0 >0 satisfies 2J0 >2N. The interior
basis functions are {φj,k, j ≥ J0, 0≤ k≤ 2j−2N+1} and {ψj,k, j≥ J0, 0≤ k≤ 2j−2N+1},
which are simply scaling and wavelet functions defined above and satisfy supp(φj,k) =

[k/2j ,(2N−1+k)/2j ] ⊂ [0,1] and supp(ψj,k) = [k/2j ,(2N−1+k)/2j ] ⊂ [0,1]. For the N
scaling functions with the support intersecting with the left boundary, we need replace
them by N boundary scaling functions {φ̃n

j } at each level j≥ J0. Let {φ̃n}, n=0,··· ,N−1,
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be constructed by the linear combinations of {φk},2−2N ≤ k≤ 0 and the Gram-Schmidt
procedure as well as satisfying φ̃n(0) = 0. Denote φ̃n

j (x) = 2j/2φ̃n(2jx) for j ≥ J0. Then

the N boundary scaling functions {φ̃n
j },n = 0,··· ,N−1, are independent and orthogo-

nal both to each other and to all the interior functions {φj,k, j ≥ J0, 0≤ k ≤ 2j−2N+1},
and φ̃n

j (0) = 0,n = 0,··· ,N−1. Similarly, we can construct right edge scaling functions

{φ̄n
j },n=0,··· ,N−1, satisfying the orthogonality. Then the subspace Vj(Ω) is defined by

setting

Vj(Ω)=span{φj,k,k=0,··· ,2j−1, φ̃n
j ,n=0,··· ,N−1, φ̄n

j ,n=0,··· ,N−1} (3.7)

for j≥ J0. It satisfies Vj(Ω)⊂H1
E(Ω).

With {φ̃n},n=0,··· ,N−1, we can define {ψ̃n},n=0,··· ,N−1 as the linear combination
of {φ̃n

1}0≤n≤N−1 and {φ1,k}1≤k≤2N−1

ψ̃n = φ̃n
1 −

N−1

∑
m=0

〈φ̃n
1 ,φ̃m〉φ̃m. (3.8)

and ψ̃n
j (x)=2j/2ψ̃n(2jx) for j≥ J0. As usual, we can define Wj(Ω) by

Wj(Ω)=span{ψj,k,k=0,··· ,2j−1, ψ̃n
j ,n=0,··· ,N−1, ψ̄n

j ,n=0,··· ,N−1} (3.9)

for j≥ J0. We have that

Vj(Ω)=Vj−1(Ω)⊕Wj−1(Ω)

for j−1≥ J0.

We refer the detailed construction process to [12, 37]. Other methods to construct
scaling and wavelet basis functions on [0,1] based on Daubechies’ functions can be found
in [3, 26]. Moreover, Vj(Ω) satisfies the following properties (see [12, 37]):

(i) Approximation property: Let j ≥ J0 and for any u ∈ Hs(Ω)
⋃

H1
E(Ω), there

exists a constant C1 independent of j and u such that

inf
w∈Vj(Ω)

‖u−w‖i ≤C12−(s−i)j‖u‖s , i=0,1, 0≤ s≤N. (3.10)

(ii) Inverse property: For w∈Vj(Ω), there is a constant C2 independent of j and
w such that

‖w‖1 ≤C22j‖w‖. (3.11)
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For convenience, we define the following linear operator L1u and nonlinear operators
L2(u) and L3(u):

L1u=−∂(G(x)u(x,t))

∂x
, (3.12)

L2(u)=
1

2

∫ x

0
β(x−y,y)u(x−y,t)u(y,t)dy, (3.13)

L3(u)=
∫ 1

0
β(x,y)u(x,t)u(y,t)dy. (3.14)

Then, problem (2.5)-(2.7) has the following weak formulation: Find u : [0,T]−→H1
E(Ω),

such that

〈ut,v〉= 〈L1u,v〉−〈R(x)u,v〉+〈L2(u),v〉−〈L3(u),v〉, v∈H1
E(Ω), (3.15)

〈u(·,0),v〉= 〈u0,v〉 , v∈H1
E(Ω). (3.16)

Thus, the semi-discrete wavelet Galerkin approximation to the solution of (3.15)-(3.16) in
the finite-dimensional wavelet subspace Vj(Ω) is defined as follows: Find U(t)∈Vj(Ω)
such that for t∈ [0,T],

〈Ut,v〉−〈L1U,v〉+〈R(x)U,v〉= 〈L2(U),v〉−〈L3(U),v〉, v∈Vj(Ω), (3.17)

with U(0)= Pju0, where Pj is an appropriate projection onto Vj(Ω).

