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Abstract. In this paper we discuss the inverse scattering algorithm for predicting in-
ternal multiple reflections (reverberation artefacts), focusing our attention on the con-
struction mechanisms. Roughly speaking, the algorithm combines amplitude and
phase information of three different arrivals (sub-events) in the data set to predict one
multiple reflection. The three events are conditioned by a certain relation which re-
quires that their pseudo-depths, defined as the depths of their turning points relative
to the constant background velocity, satisfy a lower-higher-lower relationship. This
implicitly assumes a pseudo-depth monotonicity condition, i.e., the relation between
the actual depths and the pseudo-depths of any two sub-events is the same. We study
this relation in pseudo-depth and show that it is directly connected with a similar rela-
tion between the vertical or intercept times of the sub-events. The paper also provides
the first multidimensional analysis of the algorithm (for a vertically varying acoustic
model) with analytical data. We show that the construction of internal multiples is per-
formed in the plane waves domain and, as a consequence, the internal multiples with
headwaves sub-events are also predicted by the algorithm. Furthermore we analyze
the differences between the time monotonicity condition in vertical or intercept time
and total travel time and show a 2D example which satisfies the former but not the lat-
ter. Finally we discuss one case in which the monotonicity condition is not satisfied by
the sub-events of an internal multiple and discuss ways of lowering these restrictions
and of expanding the algorithm to address these types of multiples.
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1 Introduction

The inverse scattering series is presently the only multidimensional method for invert-
ing for the properties of an unknown medium without adequate information about that
medium. When the series converges it achieves full inversion given the whole data set
(including free surface reverberations and internal multiple reflections) and information
about a chosen reference medium. Carvalho [6] tested numerically the convergence prop-
erties of the full inverse scattering series and found that the series converges only for
limited contrast between the actual and the reference medium of choice. In the ’90’s, We-
glein and collaborators developed the subseries method (for a history and description
see [18]) which consists in identifying specific subseries in the full series, which perform
targeted tasks with better convergence properties than the whole series. These subseries
were imagined to be a sequence of steps, similar to the processing steps undertaken in
geophysical exploration, which would achieve

1. Free surface multiple elimination;

2. Internal multiple elimination;

3. Imaging in depth;

4. Inversion for the medium properties.

It is reasonable to assume, and experience showed this assumption to be true, that since
the full series only requires data and information about a reference medium to invert, the
same holds for any of the four specific subseries.

The inverse scattering series, and the subsequent task specific subseries, assume that
the input data satisfies several pre-requisites. First, it is assumed that the source sig-
nature or wavelet has been deconvolved from the data. Second, both the source and
receiver ghosts (the part of the wavefield which travels from the source to the free sur-
face and from the free surface to the receiver) have been eliminated from the collected
data. Third, the collected data itself has an appropriate sampling or the data reconstruc-
tion algorithms are able to improve the acquisition sampling to an appropriate degree.
When these prerequisites are not satisfied, the algorithms derived from this method will
reach incorrect conclusions/results, e.g., false or no prediction of free-surface and inter-
nal multiples, incorrect location of subsurface structures, errors in parameter estimation.
Last but not least we mention that the algorithms are derived from a point-source point-
receiver wave theory approach and any deviations from that, e.g., source and receiver
arrays, would have to be studied to understand how they affect the algorithms.

In 1994, Araujo [2] identified the first term in the subseries for internal multiple elim-
ination (see also [17]). This first term by itself exactly predicts the time of arrival, or
phase, and well approximates the amplitude of internal multiples, without being larger
than the actual amplitude, and hence it represents an algorithm for attenuation. Weglein
et al. [18] described the application of the algorithm to 1D analytic and 2D synthetic data.
Field data tests were also performed showing an extraordinary ability to predict difficult
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interbed multiples, e.g. superimposed primary and multiple etc., where other methods
have failed.

The inverse scattering internal multiple attenuation algorithm was found through a
combination of simple 1D models testing/evaluation and certain similarities between the
way the data is constructed by the forward scattering series and the way arrivals in the
data are processed by the inverse scattering series. This connection between the forward
and the inverse series was analyzed and described by Matson [10, 11] and Weglein et
al. [17, 18]. Specifically, they showed that an internal multiple in the forward scattering
series is constructed by summing certain types of scattering interactions which appear
starting with the third order in the series. The piece of this term representing the first
order approximation to an internal multiple is exactly the one for which the point scat-
terers satisfy a certain lower-higher-lower relationship in actual depth. Summing over all
interactions of this type in the actual medium results in constructing the first order ap-
proximation to an internal multiple. By analogy, it was inferred that the first term in the
subseries for eliminating the internal multiples would be one constructed from events
satisfying the same lower-higher-lower relationship in pseudo-depth. The assumption
that the ordering of the actual and the pseudo depths of two sub-events is preserved, i.e.

