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Abstract. This paper proposes a new technique to speed up the computation of the
matrix of spectral collocation discretizations of surface single and double layer oper-
ators over a spheroid. The layer densities are approximated by a spectral expansion
of spherical harmonics and the spectral collocation method is then used to solve sur-
face integral equations of potential problems in a spheroid. With the proposed tech-
nique, the computation cost of collocation matrix entries is reduced from O(M2N4) to
O(MN4), where N2 is the number of spherical harmonics (i.e., size of the matrix) and
M is the number of one-dimensional integration quadrature points. Numerical results
demonstrate the spectral accuracy of the method.
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1 Introduction

In this paper we consider a spectral collocation method for the surface integral equations
arising from three-dimensional potential problems

∫

S
µ(r)

1

|r′−r|dr= f (r′), (1.1)

∫

S
ρ(r)

∂

∂nr

(

1

|r′−r|

)

dr= g(r′), (1.2)
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where f and g are given, r,r′ ∈ S and S is the surface of a three-dimensional spheroid
defined by

S=

{

r=(x,y,z)
∣

∣

∣

x2+y2

R2
+

z2

L2
=1

}

. (1.3)

The surface is called a prolate spheroid if L > R, and an oblate spheroid if L < R, and if
L = R it is a sphere. In Eqs. (1.1) and (1.2), the unknown scalar functions µ(r) and ρ(r)
are called single and double layer density functions, respectively, and n is the unit inner
normal direction at a field point r on S. The potential problems arise from many fields
of physics and engineering [16] through boundary integral formulations of differential
equations of elliptic-type. In particular, in biological applications, spheroidal geometries
are often used to model some types of molecule in the study of electrostatics [7] and the
free energy [2].

There are many issues [5, 19] in accurate and efficient numerical approximations of
potential problems, including the choices of basis functions, the treatment of singulari-
ties and fast solvers for the resulting discrete algebraic systems. For problems defined on
a smooth boundary, it is natural to consider spectral methods [6, 18] due to its infinite-
order convergence, so-called the spectral convergence. The spectral methods have been
applied for numerical solutions of problems in spheroidal geometries, for example, in
geodesy and in global atmospheric models [9, 17], by using the spherical harmonics as
the basis functions. This is due to the fact that the spherical harmonics offer nice prop-
erties in approximating spherical functions with exponential convergence and the ease
in handling pole singularities [6]. For the boundary integral equations considered in this
paper, the spherical harmonics have been used by Atkinson [3,4], Graham and Sloan [12],
Chen [8], and Ganesh [10] to construct spectral methods for three-dimensional potential
problems. Also, double Fourier series have found applications in solving potential prob-
lems [11].

For spectral methods of surface integral equations, the calculation of collocation coef-
ficients (or Galerkin coefficients in Galerkin methods) remains one of the computational
challenges as numerical quadratures over the full boundary surface is required in calcu-
lating each entry of the coefficient matrix. For example, if N2 basis functions and M2-
point two-dimensional quadratures are used, the total operations of order O(M2N4) are
required to produce the coefficient matrix of a collocation method. Here M can become
large with the increase of basis function order N in order to maintain the high-frequency
information from the higher order basis functions. Even with relatively small N, the cost
can be still high. In this paper, we will propose a new technique which will reduce the
two-dimensional integral to one dimensional one. This is made possible by an analyti-
cal formula along the longitudinal direction for the spheroidal surface with the help of
a hypergeometric function. The hypergeometric function can be calculated fast even at
singular points thanks to linear transformation formulas. As a result, the complexity of
filling up the collocation matrix is then reduced to the order of O(MN4). With some gen-
eralization, this technique can be extended to boundary element methods and artificial
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boundary methods [13, 20] where the spheroidal boundary is usually adopted.
The rest of this paper is organized as follows. In Section 2, basis functions of spherical

harmonics are introduced. In Sections 3 and 4, we discuss the technique for fast calcula-
tions of the collocation coefficients for the single and double layer potentials, respectively.
In Section 5, the treatment of singularities is discussed. Numerical test examples are then
performed in Section 6 with conclusions given in Section 7.

