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Abstract. This is the first part of direct numerical simulation (DNS) of double-diffusive
convection in a slim rectangular enclosure with horizontal temperature and concen-
tration gradients. We consider the case with the thermal Rayleigh number of 105, the
Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to tem-
perature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th-
order upwind compact scheme was developed for approximation of convective terms,
and a three-stage third-order Runge-Kutta method was employed for time advance-
ment. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow
of transition is a complex series changing from the steady to periodic, chaotic, periodic,
quasi-periodic, and finally back to periodic. There are two types of periodic flow, one
is simple periodic flow with single fundamental frequency (FF), and another is com-
plex periodic flow with multiple FFs. This process is illustrated by using time-velocity
histories, Fourier frequency spectrum analysis and the phase-space trajectories.

AMS subject classifications: 65Y20, 34C28, 70K50

Key words: Double diffusive convection, transition, periodic motion, chaotic motion, high order
compact.

1 Introduction

Double-diffusive convection motion, as a common flow phenomena in nature, has been
studied for a long time. It exists in many procedures containing multi-physics and multi-
process coupling and interaction. For instance, the global ocean circulation driven by
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interaction of temperature and salinity, diffusion of pollution and temperature in soil
contamination and atmospheric pollution, solar energy concentration, nuclear reactor
cooling. Furthermore, the multi-diffusive convection exists in some special fields, such
as the action of crystal growth and solidification of metallic alloys.

At present, cavity physics modeling [1–3], Boussinesq modeling [4, 5] and k-ε model-
ing [6–8] are extensively used in investigation of the double-diffusive convection prob-
lem. It is mainly influenced by parameter set Ω (RaT , N, Pr, Le, A) [9], where RaT is the
thermal Rayleigh number, N is the buoyancy ratio of composition to temperature, Pr is
the Prandtl number, Le is the Lewis number (the ratio of composition to heat diffusivity)
and A is the height-to-width aspect ratio. It is far too difficult to have a systematic in-
vestigation to cover all of the parameter set. For decades, researchers have investigated
double-diffusive convection by choosing different parameter separately. Quon [9, 10],
Lee [4,5] and Tsitverblit [13] investigated the multi-cell flow structure and multi-stratified
stable region with various values of A, Le, N and different boundary conditions. Quon [9]
investigated the mechanism of spontaneous, abrupt changes in thermohaline circulation
in an idealized context, by using a two-dimensional Boussinesq fluid in rectangular con-
tainers with Rayleigh number up to 105.

The double-diffusive convection is a strong nonlinear coupled process, which con-
tains the steady flow, the periodic flow, the quasi-periodic flow, the chaos, and even the
turbulence. A similar problem, i.e., a lid-driven square cavity flow, has already been in-
vestigated for decades. Garcia [12] has proposed a comprehensive long term dynamic
behavior of such problem. He observed that for low Reynolds numbers, the solution was
stationary. For moderate Reynolds numbers, it was time periodic; and for high Reynolds
numbers, the solution was neither stationary nor time periodic: the solution becomes
chaotic. Some relevant papers about this topic can also be found in [12]. Tsitverblit
and Kit [13] reported that a vertical rectangular enclosure was characterized by com-
plex steady bifurcation phenomena, containing stably stratified brine and differentially
heated from its side walls. Nishimura [11] has studied the Hopf bifurcation with vari-
ous values of N by using the Galerkin finite element method. He claimed that the key
mechanism for the oscillatory flow was that the unstable stratified region of species shifts
from the central part of the enclosure to the upper and lower parts and vice versa in a
time-periodic sense, due to the interaction of heat and mass transfer with different dif-
fusivities near the vertical walls. Recently, Papanicolaou and Belessiotis [14] reported
that the unsteadiness in the laminar-flow regime is due to interactions between the main
flow cells affecting the bulk of the enclosure, whereas in the turbulent flow regime due
to thermal release and motion along the bottom surface through studying the double-
diffusive natural convection in an asymmetric trapezoidal enclosure. Masuda et al. [15]
reported three types of peculiar oscillating convection in porous medium, called chaotic
oscillations, sudden steady state and re-oscillation in their paper.