zactual
1 < zactual

2 ⇐⇒ z
pseudo
1 < z

pseudo
2 , (1.1)

has been subsequently called “the pseudo-depth monotonicity condition”.
In this paper we further analyze this relation and show that it is equivalent to a verti-

cal or intercept time (here denoted by τ) monotonicity condition

zactual
1 < zactual

2 ⇐⇒ τ1 <τ2, (1.2)

for any two sub-events. We also look at the differences between the time monotonicity
condition in vertical or intercept time and total travel time. The latter was pointed out by
a different algorithm derived from the inverse scattering series by ten Kroode [8] and fur-
ther described by Malcolm and de Hoop [9]. We show a 2D example which satisfies the
time monotonicity in vertical or intercept time (and hence is predicted by the original al-
gorithm) but not in total travel time. Finally we discuss a case in which the monotonicity
condition is not satisfied by the sub-events of certain internal multiple reflection in either
vertical or total travel time and consequently the multiple will not be predicted by either
one of the two algorithms. For these cases, the monotonicity condition turns out to be too
restrictive and we discuss ways of lowering these restrictions and hence expanding the
algorithm to address these types of multiples.

In Section 2 we will describe the relationship between internal reverberations and
scattering theory with special focus on the inverse scattering algorithm for predicting
them. A 1.5D example is analyzed in Section 3 with analytical data where internal multi-
ples with headwaves sub-events are shown to be predicted by the algorithm. We further
look in Sections 4 and 5 at several 2D examples to better understand the relationship
between the sub-events which are used by the algorithm to construct the phase and the
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amplitude of the internal multiple. Some comments and conclusions are presented in the
last section.

2 Internal multiple reflections and their relation with scattering

theory

Internal multiple reflections are easier to understand than they are to define. In fact, their
definition started off as a simple concept - a wave event having two or more upward
reflection and one or more internal (i.e. not at the free surface) downward reflections
– and evolved to more complicated and precise notions (for a description of these con-
cepts see [19]). This evolution was driven by the development of higher understanding
of wave propagation and that of better models of complex media in seismic applications.
Recently, Weglein and Dragoset [19] have introduced more general definitions and desig-
nations for primary and multiply reflected events, namely prime and composite events.
According to those definitions, a prime event is not decomposable into other recorded
events such that those sub-event ingredients combine by adding and/or subtracting time
of arrival to produce the prime. A composite event is composed of sub-events that combine
in the above described manner to produce the event. These definitions, which general-
ize all the previous ones, and the notion of sub-events, were suggested by the inverse
scattering internal algorithm which is going to be discussed in this section. One notable
difference between these new concepts and the classical ones is that they do not make
any inferences about, or references to the medium or to the history of the recorded wave
event. The entire decision whether or not an event in the data is a single or a multiple
reflection is based on the information contained in that data set itself. In the next few
paragraphs we introduce the mathematical foundation for the forward and the inverse
scattering theory with a special focus on how internal multiple reflections relate to them.

The differential equations describing wave propagation in an actual and a reference
medium can be written as

LG=−I (2.1)

and

L0G0 =−I, (2.2)

where L, L0 and G, G0 are the actual and reference differential and Greens operators,
respectively, for a single temporal frequency and I is the identity operator. Eqs. (2.1)
and (2.2) assume that the source and receiver signatures have been deconvolved. The
perturbation, V, and the scattered field operator, ψs, are defined as

V=L−L0, (2.3)

ψs =G−G0. (2.4)
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The fundamental equation of scattering theory, the Lippmann-Schwinger equation, re-
lates ψs, G0, V and G (see, e.g., [15])

ψs =G−G0 =G0VG. (2.5)

This equation can be expanded in an infinite series by repeatedly substituting G=G0−

G0VG into the right hand side to obtain

ψs ≡G−G0 =G0VG0+G0VG0VG0+··· . (2.6)

This series constructs the scattered field operator ψs as a series of terms formed as prop-
agations in the reference medium (G0) and interactions with the inhomogeneity (V).
Notice that the scattered field is constructed everywhere, i.e. inside and outside the ac-
tual medium; when this equation is restricted to a pre-defined measurement surface, this
quantity represents the recorded data and hence the equation describes a modeling pro-
cedure or a direct (forward) problem.