2 Spectral approximations in spherical coordinates

Let us consider Eq. (1.1) with a spherical coordinate representation for the spheroidal
surface,

r=(x,y,z)=(Rcosφsinθ,Rsinφsinθ,Lcosθ), (2.1)

where θ and φ represent latitude and longitude of the surface with 0≤θ≤π and 0≤φ<2π.
It is noted that the Jacobian of the coordinate transformation between the Cartesian and
spherical coordinates is a function only of variable θ,

J(θ)= |rφ×rθ|=
√

(LR)2sin4θ+R4sin2θcos2θ. (2.2)

Eq. (1.1) can then be re-written as a two-dimensional integral as follows:

∫ 2π

0

∫ π

0

µ(r)

|r′−r| J(θ)dθdφ= f (θ′ ,φ′). (2.3)

The grid collocation points along the longitudinal and latitudinal directions are selected
as

φl =
2πl

N+1
, and θj =

π(2j−1)

2(N+1)
, for l, j=0,··· ,N, (2.4)

and (N+1)2 is the total number of collocation points, and N is chosen to be an even
integer.

A standard finite dimensional orthogonal basis over a spherical surface is the (N+1)2

spherical harmonics,

Ym
n (θ,φ)=

√

2n+1

4π

(n−|m|)!

(n+|m|)!
P
|m|
n (cosθ)eimφ, (2.5)

for −n≤m≤ n and 0≤ n≤ N, where Pm
n are the associate Legendre functions of degree

n and order m, and i the imaginary unit. The associate Legendre polynomials can be
defined by the Rodrigue’s formula

Pm
n (x)=(−1)m(1−x2)m/2 dm

dxm
Pn(x), (2.6)

where Pn(x) is the ordinary Legendre polynomial of degree n.
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For a given basis, a function defined on the surface of the sphere can be approximated
by a linear combination of the basis functions as

µ(θ,φ)≈
N

∑
n=0

n

∑
m=−n

µm
n Ym

n (θ,φ), (2.7)

in which µm
n are constant coefficients, and the total number of the basis functions is

(N+1)2. If the function µ(θ,φ) is infinitely differentiable, then it can be proved that the
approximation is spectrally convergent [17].

Although Galerkin-type methods have been studied more thoroughly, we will adopt
a collocation method for its ease of implementation and simpler filling of the discretiza-
tion matrix. With the (N+1)2 collocation points in (2.4), the spectral collocation method
for the single layer surface integral equation yields the following linear system for the
unknowns µm

n ,
N

∑
n=0

n

∑
m=−n

Am
n µm

n = f (θj,φl), (2.8)

with j,l =0,··· ,N, where the collocation coefficients are

Am
n (θj,φl)=

∫ 2π

0

∫ π

0

Ym
n (θ,φ)J(θ)

|rjl−r| dθdφ. (2.9)

After numerically approximating the integrals of coefficients with quadratures over the
spheroid surface, the linear algebraic system can be solved through the Gauss elimination
direct solver or other iterative solvers.

3 Fast calculations of the collocation coefficients Am
n

An important issue for the spectral collocation is how to evaluate the collocation ma-
trix entry Am

n accurately and efficiently. Naively, a 2M-trapezoidal rule in φ and an M-
Gaussian quadrature in θ will require O(M2) operations for the calculation of each entry.
In this section we will first cast the integral (2.9) analytically with a special function along
the latitudinal direction such that the complexity is reduced to O(M). For this purpose,
let us write the distance between the field point and the collocation point as

|r−rjl |

=
√

R2(cosφsinθ−cosφl sinθj)2+R2(sinφsinθ−sinφl sinθj)2+L2(cosθ−cosθj)2

=
√

[R2(sin2 θ+sin2θj)+L2(cosθ−cosθj)2]−2R2sinθsinθj cos(φ−φl)