The DNS of double-diffusive convection problem has attracted considerable atten-
tions. The rapid development of computing techniques provided powerful capacity to
anatomize such complex problems, especially the complicate transition [9, 11, 14, 15] in
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the flow. Even the flow in a simple geometry aspect, square or rectangular, requires a
great deal of computer efforts to solve the strong nonlinear coupled system. Therefore,
it is extremely important to design highly efficient numerical algorithms. At present,
many numerical methods have been developed and applied to solve such flow prob-
lems based on finite difference, finite volume and finite element methods. The finite vol-
ume method and the finite element method with good conservation property have been
used extensively, although accuracies are lower. The finite difference method has been
extensively adopted in DNS for flow problems, such as boundary layer transition, com-
pressible turbulence, multi-physics and multi-scale flow. The process of double-diffusive
convection also includes multi-scale structures, or chaotic behaviors, which needs high
order schemes to grasp as much as its minutia. Based on these requirements, high-order
and high-resolution upwind compact finite difference schemes were constructed, which
will be applied in the present numerical investigation.

As a basic factor of the flow in enclosure, the effects of aspect ratio A have been
studied by many researches [9–11, 16–18]. Most researches choose A≤ 2, and a few for
A≥4 [14]. So it is interesting to investigate the flow characteristics, especially the transi-
tion, in the enclosure for A=4. In the present paper, the buoyancy ratio, N, is varied for
the rectangular enclosure of A = 4 while other parameters are kept constant (RaT = 105,
Pr=1, Le=2). The detailed meanings of these parameters can be found in [9, 11].

This paper is organized as follows: In Section 2, the physical modeling, governing
equations, boundary conditions and dimensionless parameters are introduced. In Sec-
tion 3, a new method of finite difference discretization is described, together with high
efficiency segregated solution algorithm. In Section 4, the results of the numerical sim-
ulations are reported, including the time-velocity histories, Fourier frequency spectrum
and phase-space trajectories for N increasing from 0 to 1.

2 Problem formulation

The physical system consists of a rectangular enclosure as shown in Fig. 1. The top and
bottom of the enclosure are considered to be adiabatic and impermeable to mass transfer.
Moreover, uniform temperature and concentration differences are imposed across the
vertical walls, where the thermal buoyancy force retards the compositional buoyancy
force, i.e., opposing to flow.

The media fulled in the enclosure is the same as that used in [11]. As illustrated in
Fig. 1, the left wall is a source, where the material and heat diffuse from the surface to-
wards the bulk fluid of binary mixture, while the other vertical wall is a sink, where the
material and heat diffuse from the bulk to the surface of the wall. The whole fluids in the
enclosure flow move from the source to the sink continuously. The buoyancy produced
by temperature difference force the fluid flow upwards. Meanwhile, the buoyancy pro-
duced by concentration difference force the fluids downwards, which is a set of complex
competitive system. To simplify the problem, the fluid is considered as incompressible
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Figure 1: Enclosure flow configuration, coordinates, and boundary conditions.

and Newtonian with negligible viscous dissipations. Thermophysical properties are as-
sumed to be independent and also Boussinesq approximation is utilized. According to
the work of Quon [9], the followings are introduced, 1) a Cartesian coordinate X =(x,y),
2) velocity vector V = (u,v), 3) the characteristics to non-dimensionalize the equations:
length scale L, the length of the enclosure, velocity scale U =(κTν)1/2/L, κT and ν being
respectively the thermal diffusivity and kinematic viscosity, (while define κC being the
coefficient of diffusivity for the concentration), time scale τ = L/U, and temperature and
concentration scales ∆T and ∆C, which are respectively the maximum temperature and
concentration difference in the enclosure. The governing equations that describe double-
diffusive convection in terms of the streamfunction ψ, vorticity ξ, temperature T and
concentration C, are given as follows