The perturbation operator V can be expanded as a formal series

V=V1+V2+V3+··· , (2.7)

where Vn is the portion of V that is nth order in the data, D. Introducing the expression
for V from Eq. (2.7) into the forward series in Eq. (2.6) to find

Ψs =G0(V1+V2+···)G0+G0(V1+V2+···)G0(V1+V2+···)G0

+G0(V1+V2+···)G0(V1+V2+···)G0(V1+V2+···)G0

+··· . (2.8)

Evaluating this equation on the measurement surface we notice that the left hand side
represents the data itself, while the right hand side is a series in different orders of the
data. By equating the coefficients of the same degree from both sides of the equation we
find the system of equations

(Ψs)m = D=(G0V1G0)m,

0=(G0V2G0)m+(G0V1G0V1G0)m,

0=(G0V3G0)m+(G0V1G0V2G0)m+(G0V2G0V1G0)m+(G0V1G0V1G0V1G0)m,

... (2.9)

where the subscript m indicates that the quantities are calculated on the measurement
surface. The first of these equations can be solved for V1 which in turn can be used in
the second equation to solve for V2 and so on. Each step requires only the recorded
data D and the knowledge of the reference medium Green’s function G0. When the
inverse scattering series, given in Eq. (2.7), converges it achieves full inversion for the
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actual medium’s structure and properties from recorded data and reference medium’s
properties only.

The subseries method was developed by Weglein and collaborators (for a history, de-
scription and the current state see [18]) to overcome possible convergence issues of the
full series. Subseries were sought for certain specific tasks corresponding to steps in seis-
mic processing for hydrocarbon exploration: 1. free surface reverberation elimination 2.
internal multiple reflections elimination 3. imaging and 4. inversion. Each step assumes
that the previous ones were successful and that the problem is being restarted with a
new data set; for example the imaging step assumes that all the multiple reflections (free
surface or internal) were eliminated and the new data set only contains prime events. In
this paper we study the algorithm developed from the inverse scattering series to predict
and attenuate internal multiple reflections (task 2).

The first term in an algorithm that would process (attenuate or eliminate) internal
multiples in the recorded data appears as a piece of V3 (see [17, 18]) and it has the form

b3(kg,ks,ω)=
1

(2π)2

∞
∫

−∞

∞
∫

−∞

dk1e−iq1(ǫg−ǫs)dk2eiq2(ǫg−ǫs)

∞
∫

−∞

dz1ei(qg+q1)z1 b1(kg,k1,z1)

×

z1
∫

−∞

dz2ei(−q1−q2)z2 b1(k1,k2,z2)

∞
∫

z2

dz3ei(q2+qs)z3b1(k2,ks,z3), (2.10)

where ǫs and ǫg are the source and receiver depths respectively and where z1>z2 and z2<

z3 and b1 is defined in terms of the original data with free surface multiples eliminated,
D′, to be

D′(kg,ks,ω)=(−2iqs)
−1B(ω)b1(kg,ks,qg+qs) (2.11)

with B(ω) being the source signature. Here ks and kg are horizontal wavenumbers, for
source and receiver coordinates xs and xg, and qg and qs are the vertical wavenumbers
associated with them. The b3 on the left hand side represents the first order prediction
of the internal multiples. An internal multiple in b3 is constructed through the following
procedure.

The deconvolved data without free-surface multiples in the space-time domain,
D(xs,xg,t) can be described as a sum of Dirac delta functions

D(xs,xg,t)=∑
a

Raδ(t−ta) (2.12)

representing different arrivals (primaries and internal multiples). Here Ra represents the
amplitude of each arrival and it is a function of source and receiver position xs and xg

and frequency ω. When transformed to the frequency domain the transformed function
D(xs,xg,ω) is a sum

D̃(xs,xg,ω)=∑
a

R̃ae−iωta . (2.13)
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Here ta is the total travel time for each arrival and it can be thought of as a sum of vertical
and horizontal times ta = τa+txa (see, e.g., [7, 16]), where txa is a function of xg and xs.
After Fourier transforming over xs and xg, the data is D̃(ks,kg,ω). The transforms act
on the amplitude as well as on the phase of the data and transform the part of the phase
which is described by the horizontal time txa. Hence D(ks,kg,ω) can now be thought of as
a sum of terms containing eiωτa with τa being the vertical or intercept time of each arrival

D̃(ks,kg,ω)=∑
a

R̃′
ae−iωτa (2.14)

and where R̃′
a is the double Fourier transform over xg and xs of R̃ae−iωtxa . The multipli-

cation by the obliquity factor, 2iqs, changes the amplitude of the plane wave components
without affecting the phase; hence b1(ks,kg,ω) represents an effective plane wave decom-
posed data and is given by

b1(ks,kg,ω)=∑
a

R̃′′
ae−iωτa , (2.15)

where R̃′′
a = 2iqs R̃′

a and whose phase, e−iωτa , contains information only about the
recorded actual vertical or intercept time.