Further, let ∆t>0 be the time step size, L=T/∆t∈Z, and tl = l∆t, l=0,1,··· ,L. Denote
Ul = U(x,tl). Finally, we can define the fully discrete wavelet Galerkin scheme for the
problem as: For l≥0, find Ul+1∈Vj(Ω) such that

〈

Ul+1−Ul

∆t
,v

〉

−〈L1Ul+1,v〉+
〈

R(x)Ul+1,v
〉

=
〈

L2(Ul),v
〉

−
〈

L3(Ul),v
〉

, v∈Vj(Ω), (3.18)

with U0 = Pju0.

Remark 3.2. We have used Daubechies’ wavelets as the solution bases for the reason
that it offers several properties of orthogonality, compact support, exact representation
of polynomials to a certain degree, and ability to represent functions at different levels
of resolution. In scheme (3.18), the coefficient matrix for the first term on the left-hand
side is a diagonal matrix. The coefficient matrices of the second term and third term on
the left-hand side are band-diagonal matrices due to the compactness of the Daubechies’
wavelets. The terms on the right-hand side are approximated by the previous level val-
ues, which go into the right-hand side vector of the linear system of equations.

On the other hand, Daubechies’ wavelets have the capability of representing solu-
tions at different levels of resolution, which makes them particularly useful in building
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the relation of higher resolution level and lower resolution level of wavelets. Recursive
application of the dyadic coupling relation between two consecutive resolution levels
will give the fast “pyramid” scheme for computing the expansion coefficients of the un-
known function. The use of this relation of higher resolution level and lower resolution
level of wavelets can lead to further construct the fast numerical algorithms for the ele-
ments of the matrices by the pyramid scheme (see [4] for more details). Meanwhile, since
Daubechies’ wavelets are orthonormal and have compact support, one can get the rela-
tions between the decay of the coefficients and different resolution levels. The property of
the fast decay between different scales can lead to compress the coefficient matrices [34].

Remark 3.3. Another advantage of wavelet methods is to design the adaptive algorithm.
More recently, adaptive wavelet methods have been recognized to be important adaptive
techniques in the applications to solutions of PDEs (see, [13, 15, 18, 30], etc). For many
real problems, solutions often exhibit localized singular features such as sharp peaks.
Uniform basis functions in space is not a practical option since high resolution is only
needed in small regions. Adaptive methods bring forward significant improvements in
accuracy and computational efficiency. The localization property of the wavelets both in
space and in frequency makes the adaptivity efficiently. The multi-resolution of wavelets
is a simple and efficient way for designing adaptive algorithms. The resolution level
of the solution, which is closely related to the grid size and the length of the wavelet
series, can be chosen adaptively according to the smoothness of the function at different
locations. In smooth regions few wavelet coefficients are needed and, in singular regions,
large variations in the function require more wavelet coefficients. One can optimize the
computational effort by choosing adaptively grids and bases corresponding to the local
regularity of the solution. This result leads to efficient adaptive methods for solving
PDEs. We will further study and analyze the adaptive wavelet methods for solving the
aerosol dynamic equation in the next paper.

Remark 3.4. Another important area is the study of wavelet methods for solving operator
equations (integral equations). In this area, many papers have obtained important results
( [9, 10, 15, 27–29], etc). For solving this kind bounded domain problems, [27, 28] con-
structed orthonormal multiwavelets bases on bounded domain. In [27], wavelets were
constructed by using the matrix refinement equation and the basic operations of transla-
tions and scales, which are not smooth but of small support and can be made to have
vanishing moments. [28] constructed biorthogonal multiwavelets through a recursive
formula from one level to another. In [9] interpolating wavelets were constructed on in-
variant sets. These multiwavelets on bounded domains have been studied for efficiently
solving the operator equations (integral equations) (see [10, 15, 29], etc). The multiscale
representation of integral operators based on these wavelets lead to linear systems with
sparse coefficients matrices whose condition numbers are bounded. These sparse repre-
sentations form the base of fast numerical algorithms for solving such integral equations.
On the other hand, in the standard Galerkin formulation of partial differential equations,
one needs the multiwavelet function spaces Vj(Ω)⊂H1

E(Ω) or H1
0(Ω). Therefore, when
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the multiwavelets above are discontinuous on the domain Ω, these discontinuous orthog-
onal multiwavelets could be applied to solve the nonlinear aerosol dynamic equations by
combining the discontinuous Galerkin formulations (or other formulations), which will
be a very interesting next step work.