ψxx+ψyy =−ξ, (2.1)

ξt+(V ·∇)ξ = Pr∇2ξ+Pr·RaT(Tx−NCx), (2.2)

Tt+(V ·∇)T =∇2T, (2.3)

Ct+(V ·∇)C=∇2C/Le. (2.4)

The streamfunction and vorticity are defined as

u=ψy, v=−ψx, ξ =vx−uy. (2.5)
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The main dimensionless parameters are

Pr=ν/κT , the Prandtl number,

RaT = gβT△T ·L3/κTγ, the (thermal) Rayleigh number,

Le=κC/κT , the Lewis number,

N = βC△C/βT△T, the buoyancy ratio number,

which are based on the following equation of state

ρ=ρ0[1−βT(T−T0)+βC(C−C0)], (2.6)

where

βT =− 1

ρ0

∂ρ

∂T
|C0

, βC =− 1

ρ0

∂ρ

∂C
|T0

.

Here T0, C0 and ρ0 are reference temperature, concentration and density, respectively.
The boundary conditions are

y=0 and A : u=
∂v

∂x
=ψ=0, ξ =−∂2ψ

∂y2
,

∂T

∂y
=0,

∂C

∂y
=0,

x=0 :
∂u

∂y
=v=ψ=0, ξ =−∂2ψ

∂x2
, T =0.5, C=0.5,

x=1 :
∂u

∂y
=v=ψ=0, ξ =−∂2ψ

∂x2
, T =−0.5, C=−0.5.

3 Numerical method

3.1 The 7th-order upwind compact scheme (UDC7)

In this part, a new 7th-order upwind compact scheme is developed. Consider the follow-
ing model equation and its semi-discrete approximation

∂ f

∂t
+c

∂ f

∂x
=0, c=constant, (3.1)

∂ f j

∂t
+cFj =0, (3.2)

where Fj is an approximation of the first derivative
∂ f
∂x . Suppose the following relations

are satisfied between an unknown function f (x) and its first derivative F(x), on seven-
node uniform stencil x= xj+k, (k=−3,−2,−1,0,1,2,3),

a−3 f j−3+a−2 f j−2+a−1 f j−1+a0 f j +a1 f j+1+a2 f j+2+a3 f j+3

+△x(b−1Fj−1+a0Fj+a1Fj+1)=0. (3.3)
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The relations between the coefficients ak (k=−3,−2,−1,0,1,2,3) and bm (m=−1,0,1) are
derived by matching the Taylor series coefficients of various orders. The first unmatched
coefficient determines the formal truncation error. Finally, the following constraining
system is obtained















































a−3+a−2+a−1+a0+a1+a2+a3 =0,
(−3a−3−2a−2−a−1+a1+2a2+3a3)+(b−1+b0+b1)=0,
(32a−3+22a−2+a−1+a1+22a2+32a3)+2(−b−1+b1)=0,
(−33a−3−23a−2−a−1+a1+23a2+33a3)+3(b−1+b1)=0,
(34a−3+24a−2+a−1+a1+24a2+34a3)+4(−b−1+b1)=0,
(−35a−3−25a−2−a−1+a1+25a2+35a3)+5(b−1+b1)=0,
(36a−3+26a−2+a−1+a1+26a2+36a3)+6(−b−1+b1)=0,
(−37a−3−27a−2−a−1+a1+27a2+37a3)+7(b−1+b1)=0.

(3.4)

There are 10 unknowns with 8 equations. The following system of fundamental solutions
containing two solution vectors can be obtained:

{

λ1 =( 1
60 ,− 4

15 ,− 13
12 , 8

3 ,− 13
12 ,− 4

15 , 1
60 ,−1,0,1),

λ2 =(− 1
120 , 3

20 , 19
16 ,−1,− 3

8 , 1
20 ,− 1

240 , 3
4 ,1,0).