Notice that for each planewave component of fixed ks, kg and ω we have

ωτa = kactual
z zactual

a , (2.16)

where kactual
z is the actual, velocity dependent, vertical wavenumber and zactual

a is the ac-
tual depth of the turning point of the planewave. Since the velocity of the actual medium
is assumed to be unknown, this relationship is written in terms of the reference velocity
as

ωτa = kzza, (2.17)

where kz is the vertical wavenumber of the planewave in the reference medium,

kz =

√

ω

c0
−ks +

√

ω

c0
−kg,

and za is the pseudo-depth of the turning point. This implicit operation in the algorithm
is performed by denoting b1(ks,kg,ω)=b1(ks,kg,kz) with the latter having the expression

b1(ks,kg,kz)=∑
a

R̃′′
ae−ikzza . (2.18)

The next step is to Inverse Fourier Transform over the reference kz hence obtaining

b1(ks,kg,z)=

∞
∫

−∞

eikzzb1(ks,kg,kz)dkz. (2.19)
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Putting together Eqs. (2.18) and (2.19) we find

b1(ks,kg,z)=∑
a

∞
∫

−∞

R̃′′
aeikz(z−za)dkz (2.20)

which represents a sum of delta-like events placed at pseudo-depths za and hence the b1

from the last equation is actually b1(ks,kg,za). This last step can also be interpreted as
a downward continuation on both source and receiver sides, with the reference velocity
c0, and an imaging with τ = 0, or, in other words, an un-collapsed F-K migration (see,
e.g., [13, 14]). A discussion of differences in imaging with τ and with t was given by
Nita and Weglein [12]. Each internal multiple is constructed by considering three effec-
tive data sets b1 and searching, in the horizontal-wavenumber–pseudo-depth domain, for
three arrivals which satisfy the lower-higher-lower relationship in their pseudo-depths,
i.e., z1 > z2 < z3, (see Fig. 1 for an example of three such primary events). Having found
such three arrivals in the data, the algorithm combines their amplitudes and phases to
construct a multiple by adding the phases of the two pseudo-deeper events and subtract-
ing the one of the pseudo-shallower ones and by multiplying their amplitudes. One can
then see (see, e.g., [18]) that the time of arrival of an internal multiple is exactly predicted
and its amplitude is well approximated by this procedure.

c0

c1

c2

321

Figure 1: The sub-events of an internal multiple: the single reflections 1, 2 and 3 are arrivals in the data which
satisfy the lower-higher-lower relationship in pseudo-depths z. The algorithm will construct the phase of the
internal multiple (W shaped) by adding the phases of the deeper single reflections and subtracting the one of
the shallow single reflection. The velocities for the three layers are represented by c0, c1 and c2.

As pointed out in the first section, the lower-higher-lower restriction was inferred
from the analogy with the forward scattering series description of internal multiples: the
first order approximation to an internal multiple (which occurs in the third term of the se-
ries) is built up by summing over all scattering interactions which satisfy a lower-higher-
lower relationship in actual depth. The assumption that this relationship is preserved
in going from actual depth to pseudo-depth is called “the pseudo-depth monotonicity
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x1

x1f(  )

x2f(   )

x2

f(x)

x

Figure 2: A monotonic function.

condition”. (Recall that a monotonic function f (x) satisfies f (x1)< f (x2)⇐⇒ x1 <x2, see
also Fig. 2; here, we regard the pseudo-depth as a function of actual depth). Notice that
the lower-higher-lower relationship in pseudo-depth can be translated, from Eq. (2.17),
in a similar longer-shorter-longer relationship in the vertical or intercept time of the three
events. Accordingly, the pseudo-depth monotonicity is also translated in a vertical time
monotonicity condition. Notice that this is different from the total time monotonicity
assumed by the algorithm introduced by ten Kroode [8]. The latter is employing asymp-
totic evaluations of certain Fourier integrals which result in an algorithm in the space
domain, having a ray theory assumption and the less inclusive total time monotonicity
requirement. The justification for this approach was the attempt to attenuate a first order
approximation to an internal multiple built by the forward scattering series. In contrast,
the original scattering series algorithm is aimed at predicting and attenuating the actual
multiples in the data and hence it takes into consideration the full wavefield, with no
asymptotic compromises, and results in a more inclusive vertical time monotonicity con-
dition. In Section 4 we discuss a 2D example in which the geometry of the subsurface
leads to the existence of a multiple which satisfies the pseudo-depth/vertical-time but
not the total time monotonicity condition.