4 Error estimates of the semi-discrete wavelet scheme

In this section, we will analyze error estimates for the semi-discrete wavelet Galerkin
scheme (3.17). Firstly, we will prove two lemmas concerning the behavior of L1, which
are fundamental to our error estimates.

Lemma 4.1. The operator L1 is semi-bounded with respect to the inner product on L2(Ω). That
is, there exists a constant α>0 such that for u∈H1

E(Ω)

〈L1u,u〉≤α〈u,u〉. (4.1)

Proof. From the definition of linear operator L1, we have

〈L1u,u〉=−
〈

(

G(x)u
)

x
,u
〉

=−
∫ 1

0

(

G(x)u
)

x
udx

=−
∫ 1

0
ud(G(x)u)=−G(1)u2(1,t)+

∫ 1

0
G(x)uu′dx

=−G(1)u2(1,t)−〈L1u,u〉−
∫ 1

0
G′(x)u2dx

≤−〈L1u,u〉−
∫ 1

0
G′(x)u2dx.

Consequently,

〈L1u,u〉≤α
∫ 1

0
u2dx,

where α=maxx∈Ω |G′(x)|/2.

Lemma 4.2. There exists a constant λ>0 such that

〈L1u,v〉≤λ‖u‖1‖v‖, ∀u∈H1(Ω), ∀v∈L2(Ω). (4.2)

Proof. By applying Hölder inequality and the bounds of G′(x) and G(x) in Ω, we have

〈L1u,v〉=−
〈

(

G(x)u
)

x
,v
〉

=−
∫ 1

0

(

G(x)u
)

x
vdx

=−
∫ 1

0

(

G′(x)uv+G(x)u′v
)

dx

≤λ‖u‖1‖v‖.

This completes the proof of this lemma.
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Then, we can analyze the errors of the semi-discrete scheme (3.17). We assume first
that there exist positive constant M∗ and positive integer J∗ such that for j≥ J∗,

‖U‖L∞(0,T;L2(Ω))≤M∗. (4.3)

The error bound is then obtained in terms of the norm of ‖u‖r+1 and ‖∂u/∂t‖r+1, where
0≤r≤N−1. Finally the assumption of boundedness of U is proved. Let w be the orthog-
onal projection of u into Vj(Ω). Denote

η =u−w, ξ =w−U.

Then u−U =η+ξ.

Theorem 4.1. Assume u∈L∞(0,T;L2(Ω))
⋂

Hr+1(Ω) and ut∈Hr+1(Ω) for 0≤r≤N−1. Let
u be the solution of the problem (2.5); and let U, defined in (3.17), be the wavelet approximation
of u, with the initial projection Pju0 of u0(x) onto Vj(Ω) with accuracy O(2−j(r+1)). Then there
exists a constant C4 such that

‖u(t)−U(t)‖≤C4e(α+R+K)t2−j(r+1)‖u(0)‖r+1+C42−j(r+1)‖u(t)‖r+1

+C4
(e(α+R+K)t−1)

(α+R+K)
2−jr max

0<s<t

{

‖u(s)‖r+1+‖∂tu(s)‖r+1

}

, (4.4)

where K =3β0(M+M∗)/2.

Proof. Subtracting (3.17) from (3.15) yields

〈ξt,v〉=−〈ηt,v〉−〈R(x)ξ,v〉−〈R(x)η,v〉+〈L1ξ,v〉+〈L1η,v〉
+〈L2(u)−L2(U),v〉−〈L3(u)−L3(U),v〉. (4.5)

Setting v = ξ and applying Lemmas 4.1 and 4.2 and the estimates for the removal term
give

‖ξ‖ d

dt
‖ξ‖≤‖ξ‖‖ηt‖+R‖ξ‖2 +R‖ξ‖‖η‖+α‖ξ‖2 +λ‖ξ‖‖η‖1

+〈L2(u)−L2(U),ξ〉−〈L3(u)−L3(U),ξ〉.