(3.5)

Therefore, any solution vector (a−3, a−2, a−1, a0, a1, a2, a3, b−1, b0, b1) of the system (3.4)
can be linearly expressed by the system of the fundamental solutions (3.5), and any solu-
tion vector can formulate a 7th-order compact scheme. With the requirement

b−1+b0+b1 =1, (3.6)

the following 7th-order upwind compact scheme with one free parameter, α, can be ob-
tained through linear combination of λ1 and λ2 as −αλ1+ 4

7 λ2:

−αFj+1+
4

7
Fj+(

3

7
+α)Fj−1

=
1

△x

[

(
1

210
+

α

60
) f j−3+(− 3

35
− 4α

15
) f j−2+(−19

28
− 13α

12
) f j−1

+(
4

7
+

8α

3
) f j+(

3

14
− 13α

12
) f j+1+(− 1

35
− 4α

15
) f j+2+(

1

420
+

α

60
) f j+3

]

. (3.7)

The principal term of the formal truncation error of (3.3) is

εtp =
−3−14α

5880
(△x)8.

With the initial condition
f (x,0)= eikx , (3.8)

Eq. (3.1) has exact solution

f (x,t)= eik(x−ct), (3.9)
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where i =
√
−1. With the same initial condition Eq. (3.8), one can obtain the solution of

Eq. (3.2) as

f (xj,t)= e−
kr
△x cteik(xj−c

ki
ω t). (3.10)

Corresponding to UDC7, the real and the imaginary parts of the modified wavenumber
are given by

ki(ω)=
AC+DB

C2+D2
, kr(ω)=

AD−BC

C2+D2
, (3.11)

respectively, where 0≤ω = k△x≤π is the wavenumber and

A=375sin(ω)+24sin(2ω)−sin(3ω),

B=−240−1120α+(3+14α)
[

65cos(ω)+16cos(2ω)−cos(3ω)
]

,

C=60(4+3cos(ω)), D=−60(3+14α)sin(ω).

With α=− 3
14 , we have kr(ω)=0 and εtp =0. Consequently, (3.7) is the 8th-order-accurate

symmetrical compact difference (SCD8) approximation. Suppose c>0 in (3.1). kr(ω) with
− 3

14 < α < 0 is positive and the scheme (3.2) is dissipative. The following simplest 7th-
order dissipative (or upwind) compact (UDC7) approximation can be obtained if α=0 is
taken

4

7
Fj+

3

7
Fj−1

=
1

△x

[ 1

210
f j−3−

3

35
f j−2−

19

28
f j−1+

4

7
f j+

3

14
f j+1−

1

35
f j+2+

1

420
f j+3

]

. (3.12)

Fig. 2 shows the numerical wavenumber for different compact upwind finite difference
schemes, in which UDC7, UDC5,UDC3 denote the present 7th-order, 5th-order [22] and
3rd-order [23] upwind compact schemes, respectively. It is observed that the present 7th-
order scheme has higher resolution. Moreover, Fig. 2(b) shows that UDC7 is a dissipative
scheme, which is helpful to depress high-wavenumber numerical oscillation. Therefore,
UDC7 is appropriate for discretizing the nonlinear convective terms in the governing
equations (2.1)-(2.4).

3.2 Discretization of governing equations

We will consider the streamfunction-vorticity formulation, which avoids solving the pres-
sure poisson equation. We first design high-order upwind compact schemes to approx-
imate the nonlinear terms. It is noticed that the governing equations (2.2)-(2.4) can be
written in a unified form:

∂ f

∂t
+u

∂ f

∂x
+v

∂ f

∂y
= a(

∂2 f

∂x2
+

∂2 f

∂y2
)+Q, (3.13)
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Figure 2: Modified wavenumber: (a) real part; (b) imaginary part.

where f can respectively denote vorticity, temperature, and concentration, and Q is the

source term. The term u
∂ f
∂x is computed by UDC7 in two cases. In the case of u > 0, the

term
∂ f
∂x is approximated by F+ with

4

7
F+

j +
3

7
F+

j−1

=
1

△x

[ 1

210
f j−3−

3

35
f j−2−

19

28
f j−1+

4

7
f j+

3

14
f j+1−

1

35
f j+2+

1

420
f j+3

]