=
√

a(θ)
√

1+b(θ)cos(φ−φl), (3.1)
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Figure 1: Illustration of formula (3.6) for m=0,··· ,4. The integral is singular at b=±1.

where a(θ) and b(θ) are defined by

a(θ)= R2(sin2 θ+sin2θj)+L2(cosθ−cosθj)
2, (3.2a)

b(θ)=−2R2sinθsinθj/a(θ). (3.2b)

Re-arranging integrations in (2.9), we reach

Am
n (θj,φl)=

∫ π

0

Θm
n (θ)J(θ)
√

a(θ)

∫ 2π

0

eimφ

√

1+b(θ)cos(φ−φl)
dφdθ, (3.3)

with

Θm
n (θ)=

√

2n+1

4π

(n−|m|)!

(n+|m|)!
P
|m|
n (cosθ). (3.4)

Noticing that the functions of φ are 2π-periodic and using the oddness of function sinmφ,
we have

∫ 2π

0

eimφ

√

1+b(θ)cos(φ−φl)
dφ= eimφl

∫ 2π

0

cosmφ
√

1+b(θ)cosφ
dφ. (3.5)

The remaining step is to compute the integration on the right hand side (see Fig. 1),
which can be done with the following Theorem 3.1. Let us first recall the generalized
hypergeometric function 2F1(α,β;γ;x) defined by

2F1(α,β;γ;x)=
∞

∑
k=0

(α)k(β)k

(γ)k

xk

k!
,

with (α)k =α(α+1)···(α+k−1) being the rising factorial, and we have
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Theorem 3.1. For b satisfying |b|<1, we then have

∫ 2π

0

cosmφ
√

1+bcosφ
dφ=

21−2m(−b)mπ(2m−1)!!

m!
2F1

(

2m+1

4
,
2m+3

4
;m+1;b2

)

. (3.6)

Proof. Due to |b|<1, we have the Taylor series expansion

1
√

1+bcosφ
=

∞

∑
k=0

(

−1

4

)k (2k)!

(k!)2
(bcosφ)k. (3.7)

We can write the integral as

I =
∞

∑
k=0

(

− b

4

)k (2k)!

(k!)2

∫ 2π

0
cosmφcosk φdφ. (3.8)

Since

∫ 2π

0
cosmφcosk φdφ=

{

21−k( k
k−m

2
)π, for 0≤m≤ k, and (k−m mod2)=0,

0, otherwise.
(3.9)

The integral becomes

I =
∞

∑
i=0

(

− b

4

)m+2i(m+2i

i

)

21−m−2iπ(2m+4i)!

[(m+2i)!]2

=
21−2m(−b)mπ(2m−1)!!

m!
2F1

(

2m+1

4
,
2m+3

4
;m+1;b2

)

. (3.10)

This completes the proof.

Therefore, we obtain from Eqs. (3.3)-(3.6) the following method to compute the collo-
cation coefficients:

Am
n (θj,φl)

=
21−2mπ(2m−1)!!eimφl

m!

∫ π

0

Θm
n (θ)J(θ)(−b)m

√
a

2F1

(

2m+1

4
,
2m+3

4
;m+1;b2

)

dθ, (3.11)

where a,b and J are functions of θ defined in Eq. (3.2) and Eq. (2.2), respectively.