To estimate the term 〈L2(u)−L2(U),ξ〉, we rewrite it as follows

〈L2(u)−L2(U),ξ〉=1

2

∫ 1

0

(

∫ x

0

(

β(x−y,y)u(x−y,t)u(y,t)

−β(x−y,y)U(x−y,t)U(y,t)

)

dy

)

ξ(x)dx

=
1

2

∫ 1

0

(

∫ x

0

(

β(x−y,y)(u(x−y,t)−U(x−y,t))u(y,t)

+β(x−y,y)(u(y,t)−U(y,t))U(x−y,t)

)

dy

)

ξ(x)dx.
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Applying Hölder inequality and combining the fact β(x,y)≤β0, it follows that

〈L2(u)−L2(U),ξ〉

≤ β0

2

∫ 1

0

(

∫ x

0
(u(x−y,t)−U(x−y,t))2dy

)1/2(∫ x

0
u2(y,t)dy

)1/2

ξ(x)dx

+
β0

2

∫ 1

0

(

∫ x

0
(u(y,t)−U(y,t))2dy

)1/2(∫ x

0
U2(x−y,t)dy

)1/2

ξ(x)dx.

For the term
∫ x

0 (u(x−y,t)−U(x−y,t))2dy above, using the variable transformation z =
x−y gives

∫ x

0
(u(x−y,t)−U(x−y,t))2dy

=
∫ x

0
(u(z,t)−U(z,t))2dz≤

∫ 1

0
(u(z,t)−U(z,t))2dz. (4.6)

Combining (4.6), (4.3) and the fact ‖u‖L∞(0,T;L2(Ω))≤M, we have the estimate

〈L2(u)−L2(U),ξ〉≤ β0

2
(M+M∗)(‖ξ‖+‖η‖)‖ξ‖.

An estimate for 〈L3(u)−L3(U),ξ〉 can be derived in a similar way, which leads to the
inequality

〈L3(u)−L3(U),ξ〉≤β0(M+M∗)(‖ξ‖+‖η‖)‖ξ‖.

Thus

‖ξ‖ d

dt
‖ξ‖≤‖ξ‖‖ηt‖+R‖ξ‖2 +R‖ξ‖‖η‖

+α‖ξ‖2 +λ‖ξ‖‖η‖1 +K‖ξ‖2+K‖ξ‖‖η‖,

and we further have

d

dt
‖ξ‖≤ (α+R+K)‖ξ‖+(‖ηt‖+λ‖η‖1 +R‖η‖+K‖η‖).

An application of Gronwall’s inequality to the above inequality yields

‖ξ(t)‖≤ eα+R+K‖ξ(0)‖+
∫ t

0
e(α+R+K)(t−s)(λ‖η‖1+R‖η‖+K‖η‖+‖∂tη‖)ds.

Combining the fact that ‖ξ(0)‖≤‖u(0)−U(0)‖+‖η(0)‖, we obtain the result under the
assumption (4.3).

Next we show (4.3) to complete the proof. Let ‖u‖L∞(0,T;L2(Ω) ≤ M. Without loss of
generality, we assume that M∗

>3M. It follows from Approximation Property (3.10) that

‖U(0)‖≤ (1+C12−j(r+1))‖u(0)‖. (4.7)
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It follows from ‖u‖L∞(0,T;L2(Ω))≤M that

‖U(0)‖≤2M, (4.8)

for sufficiently large j.
If the condition (4.3) was false, from the continuity of ‖U(t)‖ in t and (4.8) there would

be a t0 >0 independent of j such that t0 <T and

‖U(t)‖≤M∗, t∈ [0,t0), (4.9)

‖U(t)‖> M∗, t∈ [t0,T], (4.10)

for sufficiently large j. From the result of error estimate (4.4),

‖U(t0)‖<2M< M∗, (4.11)

for sufficiently large j, which is a contradiction of (4.10). Thus the proof is complete.