, (3.14)

while in the case of u<0, the term
∂ f
∂x is approximated by F− with

3

7
F−

j+1+
4

7
F−

j

=
1

△x

[

− 1

420
f j−3+

1

35
f j−2−

3

14
f j−1−

4

7
f j+

19

28
f j+1+

3

35
f j+2−

1

210
f j+3

]

. (3.15)

The diffusive terms are discretized using the sixth-order-accurate symmetrical compact

difference (SCD6) [19]. Typically,
∂2 f
∂x2 , denoted by S, is discretized by

1

12
Sj−1+

5

6
Sj+

1

12
Sj+1 =

1

△x2

[

12( f j−1−2 f j + f j+1)+
3

4
( f j−2−2 f j + f j+2)

]

. (3.16)

Of course the SCD8 (for α=− 3
14 in (3.7)) can be used to approximate the diffusive terms,

which is regarded as a suitable substitution for SCD6 here.
Suppose all spacial derivatives in Eq. (3.13) are discretized. Then a semi-discretized

approximation for (3.13) is obtained

d f

dt
=L( f ). (3.17)
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A three-stage Runge-Kutta (R-K) method with third-order accuracy [20] is used to dis-
cretize the resulting ordinary differential equations:

f (1) = f n+△tL( f n),

f (2) =
3

4
f n +

1

4
f (1)+

1

4
△tL( f (1)), (3.18)

f n+1 =
1

3
f n +

2

3
f (2)+

2

3
△tL( f (2)),

where

L( f )≡−u
∂ f

∂x
−v

∂ f

∂y
+a(

∂2 f

∂x2
+

∂2 f

∂y2
)+Q. (3.19)

In the neighborhood of all boundaries, smooth transition from the high-order schemes
used in the interior of the computational domain to a third-order scheme for convection
terms and fourth-order scheme for viscous terms are utilized. However, this may affect
the overall accuracy slightly. In the present paper, UDC5 and UDC3 are employed for
approximating convection terms adjacent to the boundary. Furthermore, a fourth-order
nine-point compact finite difference scheme was employed for solving the Poisson equa-
tion (2.1). Some relevant schemes can be found in [24–27], where detailed derivation
of the steady incompressible Navier-Stokes equations with streamfunction-vorticity for-
mulation can be found. Moreover, some high-order biased difference schemes [19] were
used for approximation of boundary points, see also [21, 24–27].

We compared the present finite difference solutions with spectral solutions [28] and
finite element solutions [11] to confirm the numerical accuracy and efficiency. Table 1
compares some relevant results of dimensionless periodic of oscillation, τ0; stream func-
tion extremum, |ψmax| and |ψmin|, which indicate the strength of thermal and composi-
tional recirculations. The good agreement confirms the validation of present numerical
method and code.

Table 1: Comparison between the different numerical methods for RaT =105, Pr=1, Le=2, N=1, and A=2.

Finite difference method Finite element method Spectral method
(31×41) Present (31×41) [11] (40×80) [28]

τ0 0.0489 0.0497 0.0494
Max|ψmax| 26.9 26.7 26.8
Min|ψmax| 12.5 12.9 12.7
Max|ψmin| 5.67 5.76 5.52
Min|ψmin| 0.343 0.351 0.333

We also carried out grid refinement tests. A typical case with RaT =105, Pr=1, Le=2,
N = 0.8, and A = 4 was computed with grids 16×61, 31×121 and 61×241, respectively.
The test results of mean Nusselt number

Nu=
1

A

∫ A

0
(

∂T

∂x
)x=0dy (3.20)
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and the mean Sherwood number

Sh=
1

A

∫ A

0
(

∂C

∂x
)x=0dy (3.21)

along the hot (high concentration) wall, maximum velocities umax and vmax, the ψmax

and ψmin in the whole fields are listed in Table 2. The solution on the mesh 31×121 is
very close to the ones obtained on the finest mesh 61×241. It is believed that the mesh
31×121 is appropriate in the present computations. Since the CPU time for computing
the enclosure on the 61×241 grids is more than 4 times of that for the 31×121 grids and
the study on the complex transition requires very large computational efforts, we then
adopt the 31×121 mesh system in the present investigation. Time steps of the order of
10−5 were used.