In the next section we analyze a simple 1.5D example and show analytically how it
predicts internal multiples by putting together amplitude and phase information from
arrivals in the data satisfying the above condition. During this analysis we also show
that the internal multiples with headwaves sub-events are attenuated by the algorithm.

3 Attenuation of internal multiples with headwaves

sub-events: A 1.5D example

The model in this experiment is a 1D medium with the wavefield propagating in a 2D
space. We consider one of the simplest cases which allow the existence of internal mul-
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tiples, namely one layer between two semi-infinite half-spaces separated by horizontal
interfaces (see Fig. 3). The velocity only varies across the interfaces located at z = za and
z= zb and has the values c0, c1 and c2 respectively. The sources and receivers are located
at the same depth z=0. The data for such a model is given in the frequency ω domain by
(see e.g. [1])

D(xh,0;ω)=
1

2π

∞
∫

−∞

dkh
R01+T01R12T10eiν1(zb−za)+···

iqs
eikhxh eikzza , (3.1)

where kz =qg+qs, kh =kg +ks, xh =(xg−xs)/2 and ν1 =q1g+q1s. The reflection and trans-
mission coefficients at the corresponding interfaces R01, T01, R12 and T10 are all functions
of kh and ω. Only the primaries from the top and the bottom interfaces are written out
explicitly in this equation; the dots “...” stand for other multiple arrivals. For simplicity
we will drop the writing of the dots for the rest of this example; this will effect in the
prediction of the first order internal multiple only.

c0

c1

c2

za

zbz

x z=0 MS

Figure 3: The model for the 1.5D example. The positive z direction points downward; the depths of the two
interfaces are za and zb; c0, c1 and c2 are the velocities in the corresponding layers; MS denotes the measurement
surface.

Notice that the expression (3.1) represents both pre-critical and post-critical arrivals,
as well as, for large offsets, headwaves along both interfaces. For a discussion of how to
obtain the headwaves solutions from integrating Eq. (3.1) see e.g. Aki and Richards [1]
Chapter 6. The first order internal multiple that we seek to predict has the expression

IM1st
actual(xh,0;ω)=

1

2π

∞
∫

−∞

dkh
T01R2

12T10R10e2iν1(zb−za)

iqs
eikh xh eikzza . (3.2)

This analytic formula contains both small and large offsets first order internal multiples
arrivals including the multiples containing headwaves along the second interface as sub-
events.

Fourier transforming the data given by Eq. (3.1) over the offset coordinate xh and the
midpoint coordinate xm we find

D(kh,0;ω)=
R01+T01R12T10e−iν1(zb−za)

iqs
e−ikzza δ(kg−ks). (3.3)
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za

zb

qs

ks

c
0

ω/

θ

(a) The geometry of the first primary in
the data.

zb

za
q

1s

c
0

ω/qs

ks

ks

ω/c
1

θ

ϕ

(b) The geometry of the second primary in the data.

Figure 4: Geometrical representation of the two primaries.

Then b1(kh,0;ω)= iqsD(kh,0;ω) is

b1(kh,0;ω)=
[

R01+T01R12T10e−iν1(zb−za)
]

e−ikzza δ(kg−ks), (3.4)

or
b1(kh,0;ω)=

[

R01e−ikzza +R′

12e−iν1(zb−za)e−ikzza
]

δ(kg−ks), (3.5)

where, for simplicity, we denoted T01R12T10 = R′

12.
For the first primary we can write (see Fig. 4(a)) cosθ =qs/(ω/c0) which implies

qs =
ω

c0
cosθ (3.6)

or, noticing that c0/cosθ = c1
v, the vertical speed in the first medium,

qsza =
ω

c0
za cosθ =ω

τ1

2
, (3.7)

where τ1 represents the intercept or vertical time of the first event. Similarly, on the
receiver side we have

qgza =ω
τ1

2
. (3.8)

Summing the last two equations we find for the first primary arrival (compare with
Eq. (2.17))

kzza =ωτ1, (3.9)

where we emphasize again that on the left hand side of the equation is the reference
kz and the pseudo-depth, which in this case coincides with the actual depth of the re-
flector, za, and on the right hand side we have the phase information contained in the
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recorded data. For the second event we can find, as before, that, for the portion propa-
gating through the space in between the measurement surface and the depth za, we have

kzza =ωτ1, (3.10)

where τ1 is the vertical time through the first medium. For the part that is propagating
through the second medium we can write cosϕ=q1s/(ω/c1) which implies

qs1 =
ω

c1
cosϕ, (3.11)

or, noticing that c1/cos ϕ= c2
v, the vertical speed in the layer,

q1s(zb−za)=
ω

c1
(zb−za)cos ϕ=ω

τ2

2
, (3.12)

where τ2 is the vertical time through layer 2 for this event. Similarly, on the receiver side
we have

q1g(zb−za)=ω
τ2

2
. (3.13)