5 Global existence of the semi-discrete wavelet approximation

In this part, we shall prove global existence and uniqueness of the nonlinear finite ele-
ment approximation U of u in the domain of existence of u, by employing Schauder’s
fixed point theorem. For all v∈Vj(Ω),

〈∂tξ,v〉=−〈∂tη,v〉−〈R(x)ξ,v〉−〈R(x)η,v〉+〈L1ξ,v〉+〈L1η,v〉
+〈L2(u)−L2(U),v〉−〈L3(u)−L3(U),v〉, (5.1)

where e=u−U=u−w+w−U=ξ+η. This system is a nonlinear system in ξ. We will first
linearize the system, and then apply Schauder’s fixed point theorem. Replacing U=u−e
in (5.1) and substituting e by E(x,t), where E(x,t)∈L2(0,T;H1

E(Ω)), we obtain a linearized
formulation form given by

〈∂tξ,v〉=−〈∂tη,v〉−〈R(x)ξ,v〉−〈R(x)η,v〉+〈L1ξ,v〉+〈L1η,v〉
+〈L2(u)−L2(u−E),v〉−〈L3(u)−L3(u−E),v〉. (5.2)

This is a linear ordinary differential equation of ξ. Therefore, for any E = E(x,t), there
exists a unique solution ξ ∈Vj(Ω) of (5.2) in the interval [0,T]. Thus, Eq. (5.2) defines an

operator B from H1
E(Ω) to Vj(Ω) such that ξ=B{E} for each E∈H1

E(Ω). Since e=η+ξ, we

define the operator D : H1
E(Ω)→H1

E(Ω) by D{E}=η+B{E}. We only need to show that
the operator D has a fixed point E in H1

E(Ω) in order to prove the existence of a solution
U(t)∈Vj(Ω) to problem (3.17).

Theorem 5.1. Let u be the exact solution to problem (2.1). Then, for 0<ǫ≤1 and for sufficient
large j, there exists a unique solution U∈L∞(0,T;Vj(Ω)) to problem (3.17) such that

‖u(t)−U(t)‖≤ǫ, (5.3)

for t∈ (0,T].
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Proof. Choose v= ξ in (5.2) and apply Hölder inequality and boundedness of u and U to
obtain

1

2

d

dt
‖ξ‖2 ≤α‖ξ‖2 +α‖η‖1‖ξ‖+R‖ξ‖2 +R‖η‖‖ξ‖+‖∂tη‖‖ξ‖+K‖E‖‖ξ‖.

Consequently,

d

dt
‖ξ‖≤ (α+R)‖ξ‖+(α‖η‖1 +R‖η‖+‖∂tη‖+K‖E‖) . (5.4)

Applying Gronwall’s inequality to (5.4) gives

‖ξ‖L∞(0,T;L2(Ω))

≤C6

(

‖ξ(0)‖+‖η‖L∞ (0,T;H1(Ω))+‖∂tη‖L∞(0,T;L2(Ω))+‖E‖L∞(0,T;H1(Ω))

)

, (5.5)

where C6 is a constant independent of j and E. Combining (5.5), Approximation Property
(3.10) and Inverse Property (3.11) yields

2−j‖ξ‖L∞(0,T;H1(Ω))≤C72−jr (5.6)

with C7 >0 independent of j but depending on E.

Then from (5.6), Approximation Property (3.10) and the definition of D, it follows, on
noting r≤2, that for j>1 and some constant C8

‖D{E}‖L∞(0,T;H1(Ω))≤C82−j(r−1). (5.7)

Thus, there exists an J∗ such that for all j≥ J∗, ‖D{E}‖L∞(0,T;H1(Ω))≤ǫ. Then the operator
D maps the sphere

Bǫ :={E∈L∞(0,T;H1(Ω)) :‖E‖L∞(0,T;H1(Ω))≤ǫ}, (0<ǫ≤1) (5.8)

into itself. Also, D is a continuous and compact operator. Hence, by Schauder’s fixed
point theorem, there exists an E in Bǫ such that D{E}={E}. The existence of the solution
is thus established.

For uniqueness, let us assume that U1 and U2 are two solutions to scheme (3.17) with
the same initial value projection. Then,

〈∂tU1,v〉= 〈L1U1,v〉−〈R(x)U1,v〉+〈L2(U1),v〉−〈L3(U1),v〉 , (5.9)

and

〈∂tU2,v〉= 〈L1U2,v〉−〈R(x)U2,v〉+〈L2(U2),v〉−〈L3(U2),v〉 . (5.10)
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Subtracting (5.10) from (5.9), we get

〈∂t(U1−U2),v〉=〈L1(U1−U2),v〉−〈R(x)(U1−U2),v〉
+〈L2(U1)−L2(U2),v〉−〈L3(U1)−L3(U2),v〉 . (5.11)

Let v=U1−U2. Then it follows from (5.11) that

‖U1−U2‖
d

dt
‖U1−U2‖≤ (α+R+K)‖U1−U2‖2. (5.12)

Integrating (5.12) from 0 to t with respect to time gives

‖U1(t)−U2(t)‖2≤‖U1(0)−U2(0)‖2e2(α+R+K)t. (5.13)

From the assumptions on the initial values U1(0)= U2(0), we have U1(t)−U2(t)= 0 for
all t in [0,T].