Remark 3.1. The objective of Theorem 3.1 is to express the integral in the form of a series
which can be identified with the hypergeometric special function. The calculation of the
series is convenient due to its geometric convergence and can be done by an efficient
algorithm. Table 1 contains the required truncations of the hypergeometric series for a
10−6 error tolerance. Even if the parameter b is close to the singularity, for example b≥
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Table 1: Truncation terms of the hypergeometric series 2F1(
2m+1

4 , 2m+3
4 ;m+1;b2) needed for a 1×10−6 error

tolerance for varying b and m=0,··· ,7. For large b, the series can be approximated by the linear transformation
formulas.

b m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7
0.1 3 3 3 3 4 4 4 4
0.3 5 5 6 6 6 6 7 7
0.5 8 9 9 10 10 11 11 11
0.7 14 16 17 18 19 20 21 22
0.9 41 47 51 55 59 62 65 68

0.9, the hypergeometric function can be evaluated by the following linear transformation
formulas [1] (pp. 559):

2F1(α,β;α+β;x)

=
Γ(α+β)

Γ(α)Γ(β)

∞

∑
n=0

(α)n(β)n

(n!)2

[

2ψ(n+1)−ψ(α+n)−ψ(β+n)−log(1−x)
]

(1−x)n,

where ψ(z) is the logarithmic derivative of the Gamma function Γ,

ψ(z)=
d[logΓ(z)]

dz
=

Γ′(z)

Γ(z)
.

Furthermore, for m=1,2,··· , the following linear transformation formulas will be used in
the double layer potential in the next section:

2F1(α,β;α+β−m;x)=
Γ(m)Γ(α+β−m)

Γ(α)Γ(β)
(−x)−m

m−1

∑
n=0

(α−m)n(β−m)n

n!(1−m)n
(1−x)n

+
(−1)mΓ(α+β−m)

Γ(α−m)Γ(β−m)

∞

∑
n=0

(α)n(β)n

n!(n+m)!

[

ψ(n+1)+ψ(n+m+1)

−ψ(α+n)−ψ(β+n)−log(1−x)
]

(1−x)n.

Remark 3.2. Once the two-dimensional integral is reduced to a one-dimensional one, the
singularity of the potential function is easier to treat. Actually, the induced hypergeomet-
ric function is a logarithmic singularity, which can be separated from the integrand (to be
discussed in Section 5).

4 Double layer potential

Extension to the double layer potential problem is straightforward with some more in-
volved manipulations. First note that

∂

∂nr

(

1

|rjl−r|

)

=nr ·∇
(

1

|rjl−r|

)

=nr ·
(

r−rjl

|rjl−r|3
)

, (4.1)
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and, for the surface of the spheroid defined by (1.3), the unit normal direction inward S
is

nr =− rφ×rθ

|rφ×rθ |
=

(Lcosφsinθ,Lsinφsinθ,Rcosθ)
√

L2sin2θ+R2cos2θ
. (4.2)

Using the spherical coordinate representations of r and rjl yields

nr ·(r−rjl)=
LR[1−cosθcosθj−sinθsinθj cos(φ−φl)]

√

L2sin2θ+R2cos2θ
; (4.3)

thus,

∂

∂nr

(

1

|rjl−r|

)

=
LR(1−cosθcosθj)−LRsinθsinθj cos(φ−φl)

a(θ)3/2[1+b(θ)cos(φ−φl)]3/2
√

L2sin2θ+R2cos2 θ

=
1

a(θ)3/2
√

L2sin2θ+R2cos2 θ

A(θ)+B(θ)cos(φ−φl)

[1+b(θ)cos(φ−φl)]3/2
, (4.4)

where a(θ) and b(θ) is the same as in the definition for the single layer potential, and
A(θ) and B(θ) are defined by

A(θ)= LR(1−cosθcosθj), (4.5a)

B(θ)=−LRsinθsinθj. (4.5b)

Particularly, if the spheroid is a sphere L= R, then a=2A and b = B/A, Eq. (4.4) reduces
to a single layer kernel.

As in the case of the single layer potential, we need to do an analytical integration to
reduce the complexity of the two dimensional integrals.

For

I I =
∫ 2π

0

cosmφ[A(θ)+B(θ)cosφ]

[1+b(θ)cosφ]3/2
dφ (4.6)

for |b|<1, we have the following identities.