Summing the last two equations we find

ν1(zb−za)=ωτ2. (3.14)

Summarizing, for the second primary we found from Eqs. (3.10) and (3.14)

kzza+ν1(zb−za)=ωτ2, (3.15)

where τ2 is the total vertical time for the second event.
Since the velocity of the second medium is not known, we can write ωτ2 in terms of

c0 only as follows (see Eq. (2.17))
ωτ2 = kzz′b, (3.16)

where z′b is a pseudo-depth which can be calculated in terms of the vertical time τ2 and
the vertical speed of the first medium. With these remarks, the expression (3.5) for b1

becomes
b1(kh,0;ω)=

[

R01e−ikzza +R′

12e−ikzz′b

]

δ(kg−ks). (3.17)

To calculate b1(kh,z) we first downward continue/extrapolate,

b1(kh,z;ω)=
[

R01eikz(z−za)+R′

12eikz(z−z′b)
]

δ(kg−ks), (3.18)

and then integrate over kz (imaging) to obtain

b1(kh,z)=

∞
∫

−∞

dkzb1(kh,kz;ω). (3.19)
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Notice that the reflection and transmission coefficients in the expression (3.18) are func-
tions of ω and hence functions of kz. Explicitly,

R01(kh,ω)=

√

4ω2

c2
0
−k2

h−

√

4ω2

c2
1
−k2

h
√

4ω2

c2
0
−k2

h+
√

4ω2

c2
1

−k2
h

. (3.20)

The integration over kz in (3.19) hence amounts to an inverse Fourier transform of R01 and
R′

12 over kz. This Fourier transform is difficult to write as an analytic result and hence the
example can no longer continue in the (kh,ω) domain.

(p , )( , ) to

ω

ω

k hhk

ω

ωk h

p

Figure 5: The mapping (kh,ω) to (p,ω).

The imaging of the data can also be achieved in the (p,ω) domain with better analyt-
ical results and more meaningful amplitude analysis (see [5]). The slowness p is defined
as the inverse of velocity, p=1/c. To this end we map the data from the (kh,ω) to (p,ω)
domain. This mapping has been studied extensively in [3,4]. It mainly consists in reading
the data along the lines going through the origin of the (kh,ω) coordinate system instead
of the original (kh,ω) grid (see Fig. 5). Notice that, if this mapping is performed, the re-
flection and the transmission coefficients are no longer dependent of the frequency ω or
kz. Explicitly, in the formula (3.20) for R01 we can factor ω and then divide by it and so
the expression becomes

R01(p)=

√

4
c2

0
−p2−

√

4
c2

1

−p2

√

4
c2

0
−p2+

√

4
c2

1
−p2

. (3.21)

Similarly it can be shown that R′

12 is mapped to a function of p only.
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In this new coordinate system the imaging step reads

b1(p,z)=

∞
∫

−∞

dkzb1(p,kz;ω)=
[

R01(p)δ(z−za)+R′

12(p)δ(z−z′b)
]

δ(kg−ks). (3.22)

Numerical results comparing imaging in (kh,ω) and (p,ω) were shown and discussed
in [5]. The imaged data written in Eq. (3.22) is next taken through the internal multiple
algorithm described in Eq. (2.10).

Given the data in the form (3.22), the algorithm performs similarly to the 1D normal
incidence case. In the following, we are denoting by p1, p2 and p3 the horizontal slowness
associated with kg+k1, k2+ks and k1+k2 respectively. The horizontal slowness associated
with ks +kg is also denoted by p. The four slowness variables defined above are not
independent, in fact we have that p3 =(p1+p2)−p.

The inner most integral towards calculating b3 in the internal multiple algorithm is

∞
∫

z′2+ε1

dz′3eikzz′3
[

R01(p2)δ(z′3−za)+R′

12(p2)δ(z′3−z′b)
]

δ(k2−ks)

=

∞
∫

−∞

dz′3H(z′3−(z′2+ε1))eikzz′3
[

R01(p2)δ(z′3−za)+R′

12(p2)δ(z′3−z′b)
]

δ(k2−ks)

=
[

H(za−(z′2+ε1))R01(p2)eikzza +H(z′b−(z′2+ε1))R′

12(p2)eikzz′b

]

δ(k2−ks). (3.23)

The second integral in the algorithm is

z′1−ε2
∫

−∞

dz′2eikzz′2
[

R01(p3)δ(z′2−za)+R′

12(p3)δ(z′2−z′b)
]