6 Error estimates of the fully-discrete wavelet scheme

The fully-discrete wavelet Galerkin scheme (3.18) can be easily shown to have unique
solution. In this section, we will analyze the error estimates to the fully-discrete wavelet
scheme. Let u be the exact solution of problem (2.5) and Ul, 0≤ l≤ L, be the solution of
problem (3.18). We have the following error estimate result.

Theorem 6.1. Assume 0 < (α+R)∆t < 1, uttt ∈ L∞(0,T;L∞(Ω)), u ∈ L∞(0,T;Hr+1(Ω)),
‖u‖L∞(0,T;L2(Ω)) ≤ M and ut ∈ L∞(0,T;Hr+1(Ω)). Then there are positive constants C5 and

δ, where δ= α+R+K
1−(α+R)∆t

<2(α+R+K) when ∆t is small enough, such that

‖ul−Ul‖≤C5

{

2−j(r+1)
(

‖u0‖r+1+‖∂tu‖L∞(Hr+1)

)

+2−jr‖u‖L∞(Hr+1)+∆tmax
t,x

|uttt|
}

(6.1)

holds for l =1,2,··· ,L.

Proof. Let ul(x) denote u(x,l∆t). Then ul satisfies

〈

ul+1−ul

∆t
,v

〉

=〈L1ul+1,v〉−
〈

R(x)ul+1,v
〉

+
〈

L2(ul),v
〉

−
〈

L3(ul),v
〉

+
〈

rl ,v
〉

, (6.2)

where rl =(ul+1−ul)/∆t−(∂/∂t)(ul). Subtracting (3.18) from (6.2), we obtain

〈

ξ l+1−ξ l

∆t
,v

〉

=−
〈

ηl+1−ηl

∆t
,v

〉

−〈R(x)ξ l+1,v〉−〈R(x)ηl+1,v〉+〈rl ,v〉

+〈L1ξ l+1,v〉+〈L1ηl+1,v〉+〈L2(ul)−L2(Ul),v〉−〈L3(ul)−L3(Ul),v〉.
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Choosing v= ξ l+1 and taking the similar process of Theorem 4.2, we have the following
estimate

(1−α∆t−R∆t)‖ξ l+1‖≤(1+K∆t)‖ξ l‖+λ∆t‖ηl+1‖1

+(1+∆tR)‖ηl+1‖+(1+K∆t)‖ηl‖+∆t‖rl‖.

Applying Gronwall’s inequality, there exists a constant C such that

‖ξ l‖≤Ceδt‖ξ0‖+Ceδt max
0<s<t,0≤l≤T/∆t

{∥

∥

∥

∥

η(s+∆t)−η(s)

∆t

∥

∥

∥

∥

+‖η(s)‖1 +‖rl‖
}

and ‖(ηl+1−ηl)/∆t‖≤C‖∂η/∂t‖, and the estimate ‖rl‖≤C∆tmax|uttt| follows from Tay-
lor’s expansion. Combining Approximation Property (3.10) and the triangle inequality
from ul−Ul = ξ l +ηl, we can easily obtain the error estimates for the finite element ap-
proximation Ul to the original solution ul.

7 Numerical experiments

In this part, we will take numerical experiments to study the aerosol dynamics by the
wavelet Galerkin method. For the first example with analytical solution, we compare
the wavelet Galerkin method with the finite difference method to show the accuracy and
effectiveness of our method. A general example of aerosol dynamics will be given in
Example 7.2 which describes the joint effect of condensation and coagulation processes
in continuum size regime with an initial log-normal distribution. In Example 7.3, a real
aerosol deposition process is simulated with a three-modes initial distribution.

Example 7.1. For the first experiment we consider a test problem (see [31]). This prob-
lem has analytical solution which is normally used to test the numerical accuracy of nu-
merical methods. We consider a constant coagulation rate β0 and linear growth rate
G(x)=σ0x. The initial number distribution is exponential

u(x,0)=(N0/Xm)e−x/Xm ,

where N0 is the initial number of aerosol particles and Xm is the initial mean volume.
The distribution is truncated to the interval with lower and upper limits of volume size
Xmin =0µm3 and Xmax = π/6µm3. Take σ0 = 0.05/hour, N0 =104 particles/cm3 and Xm =
0.03µm3.