Theorem 4.1. If |b|<1, then

∫ 2π

0

cosmφ

(1+bcosφ)3/2
dφ=

22−m(−b)m
√

πΓ( 3
2 +m)

Γ(m+1)
2F1

(

2m+3

4
,
2m+5

4
;m+1;b2

)

, (4.7)

and, furthermore, for m≥1,

∫ 2π

0

cosmφcosφ

(1+bcosφ)3/2
dφ=21−m(−b)m−1

√
π

{

2Γ(m+ 1
2)

Γ(m)
2F1(

2m+1

4
,
2m+3

4
;m+1;b2)

+
b2Γ(m+ 5

2)

Γ(m+2)
2F1

(

2m+5

4
,
2m+7

4
;m+2;b2

)

}

. (4.8)

The proof is similar to that of Theorem 3.1 by using the Taylor series expansion, thus
omitted.
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5 Quadrature for singular functions

Finally, we are ready to evaluate the two dimensional integral in the definition for the
collocation coefficient Am

n . Note that the integral of φ was done by the analytical formula
above, which leaves us just one-dimensional singular integrals to handle. We rewrite Am

n

in the form of

I(G)=
∫ π

0
G(θ)dθ. (5.1)

Note that b(θ) →−1 as θ → θj. For the single layer potential problem we have a
logarithmic singularity due to the following fact that

lim
b→−1

1

log(1+b)

∫ 2π

0

cosmφ
√

1+bcosφ
dφ=−21−2mπ(2m−1)!!Γ(m+1)

m!Γ( 2m+1
4 )Γ( 2m+3

4 )
. (5.2)

Similarly, for the double layer potential, we have

lim
θ→θj

1

log(1+b(θ))

∫ 2π

0

cosmφ[A(θ)+B(θ)cosφ]

[1+b(θ)cosφ]3/2
dφ

= LRsin2 θj lim
b→−1

1

log(1+b)

∫ 2π

0

cosmφ
√

1+bcosφ
dφ. (5.3)

Therefore, the integrals in both the single and double layer potential problems have
logarithmic singularities when b tends to 1 (i.e., when θ approaches to θj), which can then
be treated by a simple singularity substraction technique. Assuming

lim
θ→θj

G(θ)

log(|θ−θj|)
=G(θj), (5.4)

then we can write I(G) into the following form

I(G)=
∫ π

0

[

G(θ)−G(θj)log(|θ−θj|)
]

dθ+G(θj)
∫ π

0
log(|θ−θj |)dθ. (5.5)

Here the second term can be integrated analytically as

G(θj)
∫ π

0
log(|θ−θj|)dθ =G(θj)[−π+θj logθj+(π−θj)log(π−θj)]. (5.6)

As for the first term, because the integrand becomes zero at the point θj, it is an integral
without singularity and can be then approximated accurately by Gaussian quadratures.
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6 Numerical examples

6.1 Single and double layer potentials

To test the method, we first consider the Dirichlet problem of the Laplace equation inside
a spheroid,

∆u(r)=0, r∈Ω, (6.1)

u(r)= f (r), when r∈S=∂Ω. (6.2)

The solution of this problem can be expressed either as a single layer potential

u(r′)=
1

4π

∫

S

µ(r)

|r−r′ |dr, r′∈Ω, (6.3)

or as a double layer potential

u(r′)=
∫

S
ρ(r)

∂

∂nr

(

1

|r′−r|

)

dr, r′∈Ω. (6.4)

The density functions µ(r) and ρ(r) are then determined by letting r′ tend to the surface
to yield the following surface integral equations

1

4π

∫

S

µ(r)

|r−r′|dr= f (r′), r′∈S, (6.5)

and

2πρ(r′)+
∫

S
ρ(r)

∂

∂nr

(

1

|r′−r|

)

dr= f (r′), r′∈S, (6.6)

for the single and double layer potentials, respectively.