δ(k1−k2)

×

[

H(za−(z′2+ε1))R01(p2)eikzza +H(z′b−(z′2+ε1))R′

12(p2)eikzz′b

]

δ(k2−ks)

=R01(p2)R01(p3)H((z′1−ε2)−za)H(za−(za+ε1))eikzza e−ikzza δ12s

+R01(p3)R′

12(p2)H((z′1−ε2)−za)H(z′b−(za+ε1))eikzz′b e−ikzza δ12s

+R′

12(p3)R01(p2)H((z′1−ε2)−z′b)H(za−(z′b+ε1))eikzza e−ikzz′b δ12s

+R′

12(p2)R′

12(p3)H((z′1−ε2)−z′b)H(z′b−(z′b +ε1))eikzz′b e−ikzz′b δ12s, (3.24)

where

δ12s =δ(k1−k2)δ(k2−ks)

and all the underlined terms are zero.
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The last integral over depth z in the calculation of b3 is

∞
∫

−∞

eikzz′1
[

R01(p1)δ(z′1−za)+R′

12(p1)δ(z′1−z′b)
]

δ(kg−k1)

×R01(p2)R′

12(p3)H((z′1−ε2)−za)H(z′b−(za+ε1))eikzz′b e−ikzza δ12s

=R01(p1)R01(p2)R′

12(p3)H(−ε2)H(z′b−(za+ε1))eikzza δ(kg−k1)δ12s

+R′

12(p1)R01(p2)R′

12(p3)eikz(2z′b−za)H(z′b−(za+ε2))H(z′b−(za+ε1))δ(kg−k1)δ12s

=R′

12(p1)R01(p2)R′

12(p3)e2ikzz′b e−ikzza δ(kg−k1)δ12s, (3.25)

where we have used the fact that the underlined term is zero and that the last two Heav-
iside functions are identically equal to 1.

The result for the b3, and hence the predicted first order internal multiple, is

b3(p,ω)= e2ikzz′b e−ikzza

∞
∫

−∞

dk1

∞
∫

−∞

dk2R′

12(p1)R01(p2)R′

12(p3)δ(kg−k1)δ12s, (3.26)

or, after evaluating the integrals and using the relationship between p1, p2, p3 and p,

b3(p,ω)= R′2
12(p)R01(p)δ(kg−ks)e2ikzz′b e−ikzza . (3.27)

Recalling that R′2
12(p)=T01(p)R2(p)T10(p) we find the final result to be

b3(p,ω)=T2
01(p)R2

2(p)T2
10(p)R01(p)δ(kg−ks)e2ikzz′b e−ikzza (3.28)

consistent with the 1D normal incident result of [18]. Integrating over kh gives the pre-
diction of the first order internal multiple in space frequency domain

IM1st
predicted(xh,0;ω)=

1

2π

∞
∫

−∞

dkh
T2

01R2
12T2

10R10e2iν1(zb−za)

iqs
eikhxh eikzza . (3.29)

Comparing this expression with Eq. (3.2) for the actual multiple we see that the predicted
multiple has the correct total time and a well approximated amplitude. The amplitude of
the predicted multiple in the p-domain is within a T01(p)T10(p) factor, a factor which is
always close to, but always less than, 1. An integration over the horizontal wavenumber
kh will average these amplitudes and will result in the predicted amplitude in the space
domain which again is going to be lower than, but close to, the actual amplitude of the
internal multiple. In addition, since the phase and amplitude construction is performed
in the plane waves domain, the internal multiples with headwaves sub-events are also
predicted by the algorithm.

In the next section we will further discuss the lower-higher-lower relationship be-
tween the pseudo-depths of the sub-events and the similarities and differences of this
relationship in total travel time and vertical or intercept time.



178 B. G. Nita and A. B. Weglein / Commun. Comput. Phys., 5 (2009), pp. 163-182

φ
out

φ
in

θoutθ in

2

1

z1

z2

ρ

ρ

0

1

3

Figure 6: A 2D model with internal multiple reflections satisfying the time monotonicity in the vertical time but
not in the total travel time.

4 Vertical time and total travel time monotonicity: A 2D example

Consider the model shown in Fig. 6. For simplicity we assume that only the density ρ

varies at the interface and it has the value ρ0 in the reference medium and ρ1 in the actual
medium. The velocity is constant c0. In this picture, the sub-events in the data which
determine the internal multiple are numbered 1, 2 and 3; the actual internal multiple (the
W shaped event) predicted by these sub-events is shown without any number.