The analytical solution is given as

uA(x,t)=
4N0

Xm(N0β0t+2)2
exp

(

− 2xexp(σ0t)

Xm(Ntβ0t+2)
−σ0t

)

, (x,t)∈
(

0,
π

6

)

×(0,T]. (7.1)

In the computation, we choose 2J wavelet bases for the wavelet Galerkin method and
take the uniform grid for the finite difference method with ∆x=(Xmax−Xmin)/2J .
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Three tests are performed for problems of (i) condensation-only (β0=0), (ii) coagulation-
only (σ0=0), and (iii) joint condensation-coagulation. Let ui(T) be the numerical solution
at volume nodes xi = i∆x and uA(xi,tj) be the analytical solution value. The error is mea-
sured in the root mean square (RMS) norm at the node points:

Err=

√

1

s

s

∑
i=1

[ui(T)−uA(xi,T)]2

max(uA(xi,T),Thr)2
, (7.2)

where the threshold is Thr =1000 particles/cm3 µm3, and s=1+2J is the total number of
volume nodes.

The numerical errors of wavelet Galerkin method and finite difference method at time
T = 5h are shown in Table 1. With the same time step size ∆t = 1/100h and different J,
numerical solutions of the wavelet Galerkin method even with few wavelet bases ap-
proximate exact solutions better.

Table 1: Numerical errors in (RMS) norm.

Level number Condensation only Coagulation only Condensation Coagulation

WG FD WG WG FD
J =4 0.0781 0.3006 0.1511 0.2028 0.6448

J =5 0.0411 0.1088 0.0556 0.0712 0.1513
J =6 0.0403 0.0486 0.0441 0.0491 0.0561

The numerical analytical volume distributions, defined as volume times number dis-
tributions, at different times t=5h, t=10h and t=15h for condensation only process are
shown in Fig. 1. We can see that the numerical solutions are in excellent agreement with
the analytical solution at different times. The total volume of aerosol particles increases
as a result of vapors condensing. The principle of some certain atmospherical aerosol
volume density is that the density curve is in slanting distribution, which means on the
side of smaller size, volume density decreases rapidly, while on the side of larger size,
volume density decreases slowly. When

xc =
6Xmσ0T

π(1−e−σ0T)
,

the volume density reaches its maximum point. We can also see the principle from the
graph, the size distribution decreases strongly on the side of the smaller side; after x
passes the critical point xc, the size distribution decreases slowly. Our simulation results
explain this principle well.

Example 7.2. In this example, we simulate the joint effect of condensation and coagu-
lation processes in continuum size regime. When the vapor pressure increases and air
mean free path decreases, then the condensation and coagulation will be considered to
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Figure 1: The volume distributions for condensation-only process by the wavelet Galerkin method and analytical
solution distribution at different times t=5h, t=10h and t=15h with J =5 and ∆t=1/20h.

be in continuum size regime [19, 23]. In this case, the condensation growth rate has the
form

GC(x)= B3x1/3(S−1), (7.3)

where B3 =(48π2)1/3Dv1ns, and D = λ(8kBTe/πm1)
1/2/3. Take the saturation ratio S =

1.521, the standard temperature Te = 298K, the monomer mass m1 = 5.33×10−26kg, the
monomer volume v1 = 5.33×10−5µm3, the Boltzmann’s constant kB = 1.38×10−23 JK−1,
and ns =2.43×10−4molecules/µm3 , the mean free path λ=6.5×10−2µm, then B3(S−1)=
1×102µm/s. Let the temperature Te=298K and the dynamic viscosity of air µair =1.82×
101kg/ms. The coagulation kernel is defined in (2.4).

The initial distribution is chosen to be the sum of two log-normal distributions

n0(x)=
2

∑
i=1

Ni

3
√

2π lnσi

exp

(

− ln2(x/xgi)

18ln2σi

)

1

x

on the volume domain Ω=[1×102µm3,1×104.5µm3] with N1=5×104 particles/µm3 , N2=
2×104 particles/µm3 , xg1 =1×102.7µm3, xg2 =1×103.5µm3, σ1 =1.13 and σ2 =1.2.