To test the performance, we use two analytical solutions of the Laplace equation

u(r)= x, r=(x,y,z), (6.7)

and

u(r)=
1

ep
(epx cos py+epz sinpz), for p=1,2, (6.8)

and the surface S defined by (1.3) with L = 1.5 and R = 1. In Tables 2-4, The errors for
different number of basis functions are listed. The (N+1)2 one-dimensional collocation
coefficients are calculated using a 64-th order Gaussian quadrature. Exponential conver-
gence can be observed from the results, and the single layer problem does have a smaller
error than the double layer one.
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Table 2: Errors |u−uN| at eight points inside the spheroid for the analytical solution u(r)= x.

Single layer potential Double layer potential
x y z N =4 N =8 N =16 N =4 N =8 N =16

0.000 0.000 0.000 1.03e-16 3.46e-16 3.76e-16 1.73e-16 7.19e-17 6.75e-16
0.025 0.018 0.143 2.97e-03 4.09e-04 2.00e-07 3.76e-03 2.90e-03 4.11e-06
0.036 0.112 0.243 4.21e-03 5.70e-04 3.14e-07 5.36e-03 4.08e-03 3.44e-06
-0.075 0.231 0.265 8.86e-03 1.17e-03 6.22e-07 1.12e-02 8.43e-03 7.70e-06
-0.308 0.224 0.185 3.47e-02 5.15e-03 2.26e-06 4.38e-02 3.64e-02 7.08e-05
-0.500 0.000 0.000 7.18e-02 9.09e-03 3.76e-06 8.96e-02 6.31e-02 1.27e-04
-0.175 -0.539 -0.617 2.10e-02 1.70e-03 1.16e-06 2.84e-02 1.36e-02 8.94e-05
0.145 -0.447 -0.971 6.00e-03 6.45e-04 1.24e-05 9.74e-03 5.60e-03 4.73e-04

Table 3: Errors |u−uN| at eight points inside the spheroid for the analytical solution u(r)= 1
e (ex cosy+ezsinz).

Single layer potential Double layer potential
x y z N =8 N =12 N =16 N =8 N =12 N =16

0.000 0.000 0.000 3.37e-08 1.03e-06 2.46e-08 7.71e-07 1.35e-06 1.61e-06
0.025 0.018 0.143 1.31e-03 7.09e-05 1.04e-07 4.26e-03 7.73e-03 1.84e-07
0.036 0.112 0.243 2.95e-03 7.79e-05 5.91e-07 5.36e-03 9.08e-03 1.48e-05
-0.075 0.231 0.265 1.24e-03 9.28e-05 2.67e-06 1.50e-02 2.82e-02 1.84e-04
-0.308 0.224 0.185 3.73e-02 7.04e-04 3.53e-06 5.08e-02 9.31e-02 2.39e-04
-0.500 0.000 0.000 8.93e-03 2.06e-03 2.42e-05 7.63e-02 1.22e-01 1.51e-03
-0.175 -0.539 -0.617 5.74e-02 1.43e-03 3.70e-05 3.56e-02 4.83e-02 1.37e-03
0.145 -0.447 -0.971 3.35e-03 5.24e-04 6.97e-06 6.23e-03 1.80e-03 9.44e-05

Table 4: Errors |u−uN| at eight points inside the spheroid for the analytical solution u(r) = 1
e2 (e2x cos2y+

e2z sin2z).

Single layer potential Double layer potential
x y z N =8 N =12 N =16 N =8 N =12 N =16

0.000 0.000 0.000 1.10e-04 4.71e-07 9.02e-09 1.10e-04 5.87e-07 5.93e-07
0.025 0.018 0.143 2.68e-02 2.70e-04 6.82e-07 5.44e-03 9.11e-03 3.49e-06
0.036 0.112 0.243 3.95e-02 2.94e-04 2.97e-06 7.19e-03 1.00e-02 3.69e-05
-0.075 0.231 0.265 6.46e-02 1.68e-04 1.73e-05 2.33e-02 3.30e-02 4.71e-04
-0.308 0.224 0.185 4.70e-01 2.60e-03 3.23e-06 7.13e-02 1.17e-01 4.89e-04
-0.500 0.000 0.000 1.59e-01 7.00e-03 1.08e-04 5.02e-02 1.06e-01 5.22e-03
-0.175 -0.539 -0.617 2.81e-01 7.54e-03 5.05e-04 1.03e-01 3.43e-02 4.48e-03
0.145 -0.447 -0.971 1.09e-02 3.65e-03 7.12e-05 3.04e-02 7.19e-04 4.37e-04