First, notice that, we can find a depth for the sources and receivers such that the
total traveltime of the shallower reflection (event number 2) is larger than both deeper
reflections (1 and 3). This is due to the large offsets needed to record such a large offset
event. This implies that the longer-shorter-longer relationship is not satisfied by these
particular sub-events in the total traveltime.

Next we calculate the vertical times for individual sub-events. The vertical time for
the event 2 along the left leg is (see Fig. 6)

τ1
2 = z1

cosθin

c0
, (4.1)

where the subscript indicates the event number and the superscript indicating that it is
the first part (left leg) of the total vertical time τ; along the right leg we have

τ2
2 = z1

cosθout

c0
. (4.2)

Summing the two legs we find the total vertical time along the event 2 to be

τred =
z1

c0
(cosθin +cosθout). (4.3)

Similarly, for event 3, we have

τ3 =
z2

c0
(cosφin+cosφout). (4.4)
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Since the velocity is constant, θout = φout; we also have that φin < θin, and hence cosφin >

cosθin, and z2 > z1 which results in

τ3 >τ2. (4.5)

It is not difficult to see that similarly, for this example, we have

τ1 >τ2 (4.6)

where τ1 is the vertical time of primary reflection 1 in Fig. 6.

The conclusion is that for this model and particular internal multiple, the longer-
shorter-longer relationship is satisfied by the vertical or intercept times of the three
subevents but not by their total traveltimes. According to Eq. (2.17), this relation trans-
lates into the lower-higher-lower relationship between the pseudo-depths of the sub-
events and hence the internal multiple depicted in Fig. 6 will be predicted by the inverse
scattering internal multiple attenuation algorithm in Eq. (2.10).

In the next section we discuss a model and a particular type of internal multiples
for which the longer-shorter-longer relationship in vertical and total travel time is not
satisfied.

5 Breaking the time monotonicity: A 2D example

Consider the model shown in Fig. 7 where c0 < c1 (a similar example was discussed by
ten Kroode [8]). A high velocity zone, in which the propagation speed is c3 much higher
than c0, intersects one leg of the internal multiple and hence one leg of one of the sub-
events (one of the single reflection in Fig. 7). Due to this high velocity zone and the fact
that c0 < c1, one can easily imagine a situation in which both the total and the vertical
time of the deeper single reflection passing through the high velocity zone are shorter
than the total and vertical times respectively of the shallow single reflection. In this case
the lower-higher-lower relationship between the pseudo-depths of the sub-events is not
satisfied and hence the internal multiple shown in the picture will not be predicted. The
monotonicity is in consequence broken, since even though the actual depths still satisfy
a lower-higher-lower relationship, the pseudo-depths, vertical times or total times of the
sub-events do not.

To better understand the multiples which do not satisfy the pseudo-depth/vertical-
time monotonicity condition and to expand the algorithm to address them, one has
to study their creation in the forward scattering series. As indicated by Matson in
[10, 11] and Weglein et al. [18] the lower-higher-lower relationship in pseudo-depth z
was pointed to by the forward scattering series: the first order approximation to an inter-
nal multiple is constructed in the forward scattering series from interactions with point
scatterers which satisfy the lower-higher-lower relationship in actual depth. It would be
interesting to analyze how a multiple that breaks the monotonicity assumption is con-
structed by the forward series and to determine if an analogy between the forward and
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Figure 7: A 2D model with an internal multiple containing sub-events which do not satisfy the time monotonicity
in either total traveltime or vertical time.

the inverse process would be useful to expand the algorithm to address these kind of
events. This particular issue and others will be the subject of future research.

6 Conclusions

In this paper we presented an analysis of the inverse scattering algorithm for attenuating
internal multiple reflections. We particularly focused on the mechanism of predicting
amplitude and phase properties of such a wave event. We have presented the first ap-
plication of the algorithm to analytical data in 1.5D (a 1D medium with the wavefield
propagating in 2D) which shows the ability of the algorithm to exactly predict the time
and well approximate the amplitude of internal multiple reflections, including the ones
with headwaves sub-events. We have discussed in detail the pseudo-depth/vertical-time
monotonicity condition and compared it with a similar total travel time relation. Fur-
thermore, we showed that this restriction on the sub-events can be too strong and could
prevent the prediction of some complex internal multiples.

This research is an important step forward in better understanding the inverse scat-
tering series and, more specifically, the internal multiple attenuation algorithm derived
from it. The analytic and qualitative analysis presented, targets internal multiples which
occur in complex and higher dimensional media. Having a better understanding of the
structure and definition of such internal multiples opens up new possibilities of identi-
fying, predicting and subtracting them from the collected data. The inverse scattering
series is presently the only tool that can achieve these objectives without any knowledge
about the actual medium.
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