In this example, we take logarithmic scale for the sizes of studied aerosol particles
spans orders of magnitude and it can describe the aerosol region more effectively. Take
log transformation for aerosol volume with the time step size ∆t = 0.1s and J = 6. The
numerical number distributions 3xn(x,t) for the condensation process in the continuum
size regime at time T=0s, T=25s, T=50s and T=75s are shown in Fig. 2. The horizontal
coordinate indicates the ln(r), where r is the diameter of aerosol particles with the unit
of µm. Moreover, the vertical coordinate refers to the values of aerosol number distri-
bution 3xn(x,t). Actually, 3xn(x,t) equals to dNtol/dln(r). Consequently, the number
distribution is

dNtol

dln(r)
= r

dNtol

dr
= r

dNtol

dx

dx

dr
=4πr3 dNtol

dx
=3xn(x,t),
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Figure 2: The numerical number distributions of 3vn(v,t) of the joint condensation and coagulation process in
the continuum size regime at T =0s, T =25s, T =50s and T =75s.

where Ntol is the total number concentration of aerosol particles (see [5, 31]). With the
increasing of time, the total volumes of aerosol particles grow due to the condensation
process of vapors condensing on aerosol particles. While the number distribution of the
aerosol particles in the intermediate part of the two lognormal peaks decreases because
the decrease of number distribution due to coagulation process is greater than the in-
crease due to condensation growth. The coagulation process of smaller particles results
in the increase of the number concentration of larger particles.

Table 2: Log-normal parameters for continental aerosols.

nucleation mode accumulation mode coarse mode

N(cm−3) 7.7×104 1.3×104 4.2
rg(µm) 0.013 0.069 0.97
σg 1.7 2.03 2.15

Example 7.3. In this example, we consider the aerosol dry deposition process. The initial
distribution is the sum of three modes: the nucleation mode, accumulation mode and
coarse mode ( [35, 36]). Each mode has a lognormal distribution form:

n(r,0)=
N√

2π lnσgr
exp(− ln2(r/rg)

2ln2σg

).

Table 2 lists some typical values of the total number concentration N, geometric mean
diameter rg and the geometric standard deviation σg for continental aerosols. We will
choose these parameters as the initial distribution of our simulation of dry deposition
process. The concerned domain is Ω=[1×10−9m,1×10−4m].
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We take the logarithmic scale for diameter direction, then change the range of lnr into
x in [0,1]. Take the uniform time grids with the step size ∆t on the t-direction. Fix J=5, we
choose 2J wavelet base functions to approximate the number density function on volume
direction, ∆x=1/2J+1 ≈0.0156, and ∆t=0.1.
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Figure 3: The volume distributions for dry deposition process with the wind speed u=5ms−1 at T=0s, T=1000s,
T =2000s and T =6000s.

The numerical solutions for the dry deposition process of aerosol dynamics at differ-
ent times T = 0s, T = 100s, T = 2000s and T = 6000s are shown in Fig. 3. The horizontal
coordinate indicates the aerosol particle diameter and the vertical coordinate refers to
the volume distribution of lnr, which is dv/dln(r). The reason to choose volume distri-
bution not number distribution is to better show the distribution of three modes. The
coarse mode is not shown in this graph due to comparatively very small total number
concentration. Dry deposition velocity Vd decreases exponentially with the increasing of
particle diameter in the size range [1×10−9,1×10−6]. It is seen that volume distribution
dv/dln(r) has lower values with the increasing of time for all particle size ranges. Values
of nucleation mode decrease dramatically, while values of accumulation mode become
lower slowly since dry deposition velocity Vd of nucleation mode is much larger than
that of accumulation mode. At T = 6000s, the volume distribution is totally different
from the original volume distribution, values of nucleation mode are smaller than those
of accumulation mode.

8 Conclusion

We studied mathematical modeling of nonlinear aerosol dynamic equations by the wavelet
Galerkin methods. We obtained the theoretical analysis of the wavelet methods for the
problem. The existence and uniqueness for the continuous time wavelet Galerkin scheme
were proved using the Schauder’s fixed point theorem. We further obtained error esti-
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mates for both the continuous time and discrete time wavelet Galerkin schemes. Nu-
merical solutions of the wavelet method showed its superiority compared with the finite
difference method even with few wavelet bases. For the aerosol distribution examples,
the wavelet method obtained efficient numerical simulating results. Our future work
will focus on the development and analysis of adaptive wavelet methods for the aerosol
dynamic equations.
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