Table 2: Grid-dependence of double-diffusive convection for RaT =105, Pr=1, Le=2, N =0.8, and A=4.

grid Nu Sh umax vmax ψmax ψmin

16×61 2.9522 2.4783 47.2096 128.6440 0.00001 -33.9940
31×121 2.8157 2.7097 47.8136 126.8233 0.00310 -33.4439
61×241 2.8290 2.7749 48.1120 127.1935 0.00419 -33.5561

4 Numerical results

In this paper, the buoyancy ratio N, is varied for the rectangular enclosure of A=4 while
other parameters are kept constant, i.e., RaT =105, Pr=1 and Le=2. The detailed analysis
for the thermophysics can be found in [11, 29]. Some useful results and irradiative phe-
nomena are mainly presented through numerical simulations. The time-evolution of the
velocity, the Fourier frequency spectrum analysis and the phase trajectory on u-v plane
are shown at a fixed point (x,y)= (0.25,1) of the enclosure. All of the possible flow pat-
terns include the steady flow, the strictly periodic flow, the quasi-periodic flow and the
chaotic flow.

In our simulation, the buoyancy ratio N grows form 0 to 1 with a stepsize △N, and
there are two kinds of △N in computation. The first one is coarse step, △N = 0.02, and
the second one is fine step, △N =0.002. The coarse step is used firstly. If the flow pattern
changes rapidly within △N, more computations are added by using finer △N to decide
a relatively exact transition point. The computation starts from zero initial fields for each
buoyancy ratio; in other words, it is independent between different buoyancy ratio. In
[11], the previous solution was used to initiate the computation of the next buoyancy
ratio.
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Figure 3: Computed enclosure flow at N = 0.86. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.

4.1 Transition process

It is found that the steady thermal-dominated flow becomes unstable via a supercritical
Hopf bifurcation and changes to the periodic flow when N exceeds a threshold value. It is
difficult to estimate the exact critical value of N for the underlying physical problems by
numerical calculations because there exist many factors to limit this task. But a relatively
small region is estimated, in which the critical N lie. Table 3 lists six critical buoyancy
ratios and its approximate range in the interval [0,1] obtained by the present DNS. These
six values divide the interval [0,1] into seven subintervals in which new flow patterns
have been observed.

Table 3: The approximate position of six critical buoyancy ratio for N∈ [0,1].

N1 N11 N12 N13 N14 N15

(0.856,0.858) (0.869,0.87) (0.942,0.944) (0.962,0.964) (0.966,0.968) (0.970,0.972)

It is observed that the flow is steady for N∈(0,N1). It is noted that the first Hopf bifur-
cation appears when N≥N1, and the periodic flow sustains for N∈(N1,N11). For clear vi-
sualization of the periodic flow at this interval, the time-evolution of the velocity compo-
nents u and v, the phase trajectory on the u-v plane, and the Fourier frequency spectrum
analysis to identify the fundamental frequency (FF) are shown in Fig. 3. Two conclusions
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can be drawn from Fig. 3. The first is the appearance of a simple self-sustained oscilla-
tion, i.e., the sinusoidal behavior, with the FF equal to about 24.033. The second is that the
fluctuation of u (or v) is quite small (of order of 10−4), which is because the main struc-
ture in the cavity is unchangeable except the periodical variation of small eddies near
the top left corner and bottom right corner. As N increases, the self-sustained oscillatory
flow with increasing oscillatory amplitudes and decreasing oscillatory FF are obtained.
Fig. 4 shows the change of amplitude parameter Amp vs N, where Amp is defined as
Amp = max[u(t)]−min[u(t)], where max[u(t)] and min[u(t)] denote the maximum and
the minimum values of u(t), respectively.