6.2 Solving boundary integral formulations for the Poisson equation

In the second example, we consider the following electrostatic problem: a unit point
charge is located at rs inside a spherical cavity Ω modeled as a uniform dielectric medium
with dielectric constant ǫi; the cavity is embedded into a homogeneous medium with
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dielectric constant ǫe. The potential satisfies the Poisson equation:

ǫi∆Φ=−δ(r−rs), r∈Ω. (6.9)

The potential is continuous across spherical boundary and the normal derivative has a
jump related to the ratio of the dielectric constant. Thus, we have boundary conditions:

Φi(r−)=Φe(r+), ǫi
∂Φi

∂r
(r−)=ǫe

∂Φe

∂r
(r+), (6.10)

where Φi and Φe are the potential functions inside and outside the cavity, and r− and r+

are inner and outer limits, respectively.
This model, being widely used in computing electrostatic contributions of solvation

free energy of biomolecules [15], can be transformed into boundary integral equations by
using the fundamental solution of the Poisson equation,

G(r,r′)=
1

4π|r−r′ | . (6.11)

Using the Green’s second theorem, we can obtain

φi(r)=
∮

∂Ω

[

G(r,r′)
∂Φi(r′)

∂n
− ∂G(r,r′)

∂n
Φi(r′)

]

dr′+
1

ǫi
G(r,rs), (6.12)

Φe(r)=
∮

∂Ω

[

−G(r,r′)
∂Φe(r′)

∂n
+

∂G(r,r′)
∂n

Φe(r′)
]

dr′ . (6.13)

When r approaches the surface S = ∂Ω, by using limiting properties of double-layer po-
tentials at boundary, the above two equations reduce to

1

2
Φi(r)=

∮

∂Ω

[

G(r,r′)
∂Φi(r′)

∂n
− ∂G(r,r′)

∂n
Φi(r′)

]

dr′+
1

ǫi
G(r,rs), (6.14)

1

2
Φi(r)=

∮

∂Ω

[

−G(r,r′)
ǫi

ǫe

∂Φi(r′)
∂n

+
∂G(r,r′)

∂n
Φi(r′)

]

dr′, (6.15)

for r∈S, where we have used the two boundary conditions.
We then solve the integral equations by the proposed method for the two unknowns

Φi(r) and ∂Φi(r)/∂n. A unit spherical cavity Ω is used, for which the analytical solution
is known by the Kirkwood series expansion [7,14] in terms of the Legendre polynomials.
In the calculations, we set ǫi = 2, ǫe = 80, and the charge position rs =(0,0,rs) for rs=0.4,
0.6, and 0.8. The one-dimensional collocation coefficients are again calculated using a
64-th order Gaussian quadrature. We compute the L2 relative errors of the solutions of
Φi(r), which are shown in Fig. 2. It can seen the results rapidly converge to the exact
solutions with the magnitude of the relative error around 10−5, illustrating the spectral
convergence of the proposed algorithm.
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Figure 2: Relative L2 errors for the potential problem of the Poisson equation for charge locations rs =0.4, 0.6
and 0.8.

7 Conclusions

A new technique was proposed to reduce the complexity of two dimensional surface sin-
gle and double layer potential integrals over a spheroid and as a result, a fast spectral
collocation method is obtained for the surface integral equations of potential problems in
a spheroid. Numerical results shows the spectral accuracy and efficiency of the colloca-
tion method.
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