When N reaches 0.87, the amplitude has a sudden change as observed in Fig. 4, which
means a new flow pattern appears in the flow fields. There appear new FFs in the flow
fields, which are about FF = 23.876, FF2 = 47.752 (the double FF) and FF3 = 71.628 (the
triple FF). With N increase to 0.88, a new FF, FF4 (quadruplex FF), appears which corre-
sponds to FF =23.040 except for FF2, FF3, which can be found in Fig. 6. Meanwhile the
trajectory in phase space also changes to different flow patterns. Such flow patterns cover
the range of buoyancy ratio from N11 to N12. Table 4 with checkmarks denotes existence
of multiple FFs for different values of N. It can be found that the values of FF decrease
gradually but slowly for 0.86≤N≤1. However, no more higher harmonics were observed
in the interval (N11,N12). Fig. 5 shows that the values of FF decrease with increasing N
in the interval (N1,N12).

A new flow pattern, chaotic flow, appears in the enclosure for N ∈ (N12,N13). Fig. 7
shows that there exists an obvious FF, which coexists with the subharmonics and high
harmonics and many background noises. The frequency spectrum characteristic demon-
strates that the flow is a kind of chaotic motion. Fig. 4 indicates that the amplitude of
velocity u reaches the maximum value in this case.

Fig. 4 also shows that the amplitude decrease quickly for N > N13, which indicates
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Figure 6: Computed enclosure flow at N = 0.88. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.
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Figure 7: Computed enclosure flow at N = 0.944. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.
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Table 4: Fundamental frequency and its multiple frequencies for N with periodical motion, FF, FF2, FF3, FF4,
FF5, FF6 denote respectively, fundamental frequency, double FF, triple FF, quadruplex FF, quintuple FF and
sextuple FF.

N FF FF2 FF3 FF4 FF5 FF6

0.86 24.033 - - - - -
0.87 23.876 X X - - -
0.88 23.040 X X X - -
0.89 22.883 X X X - -
0.90 22.462 X X X - -
0.92 21.187 X X X - -
0.94 19.761 X X X - -

0.964 16.154 X X X - -
0.966 19.761 X X X - -
0.972 19.271 X X X - -
0.976 19.340 X X X X -
0.98 19.415 X X X X -
1.0 19.453 X X X X X

that the flow pattern returns to the periodic flow in enclosure. It is necessary to point out
that the flow is periodic when N∈(N13,N14) as the buoyancy increases. This seems quite
strange, because the translation of the flow pattern is rapid within a very small interval.
Fig. 8(a) shows that the time-evolution of the velocity components u and v is more com-
plicated than that in N ∈ (N11,N12). Fig. 8(b) reveals that there exist subharmonics and
higher multiple FF in the flow, while Fig. 8(c) indicates that the flow is periodical.

Now increase N further. The flow turns into a new pattern, i.e., quasi-periodic mo-
tion, for N∈(N14,N15). Fig. 9 shows some details of such motion. With increasing values
of N, the flow return to the periodic flow with addition of a new FF, FF5 (quintuple FF) for
N∈ (N15,1). Fig. 10 demonstrates such typical flow structure. The values of FF and Amp

of u variable can be found separately in Table 4 and Fig. 4, which indicate that the values
of FF and the amplitude increase with increasing N in this interval. Fig. 11(b) shows that
a new FF, FF6 (sextuple FF) adds to the flow, which indicates that the flow pattern has a
significant change. Fig. 11(c) shows that the phase-space trajectories are also obviously
different from the former ones.

The general trend of the value of FF in the interval (N1,1) decreases firstly and then
increases slightly according to Fig. 5 and Table 4, which is as same as the trend of Amp of
u. Table 4 presents the value of FF for different N and its multiple frequencies within the
periodical flow region. It is found that when N≤1, there appears sextuple FF, FF6, in the
flow except for FF, FF2, FF3, FF4, FF5. That is a typical process of period doubling. Except
for the high harmonics, there are subharmonics turning up in the flow when N = 0.964
as show in Fig. 8. Table 4 also indicates that the periods increase generally, vs N for the
periodic flow, except in the interval (N13,N14) where the periods appear a large jump.
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Figure 8: Computed enclosure flow at N = 0.964. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.
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Figure 9: Computed enclosure flow at N = 0.970. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.
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Figure 10: Computed enclosure flow at N = 0.980. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.
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Figure 11: Computed enclosure flow at N = 1.0. (a) u and v as a function of time; (b) Fourier frequency
spectrum of the u velocity; (c) phase-space trajectories of v vs. u.
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Figure 12: A schematic description about the complex transition in the enclosure flow.
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Figure 13: Bifurcation diagrams of thermal and compositional recirculations.

To have a better understanding of such complex transition structure, Fig. 12 demon-
strates a schematic description. Fig. 13 illustrates the bifurcation diagrams of the ther-
mal and compositional recirculations. The curls in the plots are not so smooth for N ∈
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Figure 14: Time history of streamline contours for N = 0.87. Solid lines: counter-clockwise; dashed lines:
clockwise.

(N12,N13) where the chaos dominated the enclosure. Such fluctuation indicates the rapid
changes in the flow with increasing buoyancy.

As Quon [9] pointed out that the temperature and concentration effect tend to coun-
teract for N ∈ (0,1) and N ∈ (1,2) only when the Lewis number Le = 1 and the Rayleigh
number is sufficiently small. Although L=2 in the present paper, the flow pattern should
be in some degree similar in the intervals (0,1) and (1,2). It will be interesting to further
study the problem for N∈ (1,2). This remains to be a future research topic.

4.2 Fields structure of periodic flow

In this part, the flow structure of the periodic flow is investigated. Fig. 14 shows that
there is only a large primary vortex in the middle part of the enclosure and two small
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Figure 15: Time history of streamline contours for N = 0.98. Solid lines: counter-clockwise; dashed lines:
clockwise.

secondary vortexes respectively in top left corner and bottom right corner. Fig. 14(a) to
(k) (or (b) to (l)) demonstrate a complete periodic evolution. The non-dimensional time
interval is 0.00419. Fig. 14(k) and (l) are similar to (a) and (b), respectively. The changes of
the flow fields mainly come from the two secondary vortex with time advancing, while
the primary vortex only changes slightly.

However, if N=0.98, the flow structure turns into very complex. Fig. 15 indicates that
the flow pattern turns into multi-vortex structure. Fig. 15(a) to (k) (or (b) to (l)) demon-
strate a completed periodic evolution. The non-dimensional time interval is 0.00515.
Fig. 15(k) and (l) are similar to (a) and (b), respectively. Two primary vortexes have re-
markable change as well as small vortexes appearing in the top, bottom and middle part
of the enclosure. So there exist multi-scale and multi-frequency oscillation motion in the
enclosure.
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In addition, the flow fields are symmetrical in the spatial structure in the above two
cases. As for comparison, if the flow are quasi-periodic and chaotic, the flow fields be-
come asymmetrical.

5 Conclusions

The transition process is studied numerically in a rectangular enclosure subject to the
opposing horizontal thermal and compositional buoyancy.

• Firstly, there exist multi flow patterns in the rectangular enclosure with A = 4 for
0≤N≤1, RaT =105, Pr =1 and Le=2. The flow structure can be steady, periodic, quasi-
periodic and chaotic.

• Secondly, the present transition contains five processes: 1) the steady flow to the
periodic flow via supercritical Hopf bifurcation; 2) the periodic flow to the chaos via a
series of period doubling; 3) the chaos back to the periodic flow; 4) the periodic flow to
the quasi-periodic flow; 5) the quasi-periodic flow back to the periodic flow.

This complex flow is a result of a strong nonlinear system with multi-procedure cou-
pling and multi-physics modeling.
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